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Abstract

Background: Despite funding constraints for treatment programmes in Africa, the costs and economic consequences of
routine laboratory monitoring for efficacy and toxicity of antiretroviral therapy (ART) have rarely been evaluated.

Methods: Cost-effectiveness analysis was conducted in the DART trial (ISRCTN13968779). Adults in Uganda/Zimbabwe
starting ART were randomised to clinically-driven monitoring (CDM) or laboratory and clinical monitoring (LCM); individual
patient data on healthcare resource utilisation and outcomes were valued with primary economic costs and utilities. Total
costs of first/second-line ART, routine 12-weekly CD4 and biochemistry/haematology tests, additional diagnostic
investigations, clinic visits, concomitant medications and hospitalisations were considered from the public healthcare
sector perspective. A Markov model was used to extrapolate costs and benefits 20 years beyond the trial.

Results: 3316 (1660LCM;1656CDM) symptomatic, immunosuppressed ART-naive adults (median (IQR) age 37 (32,42); CD4 86
(31,139) cells/mm3) were followed for median 4.9 years. LCM had a mean 0.112 year (41 days) survival benefit at an
additional mean cost of $765 [95%CI:685,845], translating into an adjusted incremental cost of $7386 [3277,dominated] per
life-year gained and $7793 [4442,39179] per quality-adjusted life year gained. Routine toxicity tests were prominent cost-
drivers and had no benefit. With 12-weekly CD4 monitoring from year 2 on ART, low-cost second-line ART, but without
toxicity monitoring, CD4 test costs need to fall below $3.78 to become cost-effective (,3xper-capita GDP, following WHO
benchmarks). CD4 monitoring at current costs as undertaken in DART was not cost-effective in the long-term.

Conclusions: There is no rationale for routine toxicity monitoring, which did not affect outcomes and was costly. Even
though beneficial, there is little justification for routine 12-weekly CD4 monitoring of ART at current test costs in low-income
African countries. CD4 monitoring, restricted to the second year on ART onwards, could be cost-effective with lower cost
second-line therapy and development of a cheaper, ideally point-of-care, CD4 test.
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Introduction

It is essential to evaluate the economic impact of antiretroviral

therapy (ART) programmes using a public health approach [1], to

guide policymakers how best to prioritise scarce resources for

HIV/AIDS care and treatment in the public sector. This is

particularly important with the current financial crisis, threats to

sustained HIV programme funding and the many individuals still

in urgent need of first and increasingly second-line treatment,

particularly in South and Eastern Africa [2–4].

Several studies have evaluated the clinical benefit [5–11] and

cost-effectiveness [12–18] of different strategies for monitoring the

safety and efficacy of ART. Results have been contradictory; for

example, in one modelling study of ART in resource-limited
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settings [15], monitoring with viral loads or CD4 cell counts

compared with clinical assessment alone led to only modest

benefits in patient survival and drug resistance. Conversely, a

recent modelling study for Côte d’Ivoire, a lower-middle income

country with a GDP per capita of $1071, found both monitoring

strategies cost-effective [17]. A recently published trial from

Uganda concluded that, compared with clinical monitoring alone,

routine CD4 count monitoring is considerably more cost effective

alone than combined with viral load monitoring [18].

Here we present a cost-effectiveness analysis, from the public

healthcare perspective, of Laboratory and Clinical Monitoring

(LCM) compared with Clinically-Driven Monitoring (CDM) of

ART alongside a randomised controlled trial conducted in

Uganda and Zimbabwe [11].

Methods

Ethics Statement

The DART trial was approved by Research Ethics Committees

in Uganda, Zimbabwe and the UK, and all enrolled participants

gave individual informed consent.

Effectiveness and resource utilisation data were collected in the

Development of Antiretroviral Therapy (DART) trial, conducted

from 2003–2008 at 3 centres in Africa: Entebbe and Kampala

(plus satellite), Uganda; Harare, Zimbabwe. The trial compared

LCM (routine 12-weekly laboratory monitoring: CD4 counts for

efficacy; haematology and biochemistry for toxicity) with CDM

(CD4 counts never available to clinicians) in ART-naı̈ve adults

($18 years) starting therapy with symptomatic HIV disease and

CD4,200 cells/mm3. Additional diagnostic investigations and

monitoring tests (except CD4 in CDM) could be requested

according to clinical judgement at routine visits, patient-initiated

visits or hospital admission. Concomitant medicines were

provided. The trial demonstrated no impact of routine toxicity

tests on any adverse event outcome; and a small, statistically

significant benefit of CD4 monitoring on HIV disease progression

and death from the second year onwards [11]. DART also showed

that regular fixed duration ART interruptions to reduce drug costs

were harmful [19]; and that cotrimoxazole prophylaxis on ART

significantly reduced mortality [20].

