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Abstract

Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on
protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific
protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we
show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally
observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of
interacting atoms derived from the database of protein structures. Machine learning models established on the
rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the
experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out
cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall
binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20
amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design
methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could
provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and
diagnostic antibodies against predetermined antigen epitopes.
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Introduction

Antibody has become the most prominent class of protein

therapeutics and diagnostics [1,2]. However, the underlying

protein recognition principles have yet to be understood to the

level, whereby an antibody-antigen recognition interface can be

designed de novo. Although powerful high throughput recombinant

protein library techniques capable of exploring more than one

billion sequence variants in a single experiment have been

providing platforms for protein-protein interaction engineering

[3,4,5], the experimental capabilities are nevertheless infinitesimal

in comparison with the vast combinatorial sequence space in a

typical protein-protein interaction interface. Hence, current

antibody discoveries are largely limited by the uncontrollable

animal immune systems [6].

Computational capabilities on antibody design have been

demonstrated to explore sequence space than is possible

experimentally, but the focus has been largely limited on affinity

maturation of existing antibody-antigen interactions. It has been

shown that, with iterative computational design procedure

focusing on single mutations, affinity of two antibodies has been

improved by one to two orders of magnitude [7]. Computational

antibody-antigen complex models have also been used in

combination with phage display mutagenesis on a few selected

CDR residues to improve antibody binding affinity by two orders

of magnitude [8]. High-affinity antibodies can also be further

improved by one order of magnitude with structure-based

computational design [9]. De novo paratope design on antibodies

against any targeted epitope of an antigen has been developed

with computational modeling of CDR structures against the
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selected epitope [10], but the experimental verification of the

computational capability has yet to be demonstrated.

Successful de novo computational designs on protein-protein

interactions has been established, indicating that the current

computational methodologies on protein structural energetics are

able to identify feasible designs among vast possibilities [11] (see also

reviews [12,13] and references therein). Nevertheless, the accuracy

of current energetic functions [7,12,13,14,15,16,17] has been a

formidable barrier [18]. In particular, calculating interaction

energetics involving water molecules in protein complex formation

has been difficult [12,16,17,18,19,20,21,22,23,24,25]. As a conse-

quence, the capability of ranking a series of tentative sequences near

the optimal designs for protein-protein interface remains a difficult

challenge [11].

Experimental platforms based on phage display of synthetic

antibody libraries provide rich information on antibody-antigen

interactions [5]. In this work, the aim is to use the data generated

from phage-displayed antibody libraries to develop and calibrate

computational tools for rational design of antibodies. To this end,

we first exhaustively identified the interface CDR (complemen-

tarity determining region) sequence preferences in an antibody-

VEGF (vascular endothelial growth factor) interaction system with

experiments based on phage-displayed recombinant antibody

libraries, and then used a structural informatics-based system to

rationalize the CDR sequence preferences at atomic resolution

with computational molecular modeling. The rationalization led

to insights for a machine learning methodology, aiming at

designing interface CDR sequences against designated epitopes

on antigens of known structure. The results suggest that

computational antibody design could effectively empower the

high throughput recombinant protein library-based technologies.

Results and Discussion

Experimental antibody-VEGF interface sequences
The experimental amino acid preferences of antibody CDRs

binding to VEGF were elucidated with VEGF-binding scFv/sc-

dsFv variants derived from the G6 Fab-VEGF complex [26] as a

model system. Nine synthetic scFv (single chain variable fragment

[4]) or sc-dsFv (single chain disulfide stabilized variable fragment

[27]) libraries were constructed with a recombinant phage display

system to systematically randomize 5 consecutive residues on each

of the 6 CDRs on the variable domains [27]; more than 500 variants

for which the scFv/sc-dsFv expressed on bacterial phage surfaces

are able to bind to VEGF with high affinity were systematically

discovered with high throughput phage display selection and

screening [27,28]. The amino acid preferences of the 30 CDR

interface residues in the scFv variants binding to VEGF are shown

in Figure 1(a); the VEGF-binding data and the sequence details of

the selected variants are shown in Table S1. Figure 1(b) and Table

S2 show the VEGF-binding sequence patterns in sc-dsFv variants

obtained with the corresponding sc-dsFv libraries. As shown in

Figure 1(c), the amino acid preferences are position-dependent; a

cluster of interface positions forms the core interface region, where

amino acid type conservation for antigen binding is much more

stringent than the peripheral interface.

Since the phage display systems in Figure 1 are based on the scFv

and the sc-dsFv scaffolds, it is important to verify that both the scFv

and the sc-dsFv structures are similar to the variable domain

structure in G6-Fab even in the absence of the two Fab constant

domains in the scFv or the sc-dsFv structures. High-resolution sc-

dsFv structure with the sequence identical to the parent G6-Fab

variable domains (except for the two interface cysteines in the sc-

dsFv shown in Figure 2) has been elucidated with x-ray

crystallography as shown in Figure 2 (PDB code 3AUV); the

refinement data are shown in Table S3. The corresponding scFv

structure has not been attainable experimentally due to high

aggregation tendency of the scFv in crystallization conditions. The

comparison of the antibody variable domains in the uncomplexed

and the VEGF-complexed G6-Fab structure (obtained from 2FJF

and 2FJG, respectively, in PDB) with the sc-dsFv structure shown in

Figure 2 suggests that the variable domain structures in the G6-Fab

and in the sc-dsFv are largely identical to the atomic details. The

structural differences of the engineered interface disulfide bond

unique to the sc-dsFv structure are also highlighted in Figure 2.

Although the G6-derived scFv structure has not been determined

with experimental method, the consistency of the sc-dsFv structure

with the G6-Fab structure as shown in Figure 2 and the consistency

of the sequence patterns for the scFv and sc-dsFv variants binding to

VEGF (comparison of Figures 1(a) and 1(b)) indicate that the scFv-

VEGF interactions can be modeled based on the G6 Fab-VEGF

complex structure as well.

