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Abstract

Infectious disease is an important problem for animal breeders, farmers and governments worldwide. One approach to
reducing disease is to breed for resistance. This linkage study used a Charolais-Holstein F2 cattle cross population (n = 501)
which was genotyped for 165 microsatellite markers (covering all autosomes) to search for associations with phenotypes for
Bovine Respiratory Syncytial Virus (BRSV) specific total-IgG, IgG1 and IgG2 concentrations at several time-points pre- and
post-BRSV vaccination. Regions of the bovine genome which influenced the immune response induced by BRSV vaccination
were identified, as well as regions associated with the clearance of maternally derived BRSV specific antibodies. Significant
positive correlations were detected within traits across time, with negative correlations between the pre- and post-
vaccination time points. The whole genome scan identified 27 Quantitative Trait Loci (QTL) on 13 autosomes. Many QTL
were associated with the Thymus Helper 1 linked IgG2 response, especially at week 2 following vaccination. However the
most significant QTL, which reached 5% genome-wide significance, was on BTA 17 for IgG1, also 2 weeks following
vaccination. All animals had declining maternally derived BRSV specific antibodies prior to vaccination and the levels of
BRSV specific antibody prior to vaccination were found to be under polygenic control with several QTL detected. Heifers
from the same population (n = 195) were subsequently immunised with a 40-mer Foot-and-Mouth Disease Virus peptide
(FMDV) in a previous publication. Several of these QTL associated with the FMDV traits had overlapping peak positions with
QTL in the current study, including the QTL on BTA23 which included the bovine Major Histocompatibility Complex (BoLA),
and QTL on BTA9 and BTA24, suggesting that the genes underlying these QTL may control responses to multiple antigens.
These results lay the groundwork for future investigations to identify the genes underlying the variation in clearance of
maternal antibody and response to vaccination.
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Introduction

Infectious disease in livestock is a cause for great concern for

both farmers and governments worldwide. Although many

countries maintain good animal husbandry, farm management

practices and vaccinate their livestock, failure in one or more of

these control measures allows infectious disease to prevail [1].

More effective vaccines and the ability to breed for resistance have

the potential to provide solutions for the control of both endemic

and emerging or re-emerging infectious disease.

An understanding of the underlying genetics that control

variation in immune responses and infectious disease outcomes

may lead to the selection of more resistant animals, as well as

identifying new strategies for improving vaccine efficacy. One

example where genetic selection for improved resistance has the

potential to make an impact is Bovine Respiratory Disease (BRD).

Bovine respiratory disease has a complex aetiology caused by

many different pathogens including viruses and bacteria [2–4] and

affects cattle world-wide, resulting in major welfare problems and

economic losses [5]. Both dairy and beef cattle show a wide range

of clinical signs related to BRD, including nasal discharge,

coughing, fever and decreased appetite when infected. There is

evidence that the genetic makeup of the host contributes to the

variation in BRD outcome although heritability estimates are low

[5–9]. However, this evidence comes from field studies where the

causal pathogen(s) were not identified, and thus the heritability of

response to particular infections may be underestimated.

Bovine Respiratory Syncytial Virus (BRSV) is the most common

viral pathogen implicated in outbreaks of BRD [10,11], with an

estimated 70% of calves in the UK becoming seropositive to the

virus by 1 year of age [10]. Genetic factors have been shown to

play a role in human susceptibility to the related pathogen,
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Human Respiratory Syncytial Virus (HRSV) [12], and as the

epidemiology and pathology of HRSV and BRSV are similar [11],

it is possible that at least a proportion of the genetic variation

associated with BRD outcome [9,13], may be related to the

genetically controlled response to BRSV infection [14]. However,

to date, no study of the genetic control of the response to a BRSV

infection has been conducted in cattle.

Although vaccination is generally considered to be a useful

means of controlling certain respiratory diseases in cattle

populations, neither natural infection nor vaccination induces

long lasting immunity [15] and young calves can be repeatedly

infected. From studies of rodent models and humans, it has been

suggested that a Th2 biased response may predispose the host to

higher levels of pathology, whereas a T helper (Th) 1 biased

response may be associated with protection [15]. Indeed, there are

no licensed HRSV vaccines for humans, because following

vaccination with a formalin-inactivated viral vaccine severe lung

pathology was caused by natural infection [15]. Similarly in cattle

there is evidence that an IgE Th2 biased response may be

associated with greater clinical signs in both naturally infected

calves and in response to formalin inactivated vaccines [16].

However, both modified live and inactivated viral vaccines are

available for BRSV and are considered to be safe for use in cattle

[14]. The efficacy of these vaccines is, however, low, especially in

younger animals, with immature immune systems [17]. A further

problem is that maternal antibody may also inhibit the induction

of protection induced by vaccination [18].

Immunity to BRSV is generally considered to require

neutralising antibody, but cellular immunity also plays an

important role. However, cellular immunity may also induce

pathology [19]. A fine balance between Th1 versus Th2 responses

may be critical in determining the outcome of both BRSV

vaccination and infection. In addition, an optimum level and

timing of each type of response may be required to ensure that

vaccines are protective and do not predispose to disease. The Th1

cytokine, interferon-c (IFNc) has been associated with protection

against BRSV pathology [20–22] as has the corresponding Th1

antibody isotype, IgG2 [20]. The Th2 associated antibody isotype,

IgG1, may be required for viral clearance and protection [23].