Mean total cost per patient by group was estimated using

intention-to-treat. Research component costs were separated from

those for ART delivery/monitoring and excluded from analysis.

Individual patient data on healthcare resource utilisation and

health outcomes of all DART participants were analysed, except

for concomitant medications which were analysed by group.

Because of the large number of different medications used over the

6 year trial, only those used by .30% of patients, or where there

was difference of .3% in the proportion using a medication

between the two randomised groups were accounted for.

Healthcare utilisation outside of the trial (health clinic visits,

hospitalisations and concomitant medications) were elicited at

every 4-weekly visit and included. Unit costs of CD4 counts,

biochemistry, haematology, clinic and health centre visits were

estimated in primary economic costing analyses [21] for each

centre, using costs from the main Kampala centre for its satellite.

Staff costs per routine and extra patient-initiated visits at DART

clinics were estimated in a time and motion study at the centres

(patient visits: Entebbe, n = 152; Kampala, n = 171; Harare

n = 175). Financial information was obtained from trial centre

records. ART costs were based on preferential prices of non-

generic drugs for sub-Saharan Africa in 2008 [22]. Country-

specific costs for hospital bed-days were obtained from WHO [23].

All local prices were converted to 2008 US$ using exchange

rates over the trial period (e.g. $1US$ = 1,900 Uganda Shillings;

1US$ = 777,500,000 Zimbabwean dollars in 2008) and the US

Consumer Price Index [24]. Official daily Zimbabwean rates were

applied to essential medical equipment and supplies, and market

rates from independent sources to staff salaries and locally

acquired items. No adjustment for purchasing power parity was

attempted given the lack of comparable standards in price level

information sources.

Survival benefits were estimated from the difference in the area

under the Kaplan-Meier [25] survival curve between the two

groups up to the trial end. Quality-adjusted life years (QALYs)

were calculated as the weighted total time spent in four possible

health states during the trial, with each state’s utility as its weight.

Health states were defined by performance scale assessment

(1 = asymptomatic; 2 = symptomatic; 3 = bed-ridden ,50% in the

previous month; 4 = bed-ridden .50% in the previous month)

during 12-weekly routine doctor visits and currently-ongoing

WHO stage 3/4 events. Hence, health states, unlike WHO

staging, may improve from baseline. Utilities for estimating

QALYs were obtained from a longitudinal sub-study (n = 275)

conducted at the DART Entebbe centre (see Supporting

Information S1), relative to the utility of the asymptomatic HIV-

infected state. This state was assumed to be optimal, thus having a

value of 1, to HIV-infected patients, and 0.81, to the general

population [26].

Incremental cost effectiveness ratios (ICERs) defined as the ratio

of incremental mean cost to mean survival or QALY gained, were

estimated. Costs and health benefits occurring after 12 months

were discounted at 3% per annum, and adjusted for censoring due

to drop-out using the method of Li [27]. 95% confidence intervals

for differences in means and ICERs were estimated using

bootstrap percentile methods [28]. Sensitivity analyses included

generic drug prices (WHO [29]), reduced prices for second-line

therapy [22], laboratory monitoring costs from the literature [30],

and National Referral Laboratories prices.

A Markov model of transitions between discrete CD4 states and

death was used to extrapolate outcomes post-DART, from 6 to

25 years after ART initiation. An individual alive at trial closure

would be in one of three states, defined by CD4 ,100, 100–200,

and .200 cells/mm3, qualified by first-line or second-line ART

due to expected differences in costs and benefits. After every 12-

week period, the participant would have moved to a different state,

remained in the initial state or died. Overall 97.7% of expected

CD4 counts before end of trial/death/loss to follow-up were

available. For routine CD4 tests, clinic visits and ART use, full

compliance with the DART follow-up schedule was assumed.