The scFv/sc-dsFv libraries were designed with an internal

control in each of the libraries to ensure that the amino acid

preferences derived from the VEGF-binding variants are relevant

to the complex structure, even when some of the CDR residues in

the antibody fragment variants are different from the template G6-

Fab sequence. As shown in Figure 1, each of the scFv/sc-dsFv

libraries (except for the H1 library) was constructed with two

separate random sequence regions simultaneously: one of the

randomized regions contains 5 consecutive degenerate codons

(NNK) in one of the four CDRs – CDR1L, CDR2L, CDR3L, and

CDR2H; the other randomized region always contains 5

consecutive variable positions (also diversified with the NNK

degenerate codon) in CDR3H. This design is based on the prior

knowledge that the binding of the G6-derived scFv/sc-dsFv with

VEGF is primarily anchored with the residues in CDR1H and

CDR3H [27,28]. With the residues in CDR1H remain constant as

in G6-Fab in all the variants of the libraries (except for H1 library

where the CDR3H residues remain constant as in G6-Fab),

VEGF-binding sequence patterns emerged for the CDR3H

variable region served as an indication to verify if the antibody-

VEGF complex structure remains relevant for the selected variants

in binding to the VEGF. As shown in Figures 1(a) and 1(b), the

sequence patterns of the CDR3H region for the variants binding

to VEGF are all in good agreement in the conservation of the

anchoring residues in CDR3H (F101, F102, and L103), suggesting

that the sequence variations in the CDRs for the scFv/sc-dsFv

variants binding to VEGF did not variegate substantially the

binding mode of the antibody variable domains to VEGF, mostly

due to the anchoring of the scFv/sc-dsFv variants onto the VEGF

binding site with the conserved anchoring residues in the CDR3H

and CDR1H. Moreover, competition test of the phage-displayed

scFv binding to VEGF with soluble non-fusion G6-derived scFv

indicated that 34 out of the 37 selected phage displayed scFvs from

the L2H3 library (Table S1) showed clear competition by the

soluble scFv (up to 4 mM) on VEGF-binding, assuring that the

scFv variants shown in Figure 1 bind to VEGF at mostly the same

binding site as in the G6-Fab-VEGF complex. Taken together, the

amino acid sequence preferences (LOGOs in Figure 1) for all the

CDR positions in consideration are consistently relevant to the

model antibody-antigen complex structure.

Rationalization of the interface CDR sequence
preferences

The amino acid preferences of the scFv interface CDRs binding

to VEGF, as shown in Figure 1(a), are quantitatively represented

by Wji (shown in Table 1), which is the log-odd-ratio of the
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probability of amino acid type i at CDR position j over the

background probability of the amino acid type in the phage

display system (Equation (5) in Methods). The working hypothesis

is that Wji is linearly correlated with one or a combination of the

following three statistically derived log-odd-ratio terms: Xji, Yji, and

Zji (Equations (1),(4) in Methods), where Xji is the upper bound of

the atomistic contact term for amino acid i at position j; Yji reflects

the maximal desolvation energy penalty due to the amino acid i at

position j in forming the protein-protein complex; Zji is the

structural propensity for amino acid i in position j of the antibody

CDR. One first-order approximation embedded in the working

hypothesis is that the amino acid preferences (Wji) of position j is

intrinsically dependent on the local antibody-antigen structural

environment around the position j; higher order cooperative

interactions due to the neighboring CDR residues are intractable

in this approach. Following this approximation, the Xji and Yji

terms were calculated with the antibody structural models where

the interface CDR position j was enumerated with all rotamers of

amino acid type i while all other positions were reduced to alanine,

as described in Equations (1),(4) in Methods, so as to mimic

realistic antibody design situations where CDR sequences are not

known. The numerical results of Wji, Xji, Yji, and Zji are shown in

Table S4.

The working hypothesis was tested by calculating the Pearson

correlation coefficients (cc) between Wji and Xji, Yji, Zji respectively

for all amino acid type i in each of the position j. The results are

shown in Table S4 and are summarized in Figure 3. In Figure 3(a),

the 30 interface CDR amino acids are shown color-coded based

on the Wji-Xji correlation coefficient. The background VEGF

interface in Figure 3(a) is also color-coded according to the statistic

strength reflecting the average atomistic contact terms calculated

for each of the VEGF interface atoms with model scFv structures

constructed based on the antigen-binding CDR sequences listed in

Table S1 (detailed method described in Text S1). The experi-

mental amino acid preferences Wji are significantly and positively

correlated with the atomistic contact term Xji in the core interface

positions: Y32-H in CDR1H (cc = 0.51), W33-H in CDR1H

(cc = 0.67), F101-H in CDR3H (cc = 0.40), F102-H in CDR3H

(cc = 0.30), A32-L in CDR1L (cc = 0.42), F53-L in CDR2L

(cc = 0.54), Y92-L in CDR3L (cc = 0.34). These positions are

consistent with the positions in the core interface region as shown

in Figure 1(c) and are located at or near the VEGF interface sub-

area colored in red (Figures 1(c) and 3(a)); the color code indicates

that this VEGF area is consistently used to make energetically

favorable contacts to the binding scFv variants. The energetics

governing interactions in this core interface region is closely

related to the energetics governing the stability of the interior of

protein structures, for which the statistics are used for Xji

calculations. The ranking capabilities of Xji on the amino acid-

protein contact energetics for residues in the core interface are

largely comparable to the consensus of 24 publicly available

scoring functions devised for computational drug design (Tables

S5(a) and S5(b)). This comparison also highlights the diverse

ranking results among these 24 scoring functions.