The production of IgE is generally considered to be part of a Th2

biased response, and has been associated with pathology in

relation to BRSV infection and formalin inactivated viral vaccines

[16]. However cytokines associated with both Th1 (IL-2 and

IFNc) and Th2 (IL-4) mediated responses were also up-regulated

during BRSV infection [24]. It therefore seems likely that

coordination of both Th1 and Th2 responses are required for

optimal protection and reduced pathogenesis in BRSV infections

in cattle.

In order to explore the factors underlying variation in the

response of cattle to BRSV, a large study was conducted using

young calves of a Charolais-Holstein cross population. A

significant proportion of the variation of IgG1 and IgG2 responses

to a live attenuated BRSV vaccine in these calves has been

attributed to genetic factors as shown by sire and breed effects

[25]. The clearance of maternal antibody to BRSV was also shown

to have a genetic component. More recently we have shown that

polymorphisms in one of the primary candidate loci implicated in

the control of immune responsiveness, the Major Histocompati-

bility Complex (MHC) DRB3 gene, accounts for a proportion of

the variation seen in response to the BRSV vaccine [26], however

most of the genetic variation was shown to be controlled by non-

MHC genes.

A long sought goal for animal breeders has been an ability to

improve resistance to many pathogens. However it is not clear if

this is a realizable goal. Identification of regions of the genome

controlling responses to multiple pathogens or vaccine compo-

nents may potentially make good targets for selective breeding and

identify new pathways for improving vaccine efficacy in general. A

previous immune-related Quantitative Trait Loci (QTL) study

[27], used a foot-and-mouth disease virus (FMDV) peptide to elicit

an immune response measured on the same animals as the current

study using the BRSV vaccination. Thus we have also investigated

if specific regions of the genome appear to control the response to

BRSV vaccination in addition to the FMDV peptide.

In this paper we report a linkage analysis with 165 microsatellite

markers to associate regions of the bovine genome with antibody

isotype responses to a BRSV vaccine and compare the results with

an earlier QTL study of response to a FMDV peptide carried out

in the same population. QTL that account for a significant

proportion of the variance in response to the BRSV vaccine were

discovered, several of which overlap with those found in the

FMDV study.

Results

A total of 468 second generation (245 male and 223 female)

animals of the RoBoGen Charolais6Holstein herd were pheno-

typed for total IgG, IgG1 and IgG2 responses to a BRSV vaccine

over time. The whole herd (984 animals) was genotyped with 165

microsatellite markers.

Essentially all of the parameters of all the traits in this study have

been previously described [25] (with exception of the addition of

weight to the REML models, which was not found to be

significant), but a summary table of the means, ranges and

standard deviations of the traits are presented here for clarity

(Table S1). Prior to vaccination, calves had declining levels of

circulating BRSV-specific antibody, which was most likely

maternally derived. After the initial vaccination, both IgG1 and

IgG2 levels increased. The observed increase at each subsequent

time point was significant (p,0.01) until a plateau was reached at

day 35 for IgG1 and at day 49 for IgG2 (IgG1 = 38.96 ROD,

IgG2 = 13.07 ROD. Table S1). Considerable variation in the

levels of IgG1 and IgG2 was apparent between animals at all time

points measured. However, the average IgG2 response remained

lower than the average IgG1 response throughout the time course

(Table S1).

Correlations between anti BRSV: total IgG, IgG1 and IgG2
All traits were analysed for possible correlations with each other

(pre vaccination correlations not shown) and many significant

correlations within specific traits were found over time (Table S2).

The IgG1 and IgG2 responses to BRSV vaccination at earlier time

points correlated with their next corresponding time points. Thus

the IgG1 level at week 2 correlated with the IgG1 level at week 5

(r2 = 0.26, p,0.01) and the IgG1 level at week 5 correlated with

the IgG1 level at week 7 (r2 = 0.69, p,0.01). Similar correlations

were found for the IgG2 levels. Furthermore, each time point

correlated with the AUC for each respective isotype level, with the

highest correlation found between the IgG2 week 5 post

vaccination and the IgG2 AUC measurement (r2 = 0.79,

p,0.01). The two BRSV specific IgG isotype levels were also

significantly positively correlated with each other (Table S2). The

highest correlation was between IgG1 and IgG2 at week 7

(r2 = 0.47, p,0.01). As expected, there were also negative

correlations between the levels of antibody at week 0 and levels

post-vaccination as the animals had pre-existing levels of IgG

derived from colostrum, which inhibited the vaccine response

[18,25].

QTL Associated with BRSV
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QTL Results
A total of 27 QTL for BRSV response were discovered across

13 autosomes, with 9 QTL found on the initial genome scan and 4

QTL discovered when background effects were taken it account

(Table 1). Seven QTL were above the 1% chromosome level, and

of these, one QTL on BTA 17 was at the 5% genome wide

significance level, explaining 3.47% of the phenotypic variance

(sp) (Fig. 1). The remaining 16 QTL were all above the 5%

chromosome wide significance level.

Of the 27 QTL detected, 16 were associated with the IgG2

response (mean sp accounted for 2.5%), whilst 7 QTL were

associated with the total IgG response (mean sp accounted for

2.3%) and only 4 with the IgG1 response (mean sp accounted for

2.6%). Thus loci accounting for a greater proportion of genetic

effects controlling the phenotypic variance of the IgG2 antibody

levels were identified in comparison to the total IgG and IgG1

antibody levels.