Other costs and QALYs were analysed as random events, divided

into 12-week periods and matched to latest CD4 count range to

derive estimates of cost and benefit (‘pay-offs’) for Markov states as

a function of latest CD4 count and group. In this extrapolation,

only cotrimoxazole prophylaxis and treatment and antimalarial

drugs, were included as concomitant medications; the former were

the only concomitant medications whose use varied significantly

over years on ART and the latter were the only medications whose

use varied significantly across centres. The analysis accounted for

background mortality risks derived from counterfactual life tables

for Uganda that exclude the effect of HIV/AIDS (see Supporting

Information S2).

ICERs ,3x per capita GDP were used as an indication of cost-

effectiveness, following benchmarks suggested by WHO [31].

Under a fixed, limited healthcare budget, an alternative threshold

applies, equal to the ICER of CDM versus the ‘no ART’ option (see

Supporting Information S2). The probability of cost-effectiveness

Cost Effectiveness of ART Monitoring
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over different threshold values, i.e., the cost-effectiveness accept-

ability curve, was derived from probabilistic sensitivity analysis.

Results

In DART, 3316 (1660 LCM; 1656 CDM) HIV-infected,

treatment-naı̈ve, symptomatic African adults started ART (65%

female; median (IQR) age 37 (32–42); CD4 86 (31–139) cells/

mm3) and were followed for median 4.9 (4.5–5.3) years. Unit costs

are presented in Table 1. The annual cost of the first-line regimens

used in DART was US$309–585; switching to second-line

regimens resulted in approximately three-fold higher ART costs.

Healthcare resources consumed by patients, overall costs of

resource utilisation and cost differences between the groups are

shown in Table 2. The overall mean incremental cost of LCM is

US$765 [95%CI 685,845] per patient, a 31% increase over CDM.

The drivers of cost differences between LCM and CDM are, in

order of magnitude, routine 12-weekly toxicity monitoring, CD4

monitoring, and second-line drugs. There are small offsets with

lower costs of clinically-indicated diagnostic investigations, first-

line therapy and fewer days in hospital in LCM, likely

consequences of earlier switch to second-line therapy in LCM

[11].

Mean survival benefit with LCM was 0.112 life-years (41 days).

The unadjusted incremental cost per life year gained (LYG) was

US$6819, with 95% CI from US$3282 to the dominated outcome

where it produces lower survival benefits alongside higher costs

than CDM (Table 3a). After adjusting for censoring due to drop-

out and discounting costs and benefits occurring after year one, the

ICER per LYG was $7386 [95%CI 3277,dominated]). The

incremental cost per QALY gained was $7793 [4442,39179] using

patients’ utility values, and $9621 [5484,48359] adjusting utilities

to the general population’s values. Across DART centres, total

mean costs of LCM and CDM ranged from $2647–3358 and

$1930–2490 respectively, with adjusted discounted incremental

costs of $8420–12340 per QALY gained adjusting utilities to the

general population’s values (data not shown).

In sensitivity analyses with prices for low-cost second-line drugs,

ICERs reduced: the adjusted incremental cost per LYG was $6443

[2891, Dominated]; and per QALY was $6798 [3917,30501]

Table 1. Unit costs in 2008 US$.

Item Observed Source and Date Sensitivity Analysis Source and Date

First line therapy annual cost*

ZDV+3TC+TDF $349.12 Midpoint of MSF prices, 2009 [18] $290.72 Generic prices (from WHO)
2008 [25]

ZDV+3TC+NVP $308.79 $165.64

ZDV+3TC+ABC $585.46 $441.80

Second-line therapy annual cost*

ddI+EFV+KAL $1032.59 Midpoint of MSF prices, 2009 [18] $874.18 Lower bound of MSF prices,
2009 [19]

ddI+NVP+KAL $967.98 $763.22

ddI+ABC+KAL $1244.65 $1062.52

CD4 cell counts $15.79 Entebbe Micro-costing– centre specific, 2008 $8.82 Rosen, Long and Sane,
2008 [26]