The sub-area color-coded red on VEGF interface in Figure 3(a)

is in good agreement with the ‘hot spots’ on VEGF (F17-W, M18-

Figure 1. CDR sequence profiles and distribution of the amino acid preference stringency in the scFv-VEGF binding. (a) The data were
derived from the screening of the five scFv libraries (L3H3, H2H3, L2H3, L1H3, and H1, see also Table S1). The computation of the LOGO plots is based
on the formulation by Gorodkin et al [53] with modifications for amino acid background probabilities in phage display libraries and for pseudo counts
as shown in Equation (2) of Text S1. (b) The data were derived from the screening of the four sc-dsFv libraries (L3H3-S5, H2H3-S5, L2H3-S5 and L1H3-
S5, Table S2). (c) The interface structure of the antibody-VEGF is depicted based on the G6-Fab-VEGF complex structure (2FJG), where the 30 CDR
interface residues are shown in stick model and the VEGF homodimer structure (V and W chains) shown in sphere model. The distribution of the
color-coded CDR residues shows the position-dependence of the amino acid preferences towards VEGF-binding. The core interface region (boxed in
red square) contains residues with high stringency in amino acid type requirement comparing with the residues in the peripheral interface region.
The CDR residues are color-coded based on the information content (Ij, as shown in the y-axis of the panel (a), is defined in Equation (2) of the Text
S1). The color code for the background VEGF molecule is described in Figure 3(a).
doi:10.1371/journal.pone.0033340.g001

Figure 2. The crystallographic structure of the sc-dsFv derived from G6-Fab. The sc-dsFv structure (colored in green, PDB code 3AUV) is
superimposed with the variable domains of VEGF-complexed G6-Fab (2FJG in PDB code, colored in grey) and unbound G6-Fab (2FGF in PDB code,
colored in magenta). The interface disulfide bond in the sc-dsFv is marked with the arrow. The RMSDs between the sc-dsFv and the variable domains
derived from 2FJF and 2FJG are 0.629 Å and 0.942 Å, respectively. The model of the interface disulfide bond in the sc-dsFv is shown with the
superimposition of the Fo-Fc simulated annealing omit density map (colored in cyan) at the 5.0s level. The omit density map was calculated without
the residues of the interface cysteins. The refinement data for the sc-dsFv structure determination are shown in Table S3.
doi:10.1371/journal.pone.0033340.g002
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Table 1. Comparison of the predicted and the experimental amino acid preferences at each of the CDR interface positions.

28-L 29-L 30-L 31-L 32-L

Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti

P3.9 S .61 P4.2 D .42 G3.4 S .65 G4.3 R .85 R4.2 F .43

A2.8 N .56 G2.4 A .28 F2.1 A .57 P3.7 S .68 A2.4 Y .42

S1.4 P .47 M2.1 N .18 S1.7 N .36 N1.0 A .57 Y1.1 H .37

E1.0 F .40 H1.0 T .13 A1.5 H .31 T0.2 H .49 W1.0 N .36

M1.0 A .19 I1.0 R .10 P1.5 P .23 G .30 G0.9 G .25

T0.9 H .17 T0.9 L .08 L .18 N .20 T0.2 T .14

V0.2 E .07 L0.5 H .07 Y .07 Y .07 R .06

M .00 A0.2 I .05 G .02 A .00

P .04 R .01

50-L 51-L 52-L 53-L 54-L

Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti

E2.5 Y .43 A3.6 N/A N2.5 N/A H4.4 R .59 H3.3 N/A

G2.0 G .37 S2.8 W2.5 Y4.0 N .56 N2.5

R1.8 S .37 K1.4 L1.8 F3.9 G .38 L1.8

S0.9 R .33 M1.4 S1.8 M2.5 S .34 I1.4

Q0.6 H .30 G1.4 H1.4 I1.4 A .33 S1.4

T0.6 N .26 T1.4 K1.4 W1.4 H .21 P1.4

L0.4 A .21 R0.4 D .17 R0.9

L .01 P .08 A0.6

F .06
E .04
Y .03

92-L 93-L 94-L 95-L 96-L

Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti

F4.3 A .93 K4.9 S .65 P2.9 R .68 P3.2 N/A H5.7 N/A

Y3.6 S .60 N3.9 H .58 R1.6 L .66 K1.6 Y2.4

H3.0 P .38 M3.5 G .45 A1.5 Y .36 N1.6 F2.4

N3.0 N .35 I3.0 A .29 G1.1 N .30 S1.6 P2.0

I2.4 H .25 R1.6 N .27 H0.5 H .29 T1.5 M1.6

S2.1 F .19 T1.1 R .24 I0.5 G .25 A1.1 N0.5

L1.2 Y .13 S0.9 P .05 T0.5 A .18 F0.5 E0.5

S0.01 S .17 A0.5

29-H 30-H 31-H 32-H 33-H

Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti

I4.9 N/A D5.2 S .56 D8.0 S .41 Y8.3 Y .52 W9.1 Y .45

L4.2 E4.9 P .24 N5.5 P .13 F6.9 F .44 F4.1 G .44

M3.0 N3.0 D .22 E3.0 N .01 H .41 H .32

V2.9 S1.8 A .19 H2.2 P .28 N .26

F2.2 Y1.2 H .18 N .27 A .19

R0.03 N .14 A .23 R .19

R .02 S .17

E .01

53-H 54-H 55-H 56-H 57-H

Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti

K2.2 D .51 P5.5 P .60 P3.1 P .42 P5.5 G .59 P4.3 Y .63

L2.0 Y .38 N2.2 E .51 D2.2 E .36 D2.7 P .14 A1.9 F .60

N1.6 P .28 T1.9 A .26 N2.2 A .28 I1.6 H .14 S1.1 M .47
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W, Y21-W, Y25-W, Q89-V [26]). Hot spots [29,30,31] are

frequently buried in the interior of the interface. As shown in

Figure 3(b), 5 (Y32-H, W33-H, F101-H, F102-H, and Y92-L) core

interface CDR positions are buried in the interface with more than

39% SASA change. In addition, 4 (Y32-H, W33-H, F101-H, and

F102-H) out of these 5 buried interface positions are also highly

conserved in the sequence patterns (Figure 1). Theses conserved

interface residues resemble key residues involving in core

structures of tightly packed protein interiors.