The traits in this study are linked (Total IgG is composed of

IgG1 and IgG2), thus as several QTL co-located (the QTL peaks

are within 20 cM of each other) it may be indicative that single

QTL at these positions controlled several traits at different time

points. If this is so, then there are 17 independent QTL (1 on

BTA2; 2 on BTA3; 2 on BTA7; 1 on BTA8, BTA9, BTA10,

BTA14 and BTA15; 2 on BTA17 and BTA18; 1 on BTA23,

BTA24 and BTA28).

Nearly all of the QTL (23) identified showed significant additive

effects (p,0.05), whereas only 7 showed significant dominant

effects (p,0.05). Both Holstein and Charolais derived alleles were

shown to have additive and/or dominance effects on QTL.

Fourteen of the 27 QTL with significant additive effects had the

Holstein derived alleles increasing the trait value (4 total IgG

QTL, 2 IgG1 QTL and 8 IgG2 QTL); whilst 10 had Charolais

derived alleles increasing the trait value (3 total IgG QTL, 1 IgG1

QTL and 6 IgG2 QTL) as shown in Table 1. Seven QTL had

Table 1. All QTL located in this study.

Chromosome1 Trait2 cM3 F4 a5 d5 Var%6
95% C.I. of QTL
Position7

2 Total_IgG_week_0 18 cM 5.47 23.67** 6.22** 2.11 6–124 cM

2 IgG2_minus_week_2 19 cM 6.25 24.22* 9.07** 2.67 60–124 cM

3 IgG2_minus_week_2 37 cM 5.19 1.89 6.77** 2.24 0–87 cM

3 IgG2_week_2 98 cM 4.88 1.03** 0.35 2.12 0–98 cM

7 IgG2_week_0 69 cM 5.21 0.74** 20.1083 2.26 5–98 cM

7 Total_IgG_week_2 22 cM 4.92 3.97* 24.8454 2.14 10–84 cM

8 IgG1_AUC 38 cM 5.9 26.36*** 23.34 2.52 6–118 cM

8 IgG1_week_7 44 cM 5.63 4.77*** 0.32 2.42 0–118 cM

8 Total_IgG_AUC 43 cM 4.98 25.80** 23.62 2.12 6–118 cM

8 Total_IgG_week_7 47 cM 5.53 5.63*** 0.7997 2.40 0–118 cM

9 IgG2_week_2 45 cM 5.47 20.87* 0.87 2.37 0–60 cM

10 IgG2_week_0 53 cM 7.01* 20.07 21.03*** 3.01 48–138 cM

14 IgG2_AUC 15 cM 6.82* 13.67*** 5.77 2.92 0–58.5 cM

14 IgG2_week_2 23 cM 5.79 0.99** 1.19* 2.51 6.5–60 cM

14 IgG2_week_7 16 cM 5.82 4.14*** 20.13 2.51 0–65.5 cM

15 Total_IgG_week_0 60 cM 4.85 3.64** 22.73 2.10 0–80 cM

17 IgG2_minus_week_2 15 cM 4.88 26.13 6.83 2.09 0–80 cM

17 IgG2_minus_week_2 57 cM 4.92 26.44** 3.51 2.10 0–80 cM

17 IgG1_week_2 76 cM 8.17** 24.30*** 1.99 3.47 28–80 cM

17 Total_IgG_week_2 76 cM 6.67* 24.20*** 1.51 2.87 28–81 cM

18 IgG2_week_2 19 cM 7.29* 23.58*** 22.20* 3.15 0–52 cM

18 IgG2_week_2 38 cM 5.81* 20.96** 20.90 2.52 18–52.5 cM

18 Total_IgG_week_7 18 cM 5.27 24.67** 21.83 2.28 0–67 cM

23 IgG2_AUC 27 cM 4.97 17.17** 1.71 2.15 0–80 cM

23 IgG2_week_2 31 cM 6.82* 2.03*** 0.36 2.86 0–63 cM

24 IgG2_week_2 11 cM 4.15 0.16 1.48** 1.81 0–49 cM

28 IgG1_week_7 0 cM 4.37 3.41* 0.64 1.89 0–34 cM

1Chromosome: the chromosome each QTL is located on.
2Trait: each trait is shown as follows: total IgG or IgG isotype response, followed by the week relative to vaccination.
3cM: the QTL position on the chromosome (centiMorgans).
4F: the F-statistic of each QTL, all are at least 5% chromosome wide, * 1% Chromosome wide and ** 5% Genome wide.
5‘‘a’’ and ‘‘d’’ are the additive and dominance effects of each QTL, * = p,5%, ** = p,1% and *** = p,0.01%.
6Var%: the additive phenotypic variance explained by the QTL.
7The 95% confidence intervals of each QTL (centiMorgans).
doi:10.1371/journal.pone.0033526.t001

QTL Associated with BRSV
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significant dominance effects, and of these 3 QTL had dominance

effects with increases of the trait attributed to the Holstein alleles

(all IgG2 QTL), whilst 2 QTL were traceable to Charolais alleles

increasing the trait (Total IgG QTL and one IgG2 QTL). Overall,

there did not appear to be a breed bias towards additive or

dominance effects. However, the alleles derived from the Holstein

breed appeared to increase the immune traits more frequently

than the Charolais alleles in this study.