$10.07 JCRC

$18.82 UZCRC

Haematology panel tests $6.46 Entebbe $5.30 National Referral
Laboratories, 2008

$7.13 JCRC

$12.32 UZCRC

Biochemistry panel tests $11.66 Entebbe $29.50

$10.67 JCRC

$12.23 UZCRC

DART visits $4.08 Entebbe N/A N/A

$3.30 JCRC

$8.38 UZCRC

Health Centre visits $3.26 Entebbe N/A N/A

$8.84 JCRC

$8.73 UZCRC

Per diem hospital cost{ $25.57 Adam, Evans & Murray, 2003 [17] N/A N/A

Other diagnostic investigations and
tests{

$6.26 National Referral Laboratories, 2008 N/A N/A

*Annual drug costs of keeping a patient on this specific combination of drugs continuously for 365 days.
{Per diem hospital costs from Adam T, Evans DB and Murray CJL, 2003 were reflated to 2008 USD($).
{Other unit costs for diagnostic investigations (including X rays, TB smears, CSF analysis etc) and non-routine biochemistry and haematology tests are not listed here but
were obtained from National Referral Laboratories prices list.
doi:10.1371/journal.pone.0033672.t001
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using patients’ values and $8392 [4836,37656] using general

population values (Table 3b). Generic drug prices would reduce

ICERs by 0.3%, since the resulting rise in incremental LCM costs

of first-line consumption is offset by reduced additional costs of

second line therapy (results not shown). Incremental costs per

LYG and QALY increased in the sensitivity analysis of laboratory

costs because the National Referral Laboratory biochemistry panel

cost considerably more than in DART, outweighing lower CD4

and haematology costs. All these results are above the (weighted

average) threshold of cost-effectiveness for Uganda and Zimbabwe

of $1,200 for 2008 [24].

Scenario analyses were undertaken to explore the cost-

effectiveness of monitoring strategies not directly evaluated in

DART. In a limited CD4 monitoring scenario without routine

toxicity monitoring, 12-weekly CD4 monitoring was restricted to

the second year on ART onwards (as outcomes between groups

differed only from the third year on ART following differences in

rates of switching to second-line ART from the second year [11]).

This generated an adjusted discounted incremental cost per LYG

of US$2997 [95%CI 1333,dominated], US$3162 [1815,14178]

and US$3903 [2241,17504] per QALY gained based on patient

and general population values respectively. If low second-line

therapy costs are also assumed, the cost per CD4 count needs to

fall below $3.78 to become cost-effective in this trial-based

analysis.

ART outcomes were extrapolated long-term by applying

predicted transition probabilities corresponding to the last two

years of DART (see Supporting Information S2): at CD4

.200 cells/mm3, LCM has a lower switch rate than CDM,

and vice versa at low (,100 cells/mm3) CD4 levels. In our

optimistic scenario, this differential was applied; whereas in the

conservative scenario both groups were assigned the same

probability of switching to second-line at high CD4 counts.

Long-term differences emerge: from the third year after DART

onwards, a higher proportion of CDM participants would be on

second-line therapy in the optimistic scenario because of the

greater switch rate at high CD4 levels where most time was

spent; whereas in the conservative scenario, a higher proportion

of LCM participants continue to have switched to second-line

(Figure 1; top panel). After 25 years of ART, 60% of the

participants would have died. Only in the optimistic scenario is

the survival benefit of LCM maintained (Figure 1; middle panel).

Table 2. Healthcare resource utilisation (US$2008).

Healthcare resource utilisation
Observed total over trial period per patient (median
4.9 years)

Cost difference LCM –
CDM *

LCM CDM

First-line therapy
Number of days Mean (SD)
Costs Mean (SD)

1464.96 (555)
1451 (603)

1481.90 (545)
1470 (603) 219

Second-line therapy
Number of days Mean (SD)
Costs Mean (SD)

152.99 (355)
406 (964)

102.89 (270)
265 (718) +141

CD4 monitoring
Number of CD4s Mean (SD)
Costs Mean (SD)

19.81 (6)
288 (121)

0 (0)
0 (0) +288

Routine 12-weekly haematology toxicity monitoring
Number of haematology tests Mean (SD)
Costs Mean (SD)

21.58 (7)
183 (81)

0 (0)
0 (0) +183

Routine 12-weekly biochemistry toxicity monitoring
Number of CD4s biochemistry tests Mean (SD)
Costs Mean (SD)