Amino acid preferences in the peripheral interface positions are

less pronounced but are not indifferent (Figure 1 and Table 1); the

sequence preferences of these positions cannot be explained with

the structural propensities measured by Zji or by the atomistic

contact term Xji. Figure 3(c) shows the interface residue structures

color-coded based on the Wji-Zji correlation coefficients. The

amino acid preferences in all the 30 interface positions are

correlated with the local structural propensities to various extents,

but the correlations do not distinguish the core interface region

from the peripheral region in the CDR interface.

Amino acid preferences in the peripheral regions are mostly

governed by hydration-mediated interactions, as measured by the

Yji term. The residues with the most prominent Wji-Yji correlation

are D28-L in CDR1L (cc = 0.40), S30-L in CDR1L (cc = 0.27),

S30-H in CDR1H (cc = 0.42), P53-H in CDR2H (cc = 0.31), A54-

H in CDR2H (cc = 0.47). All these residues are in the peripheral

interface regions. As shown in Figure 3(d), the interface CDR

residue structures color-coded based on the Wji-Yji correlation

coefficients are essentially a mirror image to the color-codes shown

in Figure 3(a) for the Wji-Xji correlation. This indicates that

minimizing the desolvation penalties, in contrast to optimizing the

contact energy as in the core interface region, is the major

determinant for the amino acid preferences in the peripheral

interface CDR positions.

Figure 4 shows the hydration patterns on VEGF and the

antibody CDRs. The core interface regions on the VEGF and the

corresponding part of the antibody CDRs are much less hydrated

than the other surface regions, suggesting that the core interface

region in an epitope-paratope pair can be identified with the

hydration pattern predictions as shown in Figure 4. Together, the

results shown in Figures 3,4 suggest that the core interface

region, composed of only a few less solvated hot-spot residues on

the antigen surface, is recognized by a few contact-driven residues

on the CDRs of the antibody, forming the core of the antibody-

antigen recognition interface without substantial energetic penalty

due to the dehydration of the core interface. The energetics for this

core interface assembly resembles that governing the stability of

the interior of protein structures. The CDR positions surrounding

the core interface prefer small hydrophilic sidechains over the

possibility of forming specific inter-protein van der Waals

interactions and hydrophobic contacts. Hydration-mediated

interactions indirectly linking the hydrophilic groups in both sides

of the protein interface surrounding the core interface region

provide non-specific but weak adhesive driving force for the

interface, explaining the non-specific preferences for small and

hydrophilic amino acid sidechains in these positions. Bulky

hydrophobic sidechains that abolish this weak interaction and

Table 1. Cont.

53-H 54-H 55-H 56-H 57-H

Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti

G1.6 H .27 N .17 G2.2 D .20 V0.3 N .13 F0.9 N .40

P1.2 E .16 H .11 H1.6 G .08 S0.2 D0.9 R .28

T0.3 N .04 D .06 I1.6 N .01 H0.9 H .23

S .02 F0.9 E0.9 Q .18

M0.9 P .11

A .11
L .04

S .01

D .00

101-H 102-H 103-H 104-H 105-H

Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti Wji pWji-ti

F7.3 P .59 F7.5 L .50 L5.8 R .47 N4.3 A .42 G5.8 G .42

W5.4 F .48 Y6.8 G .43 A0.5 G .34 G2.0 H .33 N1.6 A .38

H3.9 Y .35 M0.5 D .32 Y .31 Q2.0 P .30 S0.9 R .36

M1.6 N .32 P .29 N .29 F1.6 G .29 Y0.6 Y .24

E .31 N .22 P .26 H1.6 Y .27 H0.5 N .20

D .30 H .20 H .25 R1.6 N .19 H .16

L .20 F .17 A .16 S0.9 F .19 L .10

H .12 E .03 L .04 Y0.6 R .16 S .05

A .06
M .02

D0.5 S .10
L .05

At each position, the left-hand column shows the amino acid type and the corresponding Wji. All the predicted positive amino acid types (dpWji = 1) and the activation
values for sequence preference (pWji) are shown in the right-hand column. The amino acid types shown in bold are the common amino acid types (true positives)
shown in both the left-hand and the right-hand columns.
doi:10.1371/journal.pone.0033340.t001
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Figure 3. Structure-dependent determinants for the amino acid preferences Wji. (a) The interface structure of the antibody-VEGF depicted
in this panel is attained from the G6-Fab-VEGF complex structure (2FJG). The 30 CDR interface residues are shown in stick model, and the VEGF
homodimer structure (V and W chains) is shown in sphere model, where some of the residues are labeled according to the numbering in 2FJG. The
CDR interface residues are color-coded based on the Wji-Xji correlation coefficients, for which data for the correlation computation are listed in Table
S4. As shown by the bar for color-codes at the bottom of the panel, the residue positions with positive correlation are shown in red and negative
correlation are shown in blue. CDR positions that are too distant to make any contact with VEGF are colored in yellow. The VEGF atoms in the
interface are colored with increasing redness to highlight the atoms interacting with the antibody variants (method described in Text S1) through
increasingly stronger interactions embedded in the Xji terms, which are derived from the atomistic contact statistics in protein interiors. (b) The 30
CDR interface residues are color-coded in terms of the ratio of the solvent accessible surface area (SASA) change upon the antibody-VEGF complex
formation over the solvent assessable surface area in the absence of the VEGF. (c) The CDR interface residues are color-coded according the Wji-Zji

correlation coefficients. (d) The CDR interface residues are color-coded according the Wji-Yji correlation coefficients. CDR positions that are too distant
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introduce larger dehydration penalties are less preferable in the

peripheral interface region.