The QTL associated with total IgG levels tended to overlap (+/

2 7 cM of the peaks) with either IgG1 or IgG2 QTL. Five of the

seven total IgG QTL overlapped (BTA2, two on BTA8, BTA17

and BTA18; Table 1), reflecting the fact that the total IgG

phenotype was made up from the components of the IgG1 and

IgG2 phenotypes. These overlapping QTL also included an

overlap between QTL associated with total IgG AUC and the

IgG1 AUC on BTA 8 (Fig. 2).

A total of 8 QTL were associated with the IgG levels prior to

vaccination, whereas the majority of QTL were associated with

the response post vaccination and were mostly on different

chromosomes from those associated with the pre-vaccination levels

(Table 1). The trait with the greatest number of different QTL

associated with it was the IgG2 response 2 weeks post vaccination,

with a total of 7 QTL, in contrast to the single QTL associated

with the IgG1 response at the same time point. Fewer QTL were

Figure 1. BTA 17: Significant QTL. F-statistic profiles for the total IgG and IgG1 response elicited by the BRSV vaccine two weeks post vaccination.
The dashed horizontal line represents the threshold of the 1% chromosome wide significance level (F = 6.26) and the constant horizontal line
represents the threshold of the 1% chromosomal wide significance level (F = 8.16).
doi:10.1371/journal.pone.0033526.g001

Figure 2. BTA 8: Significant QTL. F-statistic profiles for the total IgG and IgG1 responses elicited by the BRSV vaccine seven weeks post
vaccination and using the AUC measurement. All the QTL are above the 5% chromosome wide significance level.
doi:10.1371/journal.pone.0033526.g002

QTL Associated with BRSV
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associated with the antibody response following the vaccine boost,

with only one associated with the IgG2 response at week 7, but two

for the IgG1 response at this time point.

The most significant QTL were mainly associated with the

IgG2 responses, with 5 of the 7 QTL above the 1% chromosome

significance level (including the QTL also at the 5% genome wide

significance level). These QTL also had other QTL within the

confidence intervals for differing traits and time points (with the

exception of the QTL located on BTA 10, Table 1). For example:

BTA 14 contains a QTL associated with the IgG2 AUC

measurement at the 1% chromosome wide significance level

(Fig. 3) and within 8 cM of the peak of this QTL are QTL for

IgG2 week 2 and IgG2 week 7 post vaccination. In addition,

another 2 QTL associated with the immune response post

vaccination (IgG2 week 2, 1% chromosome wide and the IgG2

AUC measurement, 5% chromosome wide) were discovered on

BTA 23, with their peaks separated by 5 cM (Fig. 4).

Fourteen of the QTL identified in this study were within the

confidence intervals of QTL detected in the FMDV study [27].

Furthermore, the peaks of four of these QTL were within 10 cM

of QTL peaks associated with the response to the FMDV peptide

and included BTA 9 at 45 cM, BTA23 at 27 cM and 31 cM and

BTA24 at11 cM. Of the overlapping QTL, the QTL on BTA 23

were the most striking, as two QTL from both studies overlapped

across the same regions of BTA23 (Fig. 4) which contains the

MHC region.

Discussion

In this study we have discovered a number of distinct QTL

which contribute to the control of the immune response to BRSV

vaccination as well as clearance of maternal antibody in cattle.

Although there was evidence for QTL within the MHC region on

BTA23, the majority of the QTL described in this paper do not lie

within this region. Our evidence suggests that some chromosomal

regions may control both the IgG1 and IgG2 response. However,

most of the QTL detected appear to play a role in the IgG2

response. This study is a follow on from our previous study of the

same crossbred herd which found strong heritability (h2 = 0.52

with respect to total IgG levels over time (day0–day35)) and

significant sire effects in the IgG response post vaccination [25]. In

the present study 27 significant QTL were associated with BRSV

specific IgG1, IgG2 and total IgG levels, pre- and post-

vaccination, which were located on 13 bovine autosomes. The

multigenic nature of the response must at least in part, reflect the

complexity of host immunity.

In the previous study the Holstein backcross calves were shown

to exhibit significantly higher antibody levels than the Charolais

backcross calves pre-vaccination but not post-vaccination [25].

The QTL found in the current study did not reflect this, as both

breeds had similar QTL additive effects, although the Holstein

backcrosses generally had higher antibody levels pre-vaccination.

This finding is in contrast to a study which investigated bovine

keratoconjunctivitis [28], where the additive effects of QTL

originated from a breed with known low prevalence of the disease

[29]. This suggests that further QTL are yet to be discovered,

which may explain the higher antibody levels in the Holstein

backcross cattle pre-vaccination. Furthermore, most of the

significant dominance effects of QTL associated with pre-

vaccination levels, were derived from the Charolais breed,

suggesting a complex mode of inheritance may be responsible

for the observed phenotypes, such as parent-of-origin effects [30]

or over-dominance [31]. Further studies would be warranted to

investigate these dominance effects as breeding programs only

consider additive effects [32].