20.93 (6)
227 (69)

0 (0)
0 (0) +227

Clinically indicated diagnostic investigations, other tests outside
routine visits (both groups) or monitoring tests (except CD4)
requested for clinical reasons at routine visits (CDM)
Number of diagnostic investigations
Cost Mean (SD)

6.56 (11)
41 (81)

10.49 (18)
{

66 (170) 225

DART clinic visits
Number of visits Mean (SD)
Costs Mean (SD)

61.18 (19)
414 (195)

60.12 (20)
405 (197) +9

Health centre visits
Number of visits Mean (SD)
Costs Mean (SD)

7.73 (7)
53 (56)

7.88 (8)
55 (64) +2

Nights in hospital
Number of visits Mean (SD)
Costs Mean (SD)

5.51 (13)
141 (347)

6.77 (16)
177 (444) 236

Concomitant medications 46 48 22

Overall mean total costs (SD)
[95% confidence interval] 3249 (1246) 2485 (1095)

765
[685,845] {

*Discrepancies in totals and differences are due to rounding.
{1.47 (3) and 0.86 (3) of the total were standard haematology or biochemistry tests respectively performed at routine doctor visits as part of the trial for CDM but
requested for clinical management.
{95% CIs were estimated with bootstrapping percentile method.
doi:10.1371/journal.pone.0033672.t002
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This continued survival differential is due to second-line therapy

having higher mortality risks than first-line, and more CDM

participants on second-line therapy in the long-term optimistic

scenario.

The ICER per QALY gained over time is shown for the limited

laboratory monitoring (CD4 from the second year on ART only)

scenario in Figure 1, bottom panels under three cost conditions: a)

CD4 cost observed in DART ($14.46, weighted average across

centres); b) hypothetical, CD4 test ($3.78) and c) hypothetical CD4

test and lowest observed second-line costs ($763; see Table 1). The

scenarios employ patients’ utility values. In the optimistic scenario,

ICERs decline with time on therapy, driven by the cumulative gap

in survival and second-line therapy use between groups, although

this effect would be dampened under a discount rate higher than

3% (not shown). In the optimistic scenario condition (c), the cost

per CD4 count needs to fall to ,$6.75 for the ICER to remain

under $1200. Under a fixed budget the maximum cost-effective

value is $5.81 (see Supporting Information S2).

Figure 2 shows the probability of cost-effectiveness as a function

of the monetary threshold per QALY gained under condition (a)

above. In the conservative scenario, there is zero probability of

cost-effectiveness at the US$1200 threshold: in the optimistic

scenario this probability increases to less than 5% (Figure 2a).

These aggregate results mask variation between centres stemming

from cost and monetary threshold differences. In the optimistic

scenario, limited CD4 monitoring had a ,4% probability of cost-

effectiveness in Entebbe and Harare at country-specific thresholds

(unit cost of CD4 count tests) of $1364 ($15.79) and $804 ($18.82)

respectively, and 30% probability of cost-effectiveness in Kampala

with a CD4 unit cost of $10.07 (Figure 2b). The country-specific

cost-effectiveness thresholds were achieved at test costs of $7.87,

$7.43, and $3.39, respectively, in the three centres over the

optimistic extrapolation. Under fixed limited budgets, the

respective thresholds ($1044, $1088, and $1169) are met at CD4

test costs of $5.15, $5.50 and $7.45.

Discussion

Here we report the costs and economic outcomes associated

with routine laboratory monitoring of ART using individual

patient data from Uganda and Zimbabwe in the DART trial.

Routine toxicity monitoring had no additional benefits on any

adverse event outcome and was more costly than clinically driven

toxicity monitoring. While effective, routine (12-weekly) labora-

tory CD4 count monitoring was more costly than monitoring

without CD4 counts. Even ignoring routine toxicity monitoring,

Table 3. Main and sensitivity analyses: life years gained, QALYs, costs and ICERs.