Although protein-protein core interfaces anchored by hot spots

[29,30,31] and the hydration-mediated interactions in the

peripheral protein-protein interface regions [18,21,22,23,24] have

been well-established qualitatively, the results shown in Figure 1

nevertheless provide rich information on the amino acid

preferences for the positions in each of the interface regions.

More importantly, the new information led to insights at atomic

resolution for quantitative evaluations of the amino acid

preferences in the interface positions (Figure 3). Computational

algorithms based on these quantitative insights should be useful in

designing antibody CDR sequences targeting at a designated

epitope of known structure (see below).

Machine learning models for computational antibody
desig

The results above suggest that the Xji, Yji, Zji terms should be

useful in predicting the amino acid preferences in the CDR

interface. We chose the minimal logistic regression model with

weighted sum of the Xji Yji and Zji terms as input (Equation (4) in

Methods) to predict the amino acid preferences at each of the

interface CDR positions contacting the antigen (24 positions, not

including the 6 non-contact positions as colored in yellow in

Figure 3(a) and (d)). The rationale is that the Xji, Yji, Zji terms

should carry enough information to evaluate as to what extent an

amino acid type i is suitable for an interface environment

surrounding the position j. The machine learning was carried

out by training one logistic regression model for each of the 20

amino acid types at each of the 24 CDR positions; the amino acid

preferences at each of the interface positions were predicted with

the 20 logistic regression models trained with information from all

other 23 positions and the binary predictions (dpWji in Equation

(4)) were assessed with the positives and negatives determined

experimentally for the position (leave-one-out cross-validation so

that the training set does not include the test case). The weights of

the trained models and the prediction results are shown in Table

S4.

The logistic regression model was chosen because of the

simplicity of the weighted linear combination of the Xji Yji and Zji

terms as input. The linear combination requires only small

number of parameters (each model requires only 5 variable

parameters; see Equation (4) in Methods). In contrast, in more

sophisticate machine learning models, such as artificial neural

network or support vector machines, each model would frequently

require tens to hundreds of weight parameters. These machine

learning models are not suitable for the application in this work

because the number of available data points is relatively too small

for the machine learning models. The regression algorithm using

23 data points to optimize 5 variable parameters is chosen so as to

avoid over-fitting of the machine learning models.

The effectiveness of the amino acid preference prediction by the

logistic regression models is summarized in Table 1. In practice,

positive Wji (observed count for amino acid i at position j is greater

than the anticipated frequency of amino acid i encoded in the

degenerate codon NNK) for amino acid type i is considered as

positive (dWji = 1) in position j, and the predicted positive amino

acid types (dpWji = 1) have the output activation value (pWji) from

the logistic regression models greater than the threshold ti
(Equation (4)). The overall Matthews correlation coefficient

(MCC, Equation (10)) for the amino acid preference binary

predictions (leave-one-out cross validation) of the 20 amino acid

Figure 4. Hydration patterns on the surface of VEGF and the antibody. (a) Hydration patterns of VEGF are shown as the water oxygen atom
PDM contours in cyan on the protein surface and as the color-coded atom surfaces. The water PDMs are shown as 0.0019 contours in this panel. The
atom surfaces are color-coded according to the hydration pattern near the atom (Equation (3) in Text S1). (b) The hydration pattern for the G6-Fab
(2FJG) is shown.
doi:10.1371/journal.pone.0033340.g004

to render the Yji term becoming independent of the amino acid type i are colored in yellow. The VEGF atoms are color-coded according to the
hydration pattern as shown in Figure 4(a). (e) The CDR interface residues are color-coded according the correlation coefficient of Wji versus (pWji- ti)
(confidence level of predicted amino acid preference for amino acid i at position j). The background VEGF atoms are color-coded as in Figure 4(a).
doi:10.1371/journal.pone.0033340.g003
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types in the 24 interface CDR positions is 0.312, calculated with

the experimental and prediction data shown in Table 1. The

MCC for random predictions would be zero and perfect

predictions would yield MCC of one. On average, each interface

position has 5.762.0 positive amino acid types; 7.762.0 amino

acid types are predicted positive on average at each position and

3.561.9 amino acid types are true positive on average at each

position – the accuracy, precision, recall (sensitivity) and specificity

(Equations (6),(9) in Methods) of the overall binary predictions

are 0.69, 0.45, 0.63, and 0.71 respectively. In comparison, a

random prediction of 5.7 residues for each of the 24 positions

would yield 0.59, 0.29, 0.29, and 0.72 for the same set of

prediction effectiveness measurements.

The prediction accuracies (Wji2(pWji2ti) correlation coeffi-

cients) shown in Figure 3(e) are inversely correlated (cc = 20.40)

with the SASA change shown in Figure 3(b) and are positively

correlated (cc = 0.25) with Wji-Yji correlation coefficient

(Figure 3(d)). This suggests that, in general, the yjiYji term in

Equation (4) gives more weight in determining pWji and thus the

sequence preference predictions are more accurate for the

peripheral interface positions.

The machine learning models above enabled a formal statistical

extrapolation with accuracy to an extent, providing suggestions on

optimal CDR sequences capable of binding to a designated

epitope based on rules learned from a limited set of data. The

phage display data have provided invaluable but nevertheless

incomplete picture on the possible combinations of CDR residues

in recognizing the epitope on the antigen. Even the limited

sequence space of the CDR variants selected for binding to the

same epitope on VEGF could not be completely explored with

only several hundreds of selected and confirmed binders as shown

in Figure 1; many of the amino acid combinations that have not

been observed from the limited sampling remain uncertain. The

logistic regression models above have enabled a better use of the

limited dataset in predicting optimal CDR sequences unseen

previously in an antibody-antigen interface.