The persistence of circulating maternal antibodies has been

shown to have an effect on the efficacy of vaccination against

several important infectious diseases [33]. It is considered

preferable to vaccinate calves against BRSV at an early age,

because it is prevalent and can cause serious clinical disease, even

though maternal antibodies affect BRSV vaccine efficacy [34]. In

the present study the levels of anti-BRSV IgG were declining prior

to vaccination, a pattern most likely due to the clearance in the

levels of circulating maternal antibody [18,25]. Thus the process of

detecting QTL for antibody response post-vaccination may have

also been affected by the unknown effect of maternal antibody on

the efficiency of immunisation.

Eight QTL were detected associated with the BRSV-specific

antibody levels pre-vaccination. Two of these on chromosomes 10

Figure 3. BTA 14: Significant QTL. F-statistic profiles for the IgG2 response elicited by the BRSV vaccine two and seven weeks post vaccination
and using the AUC measurement. The constant horizontal line represents the threshold of the 1% chromosomal wide significance level (F = 6.43).
doi:10.1371/journal.pone.0033526.g003

QTL Associated with BRSV
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and 15, were not associated with the response post-vaccination,

while the others were on chromosomes with post-vaccination

QTL, but with apparently different peaks. These QTL may

therefore reflect genes/pathways which impact on the persistence

of maternal antibody. The transfer of IgG from dam to calf via

colostrum has high heritability [35]. The results presented here

suggest that IgG transfer may be partly controlled by the genetics

of the calf. Furthermore, the neonatal Fc receptor, a heterodimer

consisting of a MHC class I a-chain homolog located on BTA18

[36] and beta-2-microglobulin (b2m), located on chromosome 10

[37], may play a significant role in regulating the level of maternal

antibody [36]. Polymorphisms in the MHC a-chain homolog on

BTA 18 have been associated with the levels of IgG in newborn

calves [36]. However the QTL detected on BTA18 were

associated with the post-vaccination response and not pre-

vaccination levels. Furthermore, the gene for the MHC a-chain

homolog is located outside of the final marker on that

chromosome, and thus outside the confidence intervals for these

QTL; further genotyping in this region may be able to provide

better resolution. In addition, the gene encoding b2m, which has

been associated with the failure of transfer of maternal IgG to

calves [40] is positioned just outside of the confidence interval of

the pre-vaccination QTL located on BTA10 which was the only

QTL detected in the current study on this chromosome. Addition

of markers to the analysis of BTA 10 may better define the QTL

position and determine whether b2m is a putative candidate gene

controlling pre-immune IgG. Identifying the genes underlying the

QTL associated with variation in levels of maternal antibody could

potentially aid the design of future vaccines to minimise the

interference effects of maternal antibodies.

A single QTL was identified, located on BTA 14, which

influenced the response at different time points, which appears to

influence the IgG2 response at 2 and 7 weeks post vaccination as

well as the overall (AUC) IgG2 response post vaccination. This is

in marked contrast to the 8 clusters of QTL that were associated

with the response to the FMDV peptide over time [27]. However

more time points were measured in the FMDV study which may

have increased the chances of detecting QTL over time. Also the

FMDV antibody levels were measured with higher resolution and

were not influenced by maternal antibody, both of which may

have reduced the ability to detect BRSV related QTL in the

current study. No T cell response was detected post vaccination

(results not shown). Although it is clear that cell mediated

immunity is important for protection against BRSV [15], generally

peripheral blood BRSV-specific T cell responses to modified-live

vaccines are only detected in seronegative calves [38] or in

experimental vaccines formulated to potentiate cellular immunity

(e.g.[39] and [21]). Nonetheless the data indicate that distinct

genes operate early in the primary BRSV vaccine response

compared to those that underlie variation following the boost. The

QTL associated with the IgG2 response at week 2 following the

primary vaccination also accounted for the most phenotypic

variance. In addition, the IgG2 response at week 2 had the most

QTL associated to it within this study, which altogether explained

over 17% of the IgG2 response at this time point. As the responses

at later time points also correlate with the week 2 response, this

suggests that these QTL may be particularly important in

determining the overall IgG2 response. In contrast, no QTL were

identified which were associated with either IgG isotype, 5 weeks

post vaccination. Previously, it has been shown that the variation

in IgG1 and IgG2 at this time point is small among the different

second generation classes (F2 CB1 and HB1) [18]. Understanding

the genetic control of the variation in the IgG2 response

(associated with Th1 responses) at early time points, may suggest

new ways to modulate the Th1 and Th2 balance induced by

vaccination, which may be relevant for improved protection and

avoidance of adverse pathology following vaccination [15,16].

Markers associated with these genes would be valuable for

breeding for enhanced disease resistance.

In contrast to the response to the FMDV peptide [27], the anti

BRSV IgG1 and IgG2 levels were highly correlated, both pre and

post vaccination, however, no QTL for IgG1 levels were identified

that overlapped with QTL for IgG2 levels, which is in contrast to

the QTL for FMDV peptide response where three chromosomal

regions on BTA 20, 23 and 25 had QTL peaks for both anti-

FMDV peptide IgG1 and IgG2 responses [27]. These findings

imply strong correlation seen at the phenotypic level does not

necessarily indicate that the phenotypes share genetic control.