LCM
N = 1656

CDM
N = 1660

Difference
LCM – CDM

(a) MAIN RESULTS

Overall survival days* [95% CI] (undiscounted) 2000 1959 +41 [215,+95]

Overall survival years* [95% CI] (undiscounted) 5.48 5.36 +0.112 [20.04,+0.26]

Overall mean total costs in US$ [95% CI] (unadjusted) 3249 2485 +765 [685,845]

Overall QALYs – patients’ values 3.351 3.255 +0.096

Overall QALYs – general population’s values 2.714 2.636 +0.078

Overall mean total costs in US$ [95% CI] 3146 2398 +748 [+679,+818]

Incremental Cost per Year Gained in US$ (unadjusted) [95% CI] 6819 [3282, Dominated]

Incremental Cost per Life Year Gained in US$ [95% CI] 7386 [3277, Dominated]

Incremental Cost per QALY Gained in US$ – patients’ values [95% CI] 7793 [4442,39179]

Incremental Cost per QALY Gained – in US$ general population’s values [95% CI] 9621 [5484,48359]

(b) SENSITIVITY ANALYSIS

Lower bound prices second-line therapy*

Mean second-line therapy costs in US$ (SD) 357 (845) 236 (637) +121

Overall mean total costs in US$ (unadjusted) [95% CI] 3194 2449 +745 [669,821]

Incremental Cost per Life Year Gained in US$ (unadjusted) [95% CI] 6643 [3307, Dominated]

Incremental Cost per Life Year Gained in US$ [95% CI] 6443 [2891, Dominated]

Incremental Cost per QALY Gained in US$ – patients’ values [95% CI] 6798 [3917, 30501]

Incremental Cost per QALY Gained in US$ – general population’s values [95% CI] 8392 [4836,37656]

National referral laboratory prices*

Mean CD4 monitoring costs in US$ (SD) 175 (57) 0 (0) +175

Standard 12-weekly haematology biochemistry toxicity monitoring (SD) 699 (216) 23 (65) +676

Overall mean total costs in US$ (unadjusted) [95% CI] 3425 2493 +932 [+851,+1013]

Incremental Cost per Life Year Gained in US$ (unadjusted) [95% CI] 8318 [3876, Dominated]

Incremental Cost per Life Year Gained in US$ [95% CI] 8990 [4160, Dominated]

Incremental Cost per QALY Gained in US$ – patients’ values [95% CI] 9485 [5334, 47957]

Incremental Cost per QALY Gained in US$ – general population’s values [95% CI] 11710 [6586, 59206]

*See column sensitivity analysis in Table 1.
doi:10.1371/journal.pone.0033672.t003
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Figure 1. Long-term extrapolation of outcomes and ICERs.
doi:10.1371/journal.pone.0033672.g001
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based on the ICERs derived for life-years or QALYs gained, the

CD4 monitoring strategy used in DART is beyond the cost-

effective threshold of ,3x per capita GDP, which is the WHO

benchmark used for assessing cost-effectiveness of interventions in

low-income sub-Saharan African countries [30].

Since DART publication, three other randomised trials

comparing different ways to monitor adults on ART in low and

middle income countries have been presented or published: the

HBAC trial in Uganda [11,18], the PHPT-3 trial in Thailand [32]

and the ANRS/ESTHER trial in Cameroon [33]. Although

different in design, the two trials that included a clinical

monitoring arm (Uganda, Cameroon) both show small but

important benefits for CD4 laboratory monitoring and thus

support the key observation from DART on which this cost-

effectiveness analysis is predicated. Interestingly, HBAC and

PHPT-3, the two studies that compared viral load with CD4

monitoring, have both failed to show any additional benefit on

clinical outcome from virological monitoring, either in place of or

additional to CD4 monitoring [32,33].

According to our primary costing studies and models, we

estimated that the current costs of CD4 tests need to drop to below

USD$3.78 for 12-weekly CD4 monitoring to be cost-effective.

Extrapolating over the longer-term under the fixed budget rule

(instead of the arbitrary, conventional threshold used to approx-

imate the value of a life year in optimal health or without disability

[31]) that the option with most total benefits be selected suggested

laboratory monitoring at unit costs of USD$5-7 would be cost-

effective in a population starting ART with relatively severe

immunodeficiency as in DART. In patients starting ART at

higher CD4 counts, more CD4 counts would need to be done to

identify failure, and so incremental cost effectiveness ratios would

likely be higher, requiring lower unit cost of CD4 counts to achieve

cost-effectiveness. Costs could reduce either through direct kit

costs falling, or through efficiency gains for example with new

technologies such as point-of-care (POC) tests. Such technology is

now being developed and evaluated: if costs fall below $3–4 per

test and the devices can be used at health-centre level then POC

could become a very attractive option for routine ART efficacy

monitoring [34]. Another option would be to perform CD4

monitoring less frequently than 12-weekly. However, as excess

morbidity/mortality in CDM appeared to mainly be a conse-

quence of later switch to second-line, less frequent CD4

monitoring could also be less effective, reducing cost savings.