Further tests of the prediction of optimal CDR residues in
other antibody-antigen interfaces

The capabilities of the machine learning models were further

tested with other antibody-VEGF complex interfaces, where the

anti-VEGF antibody sequences are different with different

corresponding epitope on the antigen. Two of these complex

interfaces (1BJ1 [32] and 2FJH [26]) have been optimized for high

affinity, while the other three anti-VEGF antibodies (2QR0 [33],

1TZH and 1TZI [34]) were selected from phage display libraries

with only limited amino acid variations (Y, S, D, A) in selected

CDR residues. Since the corresponding phage display variant

profiles as shown in Figure 1 are not available from the associated

studies, similar analyses shown in Figure 3 could not be carried

out. Alternatively, we predicted the ranking of the 20 natural

amino acid types in each of the CDR positions defined in the

respective antibody-antigen complex structures and highlight the

rank of the CDR amino acids in the crystal structures based on the

ranking predicted with the trained logistic regression models

(Figure 5). It is not known from experimental data as to if there

exist other more optimal amino acid types in comparison with the

corresponding amino acid type in the structure, but nevertheless,

we assume that amino acids in the structures with better ranks are

predicted more accurately. Figure 5 depicts the summary of the

predictions, and the details of the prediction results are shown in

Table S9.

As shown in Figures 5(a) and 5(b) for complex 1BJ1 and 2FJH

respectively, the Tyr residues in the core interface were predicted

with high accuracy, while the core Trp residues were predicted

incorrectly. It is of interest to compare the results with those of the

three antibody-antigen interfaces where the antibodies are

members of minimalist antibody libraries with limited amino acid

variations (Y, S, D, A) in the CDR residues (Figures 5(c), 5(d), 5(e)

for complex 2QR0, 1TZH, 1TZI respectively). Among the

residues in these core interfaces, only one Tyr residue was poorly

predicted in the complex 1TZH. It is evident that the minimalist

antibody library designs have not only substantially reduced the

complexity space of the CDR regions, the computational antibody

design herein can be better applied to a system with less complex

combinatorial selections.

Overall, the sequence preferences in the peripheral regions of

the antibody-antigen interfaces were better predicted than the core

regions. Figure 6 summarizes the distribution of the predicted

ranking of the amino acids in the complex structures. The amino

acids in the peripheral interface regions are generally predicted

with better ranking (distribution in red in Figure 6) in comparison

with the predictions for the amino acids in the core interface

regions (distribution in blue in Figure 6). Both distributions of

predicted ranking are better than random distribution shown as

the flat dashed line in the figure. These are in agreement with the

benchmark results shown above in Figure 3.

Computational recombinant antibody library design
The prediction algorithm can be used to design antibodies

against epitopes of known structure. The peripheral interface

sequence preferences can be predicted to an extent with the

trained machine learning models above. The sequence preference

predictions for these regions are more accurate and these positions

are more tolerant in amino acid preference prediction errors

(Figure 1 and 3). The core interface CDR sequences can be better

predicted with the Xji term alone (Figure 3(a)). However, these

CDR core interface designs need to be validated with focused

experiments because of the high stringency of sequence prefer-

ences in this area. To this end, the core interface CDR residues

would be encoded with degenerate codons biased towards

aromatic and hydrophobic amino acid types so as to form protein

interior-like interactions with the hot-spot residues on the antigen.

As such, the designed synthetic DNA libraries are confined to the

experimental limit of about one billion variants for phage display

because the number of the core interface residues encoded by

degenerate codons would be likely less than 10.

The results above suggest a methodology for computational

design of synthetic antibody libraries for high-throughput antibody

discovery platforms. First, the antibody binding site (epitope) on

the antigen containing hot-spot residues with sparse hydration

patterns (methodology as shown in Figure 4 and Text S1) is

defined. Models of the antibody-antigen complex structures with

only mainchain structure for the CDR interface residues targeting

the selected epitopes are constructed with computational molec-

ular modeling and docking of the antibody and antigen structures.

The CDR interface residues on the antibody near the antigen hot-

spot residues are the core interface residues; the rest of the CDR

residues are peripheral interface residues. The amino acid types

and rotameric conformations are enumerated at each of the CDR

positions to predict the amino acid preferences for the peripheral

and the core CDR positions with the machine learning models.

Antibody libraries designed based on the model complex

structures, the peripheral sequence preferences, and the core

interface residue libraries can then be selected and screened with

the standard high throughput phage display platform, which has

been used in attaining results shown in Figure 1. The antibody

library design methodology will further mature with extended
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Figure 5. Predicted ranking of the CDR amino acids in the antibody-VEGF complex interfaces. Panel (a) to (e) shows the complex
structure for 1BJ1, 2FJH, 2QR0, 1TZH, and 1TZI respectively. In each of the panels, the atoms of the antigen VEGF are shown in spheres; the VEGF
atoms colored in magenta are core interface atoms and the VEGF atoms colored in cyan are rim interface atoms. The core-rim assignment follows the

Rationalization and Design of Antibody CDRs

PLoS ONE | www.plosone.org 10 March 2012 | Volume 7 | Issue 3 | e33340



experimental verification, for which the experimental platforms

have been well-established [5]. The structure-based in silico design

of recombinant antibody libraries will provide alternatives to the

current animal-based antibody technologies to facilitate the

discoveries of antibody therapeutics and diagnostics and to enrich

the basic understanding of protein-protein interactions in general.

Materials and Methods

Phage display of VEGF-binding scFv and sc-dsFv
The methods for preparing anti-VEGF template scFv, scFv

phagemid, sc-dsFv phagemids, anti-VEGF scFv/sc-dsFv phages

and for scFv/sc-dsFv panning, single colony and ELISA analysis,

and interdomain disulfide bond formation analysis have been

described previously [27,28].