Thus although the levels of both antibody isotypes for BRSV

increased at similar rates post-vaccination, different genes may be

involved in controlling the response of IgG1 and IgG2. Although

cellular and humoral immunity play important roles in response to

BRSV, it remains unclear how the contribution of different isotype

subclasses of bovine immunoglobulin and components of cell

Figure 4. BTA 23: Significant QTL. F-statistic profiles for the IgG2 response elicited by the BRSV vaccine two weeks post vaccination (peak, 31; F-
statistic 6.82) and the AUC measurement (peak, 27; F-statistic, 4.97) and for the IgG1 (peak, 39; F-statistic, 4.16) and IgG2 (peak, 33; F-statistic, 4.08)
levels elicited by the FMDV peptide [27] 2 and 10 weeks post immunisation, respectively.
doi:10.1371/journal.pone.0033526.g004
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mediated immunity, such as cytokines, impacts protection and

pathology in relation to BRSV [15]. Available evidence suggests

that a relative balance between Th1 and Th2 responses determine

the outcome of infection and vaccination, and that pathology can

be associated with an exacerbated Th2 response involving IgE

[16]. Our study design did not allow us to investigate protection

and pathology, and further studies are warranted to explore their

relationship with genetics of immune response. Nonetheless our

results suggest that host genetics may play a role in determining

the balance between Th1 and Th2 responses as well as explaining

a proportion of the considerable between animal variation.

Understanding the genes underlying regulation of Th1 and Th2

pathways could suggest new ways to immuno-modulate responses

to pathogens such as BRSV. Furthermore, the markers identified

here could be useful in marker assisted selection to select, for

example, animals with a lower Th2 response, thus potentially

reducing pathology when infected with BRSV.

Almost half of the 27 QTL significantly associated with IgG

levels pre and post BRSV vaccination, lie within the 95%

confidence intervals of the QTL associated with antibody

responses to the FMDV peptide [27]. Indeed, 10 of these QTL

are associated with the same IgG isotype, suggesting that the same

genes influence IgG levels post immunisation with different

immunogens. Furthermore, QTL identified in the current study

also fall within the confidence intervals of QTL associated with

other immune traits, including: the change of somatic cell score in

response to Mastitis [41] on BTA15; antibody response to

Mycobacterium avium ssp. paratuberculosis [42] on BTA 8 and 9; two

thirds of the haplotypes significantly associated with Bovine Viral

Diarrhea and eight SNP associated with BRD [43] on BTA2; and

bovine spongiform encephalopathy infection [44] on BTA 17.

This raises the possibility that the immune responses to different

stimuli may be controlled, to some degree, by similar pathways,

even if the initial detection of the infection occurs through distinct

mechanisms, downstream signalling may converge on similar

pathways. If the genes underlying these QTL are involved in

pathways that control responses to a wide range of pathogens they

may be suitable for selective breeding for disease resistance in

general. In addition, understanding of the underlying genes and

pathways could point to new targets for future immunomodulatory

substances such as adjuvants.

The MHC locus is expected to be a significant component

underlying variation in immune response [45], as it contains many

polymorphic and immune-related loci [46,47]. Indeed in both the

current study and the FMDV peptide study [27] QTL were

discovered that span the MHC locus. Indeed, earlier studies have

shown that polymorphisms at the DRB3 locus are associated with

response to BRSV [8,48] as well as protection against viral

challenge following immunisation with the FMDV peptide and

similar peptides [49]. However, the two QTL that span the MHC

loci that were identified in the present study only account for 3%

of the phenotypic variation, which together with previous data

from the FMDV study [27], indicates that many other regions of

the genome are involved in controlling variation in immune

responses.

The human strain of respiratory syncytial virus (HRSV), which

is closely related to BRSV, is a major cause of respiratory disease

in young children, where the epidemiology and pathogenesis of

infection is similar to that of BRSV [10]. The severity of disease in

young children caused by HRSV is significantly associated with

genes expressed during both innate and acquired immune

responses [50]. Eight of the twenty one genes implicated in the

human response to HRSV [50], have orthologs within the QTL in

the current study, on BTA 2, 3, 15, 17 and 23. These are STAT1

(BTA 2), TNF (BTA 23), VCAM1 (BTA 3) and IL15 (BTA17)

which play roles in innate immunity and CD28 (BTA 2), STAT1,

IL17 (BTA23) which play roles in adaptive immunity [51]. The

QTL with the highest significance in the current study (on BTA

17) encompassed IL17 within its 95% confidence intervals. Two

further genes, from the Janssen et al study [50], within these QTL

confidence intervals (MS4A2; FCER1A, both located on BTA 15)

are associated with asthma allergies as well as severe RSV disease.

It has also been suggested that a Th2 biased response in cattle,

associated with induction of IgE, is correlated with pulmonary

pathology in cattle [16], and thus polymorphisms in these genes

may also influence the pathology observed in young cattle infected

with BRSV. Further study on the role of genetic control of IgE

responses may also highlight these genes and others associated

with pathology. It is interesting to note that some of the SNPs

within IL15, STAT1, VCAM1 and TNF associated with HRSV in

the human study [50] are also polymorphic in the bovine genome,

making them very good candidates for further study

This is the first time that the natural variation in the clearance

of maternal antibody and the immune response to a BRSV

vaccine has been successfully exploited to locate significant QTL

in distinct regions of the bovine genome. A greater number of

QTL were found associated with IgG2 response and these

explained a larger part of the genetic variation than were found

for IgG1 response. Some of the QTL identified overlap with QTL

associated with the response to a FMDV peptide. Research is

ongoing to further reduce the QTL confidence intervals, with the

aim of identifying the underlying gene variants. This information

may be used to breed for disease resistance and the production of

more efficacious vaccines through the discovery of key genes and

gene pathways.