The long-term economic value of routine CD4 monitoring is

inversely related to the costs of second-line therapy: the lower the

costs of second-line therapy, the greater the likelihood of CD4

monitoring being cost-effective. Of the three other trials of ART

monitoring strategies,only the Uganda HBAC study so far has

conducted cost-effectiveness analysis [18]. It reports an ICER of

$174 per disability-adjusted-life-year (DALY) for CD4/clinical vs

clinical monitoring alone of ART [18], an order of magnitude

lower than the ICER reported here. This difference between our

findings is initially perplexing, particularly as participants receiving

CD4 or viral load monitoring also received full blood counts; of

note, toxicity outcomes were not reported in HBAC [9]. However,

the substantially increased cost of second-line versus first-line ART

is likely to have contributed to their finding, as, in contrast to

DART, more participants (n = 17) in the clinical monitoring alone

group switched to second-line, compared to those receiving CD4

(n = 4) or CD4 and viral load (n = 7) monitoring.

DART and HBAC used different clinical thresholds to

determine first-line failure and thus trigger switch to second-line

ART. The most important difference is the inclusion of single

WHO 3 events in the HBAC clinical criteria for switch (weight

loss, unexplained fever, diarrhoea, oral candidiasis), which were

not included in WHO guidelines [35], tend to be non-specific and

are most associated with high CD4 counts/suppressed viral load

[36]; in contrast clinical switch in DART was based on WHO 4

events alone (as per WHO guidelines [35]). Thus the cost

differential between CD4 and clinical monitored groups will be

exaggerated in HBAC by increased unnecessary premature

switching in the clinical monitoring group, thus reducing the

ICER. Given the influence of second-line costs on cost-

effectiveness, and given that ART will be given life-long, it is

unfortunate that HBAC was relatively underpowered to address

this critical issue, with only 28 switches in total (as opposed to 675

in DART with more in the LCM arm from the second year of the

trial).

Furthermore, the median of only 3 years of follow-up in HBAC,

compared to 5 years in DART, inevitably has implications for the

accuracy of longer term predictions based on observed data.

Although our model did not adjust for the effect of past or ongoing

opportunistic infections on the risk of death over and above that

captured by current CD4 count, any resulting bias favouring

clinical monitoring is likely to be reversed by the assumption of

higher switch rates with CDM to second-line therapy at high CD4

counts throughout the period after DART.

To be eligible for DART, all potential participants underwent

CD4 testing and needed to have CD4,200 cells/mm3 to enter

the trial. Our analysis was therefore not able to consider the costs

and benefits of CD4 testing for ART eligibility [4,13,16]. Initiating

ART earlier, with higher CD4 counts, would make LCM less cost-

effective, as fewer lives would potentially be saved by laboratory

monitoring; subgroup analysis showed that the ICER among

Figure 2. Cost-effectiveness acceptability curves.
doi:10.1371/journal.pone.0033672.g002
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patients with CD4,100 cells/mm3 was 30% smaller than for the

whole trial population (USD$6764 vs. USD$9621). As commented

above, this would also lower the unit cost thresholds at which

routine CD4 testing becomes cost-effective.

Our study is unique in its prospective valuation of patient

preferences for health states in a sub-sample of DART patients.

Interestingly, applying utility weights to health states in DART

defined according to performance status and any ongoing WHO

stage 3 or 4 events, as assessed by a doctor, showed that the

estimated survival difference (0.101 life years) was associated with

an almost equal gain in asymptomatic survival (0.097 life years).