Expression and purification of sc-dsFv
The expression and purification of the sc-dsFv followed the

method described previously with minor modifications [35]. In

brief, the sc-dsFv coding region was subcloned into pET-32

expression vector encoding thioredoxin as a fusion protein N-

terminal to the sc-dsFv. The fusion protein contains a hexa-His tag

followed by a TEV protease cutting site between the thioredoxin

and the sc-dsFv, which is followed by an Avitag oligopeptide

(GLNDIFEAQKIEWHE, Avidity Inc., USA) appending to the C-

terminus of the sc-dsFv for in vivo biotynylation. The sc-dsFv gene

derived from phage panning was subcloned into the expression

vector via the SfiI and NotI cutting sites encompassing the sc-dsFv

coding region. E. coli Rosetta-gami B (DE3) strain culture

transformed with scFv/sc-dsFv expression vector was grown in

26 YT medium (Tryptone 16 g/L, Yeast extract 10 g/L, NaCl

5 g/L) with ampicillin (200 mg/L), tetracycline (12.5 mg/L) and

chloramphenicol (37.5 mg/L) at 30uC until OD600 reached 1.0,

and was then incubated at 20uC for another 2 hr before adding

0.2 mM IPTG. After overnight protein expression and centrifu-

gation, the cell pellets were resuspended in lysis buffer (Tris-HCl,

50 mM, pH 8.0, 150 mM NaCl, 30 mM imidazole) and the

suspended cells were then broken by Microfluidizer (Microfluidics,

MA). The recombinant thioredoxin-sc-dsFv fusion protein was

purified by nickel chelation chromatography with IMAC pre-

packed column (GE Healthcare Life Sciences) charged by 0.1 M

NiSO4 solution. The fractions containing the fusion protein were

collected and dialyzed by Tris-HCl, 50 mM, pH 7.5 (the

theoretical pI of sc-dsFv was 5.82) overnight at 4uC or desalted

by HiPrep 26/10 desalting column (GE Healthcare Life Sciences)

with the same buffer. The protein solution was then introduced to

ion-exchanged chromatography (prepacked Q column, GE Life

Healthcare Sciences). The fractions containing the thioredoxin-sc-

dsFv fusion protein were collected and treated with His6-tagged

TEV protease (A280 ratio 50:1) at 30uC for at least 5 hr but not

longer than 8 hr. The TEV-cleaved fragment containing His6-

tagged thioredoxin and the His6-tagged TEV protease were

removed by nickel chelation chromatography. The fractions

containing sc-dsFv were further purified with a Superdex75 size-

exclusion column (GE Healthcare Life Sciences) in SEC buffer

(Tris-HCl, 50 mM, pH 7.5, 400 mM NaCl, 10% glycerol). The

soluble sc-dsFv protein was prepared with 95% purity. The

purified sc-dsFv was stored at 4uC for a least one week without

affinity loss.

Crystallization of sc-dsFv
The sc-dsFv solution was concentrated to 10 mg/ml without

precipitation. Crystallization screening after PCT test (Hampton

Research) for the sc-dsFv was carried out with the protein in

6 mg/ml concentration. The crystallization screening of sc-dsFv

was carried out in MosquitoH (TTP LabTech Ltd., United

Kingdom) with screening kits from Hampton Research (Laguna

Niguel, CA) and Molecular Dimension (Apopka, FL). The purified

sc-dsFv in SEC buffer was mixed with an equal volume of the

reservoir solution (100 mM Tris–HCl, 100 mM MgCl2 and 20%

PEG4000, pH 8.0) and then crystallized at 20uC by the hanging-

drop vapor-diffusion method. The crystals appeared after one day

definition previously published [54]. The CDR atoms in the core interface are shown in thick stick model and the CDR atoms in the rim interface are
shown in thin stick model. The ranking of the CDR amino acids in the structures are color-coded according to the color bar shown at the bottom of
the figure: Better ranking is shown with increasing depth in red; worse ranking is shown with increasing depth in blue. The CDR residues colored in
yellow are not in contact with the antigen.
doi:10.1371/journal.pone.0033340.g005

Figure 6. Distributions of the predicted ranking of the CDR amino acids in the antibody-VEGF complex interfaces. The x-axis shows
the predicted ranking of the CDR amino acids in the five antibody-VEGF complex interfaces as shown in Figure 5. Detailed prediction results are
shown in Table S9. The y-axis shows the percentage of the CDR amino acids predicted with the ranking shown in x-axis. The red line shows the
distribution for the amino acids in the core interface, while the blue line shows the distribution for the amino acids in the rim interface. These two
distributions are compared with random distribution shown as the flat dash line in the figure.
doi:10.1371/journal.pone.0033340.g006
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incubation at 20uC, and reached 0.2 mm60.1 mm60.1 mm in

dimension in one week. A 2.4-Å X-ray diffraction data set was

collected at the beamline 13C1 of the National Synchrotron

Radiation Research Center (Hsinchu, Taiwan). Before the crystal

was mounted on the X-ray machine, the crystal was soaked briefly

in reservoir solutions containing 20% (v/v) glycerol as a

cryoprotectant. All diffraction data were indexed, integrated,

and scaled with HKL2000 package [36].

Structure determination and refinement
The crystal structure of sc-dsFv was solved by the molecular

replacement method The refinement procedure used one pair of

the variable fragment structure derived from the published Fab

structure (2FJF in PDB code [26]) as the search model and using

the software molrep [37] in CCP4 package [38]. Only one clear

solution was found and the R-work and R-free values of the initial

30 rounds of Refmac5 refinement [39] were 0.2581 and 0.3003,

respectively. The resolved structures contained six sc-dsFv

molecules in one asymmetric unit. The residues that were different

between sc-dsFv and variable fragments derived from 2FJF were

replaced automatically by MrBUMP module (Automated Model

generation and Molecular Replacement) in the CCP4 package.

The manual structural adjustment and well-ordered water

molecule placement were carried out with Coot software [40].