Materials and Methods

Ethics Statement
All animals were clinically normal and all experimental

protocols were authorised under the UK Animals (scientific

procedures) Act, 1986. In addition, The Roslin Institute’s Animal

Welfare and Ethics Committee (AWEC) ensure compliance with

all relevant legislation and promote the adoption and develop-

ments of the 3Rs (reduction, replacement, refinement).

Animals
A total of 501 cross-bred second generation animals were

produced in the RoBoGen herd. Pure-bred Charolais sires were

mated to Holstein dams to produce the F1 (137 animals) and 8 F1

sires were mated to F1 heifers to create the F2 (315 animals) of the

second generation. In addition the founder Charolais sires were

mated to F1 heifers to produce a Charolais backcross (CB1, 88

animals) and F1 sires were mated to pure bred Holstein heifers to

create a Holstein backcross (HB1, 98 animals). Thus the second

generation consisted of the F2, CB1 and HB1. The whole pedigree

consisted of 21 sires (8 F0, 13 F1) and 408 dams (131 F0, 277 F2).

All male calves had unrestricted suckling with their dams, at grass,

until approximately 4 months old. All female calves were weaned

by 36 h, segregated from the rest of the herd and raised indoors,

initially on milk-replacer then weaned early onto a propriety

compound diet. Any differences in the results observed between

sexes were therefore confounded by differences in management.

Vaccination with Rispoval and sampling
Immune response measurements were collected on 468 second

generation crossbred calves (294 F2, 90 HB1 and 81 CB1). The

age at first immunisation with the BRSV vaccine (Rispoval �,
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Pfizer Animal Health, Surrey, UK) ranged from 88–195 days and

fell within the recommended vaccination period according to the

datasheet provided by the manufacturer. All animals were

vaccinated and IgG levels measured as described by O’Neill et al

[25]. Each animal received 2 ml of the attenuated live vaccine (the

vaccine contained no adjuvant), intramuscularly, according to the

manufacturer’s recommendations. All calves were re-immunized

with 2 ml of the vaccine intramuscularly, 3 weeks following the

initial vaccination. Blood samples were collected by jugular

venipuncture: 4 and 2 weeks pre-vaccination; at week 0 (the day

of first vaccination) and at 2, 5 and 7 weeks post-vaccination,

providing six samples per calf. Serum was collected within 2 h of

sampling and stored at 220uC until testing.

ELISA for detection of BRSV-specific total IgG, IgG1 and
IgG2

This assay was carried out as described in O’Neill et al, 2006

[25]. Briefly, sera were tested quantitatively by solid-phase

antibody capture ELISA specific for total BRSV-IgG according

to the manufacturer’s guidelines (Svanovir BRSV-Ab, Svanova

Biotech, Uppsala, Sweden). Samples were tested in duplicate, at a

dilution of 1/25 and optical densities (OD) read at 450 nm. The

corrected optical density value for each sample and the control

sera was calculated by subtraction of the OD value of each control

antigen-coated well from that of the corresponding viral antigen-

coated well and the relative optical density (ROD) value for each

sample was calculated as a proportion of a positive control serum

on a per-plate basis.

BRSV-IgG2 levels were tested using a modified form of the

above assay. All dilutions were as described above but 100 ml of 1/

10,000 horse-radish peroxidase-conjugated anti-bovine IgG2

(Acris Antibodies GmBH, Hiddenhausen, Germany) was used as

the secondary antibody. The corresponding ROD values were also

calculated as above. To obtain the IgG1 levels, IgG2 was

subtracted from the total IgG, as described in O’Neill et al,

2006 [25].

Area under the curve (AUC) for each trait was also calculated

(using the trapezoidal rule [52]) to provide a single trait that

reflected the overall response of each animal.

Immunisation with the FMDV15 peptide
Full details of the FMDV peptide and the sampling protocols

have been previously published [27]. The peptide consisted of two

separate regions (residues 141 to 158 and 200 to 213) of the virus

coat protein (VP1) from the O1 Kaufbeuren strain of FMDV [53].

195 second generation cross heifers (121 F2, 43 HB1 and 31 CB1)

were immunised subcutaneously with 1 mg FMDV15 peptide/

animal emulsified in Freund’s incomplete adjuvant at week 0,

followed by a boost of 100 mg FMDV15 peptide/animal at week 6.

The age at initial immunisation with the peptide ranged from 469–

609 days. Thus the FMDV immunisation and collection of

phenotypes were done subsequently to the BRSV vaccination and

collection of phenotypes. Whole blood samples were collected by

jugular venipuncture from all of the female F2 and backcross

heifers, post immunisation at weeks 0, 1, 2, 4, 8 and 10 for IgG1

and IgG2 analysis. Animals used in the FMDV study were the

same female animals used in the BRSV study reported here.

For the IgG analysis, the blood samples were allowed to clot and

serum collected and stored at 220uC until they were tested.

FMDV15 peptide specific ELISAs were performed to measure

IgG1 and IgG2 isotypes as detailed in Baxter et al 2009 [25].

ELISAs were conducted within a short period following the final

sampling, to minimise technical variation.

Statistical Analysis – BRSV IgG
The IgG concentrations were log10 transformed to obtain a

normal distribution and constant variance, to permit REML

(REsidual Maximum Likelihood) analysis.