DART used a simple and easy to interpret switch criterion of

CD4,100 cells/mm3 which does not require longitudinal mea-

surement of CD4 counts, or pre-ART counts. More complex

failure criteria based on prior values (CD4 fall ,pre-ART, .50%

decline from peak) may increase the proportions switching to

second-line without necessarily improving outcomes, thus reducing

the likelihood of CD4 monitoring being cost-effective; these

criteria are also more challenging to implement. Interestingly the

HBAC study used persistently declining CD4 cell counts on two

consecutive measurements to indicate treatment failure: this has

been demonstrated to have the lowest sensitivity of the three

failure criteria [37].

DART did not evaluate routine viral load testing. However, the

difference between DART groups receiving and not receiving

routine CD4 monitoring trial based was similar to one modelling

study [15] and the HBAC randomised trial of laboratory

monitoring in Uganda [9]. Both suggest limited additional benefits

with viral load monitoring, highlighting the importance of defining

the optimal threshold for virologic failure and submitting routine

viral load monitoring to a definitive evaluation [38]. On the basis

of a recent review [39] and the ICER of $5181 per DALY for viral

load/CD4/clinical monitoring vs. CD4/clinical monitoring re-

ported by the HBAC study [18], at current costs and with current

technologies, there is less evidence of cost-effectiveness for viral

load monitoring than there is for CD4 count monitoring.

A further limitation of the cost-effectiveness analysis presented

here is that it has only considered the patients on ART, and in

particular has not considered other possible impacts such as

increased HIV transmission, including of drug resistant virus, from

unsuppressed patients on ART or, in contrast, reduced transmis-

sion from having been able to put more patients on ART without

providing routine laboratory monitoring for the same fixed

budget. Modelling studies, when they have examined the evolution

and transmission of drug resistance under a public health

approach to ART, have been relatively reassuring [15,40]. A

modelling component within the Lablite project will further model

these aspects.

Our findings have implications for public sector ART

programmes in Africa, given the unmet demand for treatment,

the limited availability of laboratory services and stagnant or

declining international funding for health. Strengthening labora-

tory services is a priority: CD4 testing should focus on ART

initiation; toxicity testing can be clinically guided rather than

routine; access to quality-controlled diagnostic testing must be

widened. With fixed and constrained budgets, relative to no ART

provision [41], the number of lives/life-years saved with current

costs and approaches is greater for a clinically-driven rather than

laboratory monitoring strategy. Further, it is an equitable option as

its lower cost allows more patients to access treatment and for

follow up to be decentralised to health centres [42]. Resources

could therefore better be allocated for untreated patients to start

ART, and for laboratory diagnostic investigation of clinical events,

rather than for routine laboratory monitoring [43]. The recently

started LabLite project aims to demonstrate that such decentra-

lised ART delivery (outside research clinics) is safe and effective in

rural areas in Malawi, Uganda and Zimbabwe.

Results from the DART trial and the cost-effectiveness analysis

also raise challenging issues about how to act on research findings

when effectiveness is demonstrated but cost-effectiveness is not, as

profound underlying tensions between patients, healthcare work-

ers, funders and policy makers are exposed [44]. This paradox is a

challenge for the public sector even in high-income countries (e.g.

in the UK with the potential provision of very expensive cancer

drugs with significant toxicity but also proven, limited benefits in

the NHS), as resources universally are finite. It is even more

difficult when interventions that are routinely provided in better

resourced settings with higher GDPs, like CD4 testing, produce

benefit but are not cost-effective in low-income settings. Particu-

larly in resource-constrained settings, spending money on one

healthcare component such as ART monitoring necessarily means

fewer resources can be spent on other competing priorities

(patients still in need of ART, bed nets to prevent malaria,

vaccination programmes and so on) and we would argue our

research helps policy makers to choose how to maximise health

benefit.

In conclusion, the DART trial has clearly shown that routine

laboratory monitoring of ART is not currently cost-effective in

low-income African countries. There is no rationale for toxicity

monitoring which does not affect outcomes and is costly. Routine

CD4 monitoring has small but measurable benefits on survival; for

it to be cost-effective the costs of second-line ART and CD4 testing

need to fall substantially. Laboratories will remain important for

quality of care especially for the diagnosis of intercurrent events on

ART. Realising the survival benefits of CD4 monitoring widely in

Africa is likely to be dependent on the development of a cheap,

ideally point-of-care CD4 test. In the meantime, given competing

priorities, HIV programmes in Africa may best spend limited

resources on increasing access to first and second-line ART.
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