Significant factors, such as sire, within this study have been

previously calculated by O’Neill et al [25]. For the QTL

calculation, the final model included sire and dam as random

effects; the fixed effects within the model, with appropriate degrees

of freedom (df), were line (F2, CB1, HB1; 2d.f), age (age at

vaccination), cohort (1, 2, 3; 2d.f) and calculated weight (weight of the

animal at first vaccination date calculated from regression of

animal weight at other time points pre and post vaccination).

Thus the model was:

Yijk~mzLzCzSzb1:mzb2:azujzgkzeijk

Where: Yijk is the observed value of the phenotypic trait; m,

population mean; L, the fixed effect of line (F2, CB1 or HB1); C,

the fixed effect of cohort (3 Cohorts); S, the fixed effect of sex (male

or female); b1, the linear regression on the covariate of age at

vaccination, m (m = d469–d609); b2, the linear regression on the

covariate of weight, a (a = 361–744 kg); uj, the random effect of

sire; gk, the random effect of dam g; eijk, the residual error

e,N(0,Is2
p).

Correlations
The residuals, for each time point, from the Restricted

Maximum Likelihood (REML) models were saved and used to

calculate all the correlations between the immune responses at

differing time points throughout the study.

Genetic Markers
Standard phenol-chloroform methods were used to extract

DNA from blood samples [54]. A panel of microsatellite markers

were genotyped across all individuals in the herd, with a total of

165 microsatellite markers distributed across all 29 autosomes

[55]. All of the genotypes were stored in the ResSpecies database

[56] and used to build linkage maps with CRIMAP 2.4 [57]. The

maps were compared to a bovine linkage map [58]. Once

inconsistencies with the published linkage maps were resolved, the

maps constructed using CRIMAP were used to conduct putative

QTL analysis for the immune-related traits. The map is given in

Table S3.

QTL Analysis
GridQTL [59] an internet based software was used for the QTL

analysis, the F2 and backcross module was used which assumes

that founder lines are fixed for alternative alleles at QTL loci

(although they can be segregating at markers) and implements a

least squares analysis. Information content (IC) along the linkage

maps was also calculated by the program. Both single and two

QTL models with additive and dominance effects were fitted at

1 cM intervals along the autosomes, using a sex averaged genetic

map. By setting the two founder breeds as: breed 1 = Holstein and

breed 2 = Charolais, the positive or negative sign of the effects

(additive and dominance) dictated the origin of the allele (Holstein

or Charolais) which increased the trait value. Thus, when the

additive effect was positive, Holstein origins were responsible, and

when the additive effect was negative then Charolais origins were

responsible. However, when dominance effects shared the same

sign as the additive effects, Holstein origins were responsible, and

when the signs did not match, Charolais origins were responsible

for the increased phenotype.
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In total 21 phenotype measurements (for total IgG, IgG1, IgG2

at weeks 4 and 2 pre-vaccination and 0, 2, 5, 7 post vaccination

along with AUC measurements) were tested for linkage association

using 165 microsatellite markers spread across all 29 autosomes in

the bovine genome. Significance thresholds were calculated by

permutation analysis with 2000 permutations [60]. Four signifi-

cance levels were used: chromosome-wide 5% and 1% and

genome-wide 5% and 1%.

Refining QTL
The QTL detected at the 5% chromosome-wide significance

level and above were included in the model and the genome

rescanned for further QTL. By adding the initial QTL as

background effects, the variance caused by them is removed, thus

potentially revealing previously undetectable QTL. In cases where

more than one QTL was found for the same trait on the same

chromosome, a 2 QTL model was applied by fitting two QTL

simultaneously and re-analysing the data. A forward and

backward selection interval mapping approach was used to check

whether QTL moved significantly [61]. These refining methods

were repeated, until no further QTL were detected. Finally,

bootstrap analysis was performed, using 2000 repeat samples, for

all chromosomes, where significant QTL were detected, to

estimate the 95% confidence intervals for the location of the

QTL [62].

Supporting Information

Table S1 Phenotype summaries. 1. Immunisation with

FMDV peptide (data from previous study [27]); BRSV vaccine

(data from previous study [25]). 2. Trait: each trait is shown as

follows: total IgG or IgG isotype response, followed by the week

relative to vaccination. 3. Mean: mean average of each time point.

BRSV specific antibody is measured as Relative Optical Density

whilst FMDV specific antibody is measured in ml/ml. 4. Range:

Minimum and maximum response for each time point (units as 3.).

5. SD: the standard deviation of each trait mean at each time

point.

(TIF)

Table S2 Correlations within and between the immune
responses to the BRSV vaccine. The x and y axes consist of

each week of the BRSV study [27]. Correlations are located below

the black shaded boxes. Above the black shaded boxes is the

significance of each correlation. The horizontal orange (IgG1

AUC measurement), green (IgG2 levels two post vaccination), red

(IgG2 levels 5 weeks post vaccination), blue (IgG2 levels 7 weeks

post vaccination) and purple (IgG2 AUC measurement) shaded

boxes represent the significant correlations throughout the BRSV

study. The vertical coloured shaded boxes highlight the corre-

sponding significance of the correlations.

(TIF)

Table S3 Linkage map. Marker distances (cM Kosambi) are

shown for the sex-average maps built for the Charolais6Holstein

population used in this study.

(TIF)
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