Iterative cycles of computational refinements were performed by

phenix-refine [41] with TLS options turned on. The TLS groups

were determined by the TLSMD server [42]. The progress of the

refinements was monitored by both of the R-work and R-free

values. The stereochemical quality of the refined structures was

checked by PROCHECK [43] within Structural Analysis and

Verification Server (NIH MBI Laboratory for Structural Geno-

mics and Proteomics, UCLA). The RMSD between each sc-dsFv

molecule in asymmetry unit, among the whole molecules or CDRs

between sc-dsFv and variable fragments derived from 2FJF or

2FJG [26] were calculated by PyMOL (The PyMOL Molecular

Graphics System, DeLano Scientific, San Carlos, CA, USA.

http://www.pymol.org). The sc-dsFv structure coordinates and

refinement data have been submitted to PDB under the code

3AUV.

Computation of Wji, Xji, Yji, Zji and pWji

The model antibody structures were identical to the template

structure (derived from 2FJG in PDB) except that the 30 interface

CDR residues were all replaced with alanine to mimic realistic

situations where CDR sequences were not known. To build the

sidechain of the residue at position j, the amino acid type i

adopting a rotameric structure k from the penultimate rotamer

library [44] was locally optimized with the ‘‘Clear Geometry’’

function in Discovery Studio (version 2.5, Accelrys) while the rest

of the antibody-antigen complex remained fixed. The sidechain

conformations clashing with the rest of the protein complex

structure were removed from further consideration.

For each of the model structures, the atomistic contact

component Xji of the scoring system was calculated with the

probability density maps (PDMs) describing the distribution of

amino acid atoms on the surface of the antigen based on atomistic

contact statistics observed in protein interiors. The PDMs were

constructed following the basic idea first developed by Laskowski

et al [45] with substantial modifications to largely eliminate the

distortion of the predicted PDMs due to distributions of the amino

acid sidechain and mainchain dihedral angles (examples of

atomistic density distributions can be viewed via internet –

http://ismblab.genomics.sinica.edu.tw/. Introduction). Briefly,

the amino acid conformations in proteins were classified according

the conformation clusters (Table S6); the PDMs for the protein

atom types (Table S7) were constructed in an amino acid

conformation-dependent manner, while non-interacting atom

pairs were eliminated from the PDMs based on a statistic pairwise

atomistic interaction preference filter (Table S8). The detailed

method for calculating the PDMs is described in full in Text S1.

Figure S1 depicts the flow chart of the computational procedure

for PDMs. The computational tools are available from the

ISMBLab (In Silico Molecular Biology Laboratory) web server:

http://ismblab.genomics.sinica.edu.tw/.

The atomistic contact term Xji(rotamerk) for amino acid i

adopting rotameric conformation k at position j in the CDR of

the antibody was calculated based on a model antibody-VEGF

complex structure described above. Equation (1) shows the

calculation of Xji(rotamerk):

Xji(rotamerk)~
Xn

m~1

log
max(AVE(PDMm),pref )

pref

� �
, ð1Þ

where amino acid i has n atoms. AVE(PDMm) is the averaged PDM

value corresponding to atom m on the surface of the antigen. This

value was calculated by summing the PDM values corresponding

to the atom m at the grids enclosed in the van der Waals volume of

the atom m and the sum was then divided by the number of grid

points enclosed in the atom to yield AVE(PDMm). pref in Equation

(1) is the reference probability for an atom at a reference point far

apart from the antigen surface. The reference probability must be

smaller than the minimal PDM value (,10210 in this work) but

cannot equal to zero, so as to avoid singularity in calculating

Xji(rotamerk) when AVE(PDMm) equals to zero. No experimental

data can be used to derive the reference probability, but we found

that when pref is smaller than 10210, the relative ranking of the

Xji(rotamerk) term is independent to the selection of the reference

probability. Even when the value of the pref is set between 1028 and

10210, the correlation of the Xji term with the experimental amino

acid preference Wji does not change. Thus pref = 10210 has been

empirically determined in this work; the correlating the Xji term

with the experimental amino acid preference Wji, as shown in

Table S4, is insensitive to the selection of the pref value.

The hydration-mediated term Yji(rotamerk) for amino acid i

adopting rotamer conformation k at position j in the antibody is

calculated based on the model antibody-antigen complex structure

with the following equation:

Yji(rotamerk)~

{
X

l00[Ag\PDMo(Ab)

PDMo(Ab)l00 log
max(PDMo(Ab)l00 ,pref )

pref

� �

{
X

m00[Ab\PDMo(Ag)

PDMo(Ag)m00 log
max(PDMo(Ag)m00 ,pref )

pref

� �

z
X

l0[PDMo(Ab)\PDMo(Ag)

PDMo(Ab)l0 log
max(PDMo(Ag)l0 ,pref )

pref

� ��

zPDMo(Ag)l0 log
max(PDMo(Ab)l0 ,pref )

pref

� ��
,

ð2Þ

where l0 is the grid index for the grid points inside the antigen

molecular volume and PDMo(Ab)l0 is the water oxygen PDM value

at grid point l0; m0 is the grid index for the grid points inside the
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antibody molecular volume and PDMo(Ag)m0 is the water oxygen

PDM value at grid point m0; l9 is the grid index for the grid points

within the overlapping volume between PDMo(Ab) and PDMo(Ag).

The PDMo(Ab) is the water oxygen PDM on the antibody surface

in the absence of the antigen. The PDMo(Ab) was calculated for the

amino acid i only. The PDMo(Ag) is the water oxygen PDM on the

antigen surface in the absence of the binding antibody. Following

the same rationale as in Equation (1), the reference probability pref

is set at 10210. Again, the value of pref does not affect the ranking

order of Yji calculated for each amino acid type and rotamer

conformation. The first two negative terms (the terms involving l0

and m0) in the right-hand-side of the equation is the desolvation

terms for removing water from the binding site of the antibody and

the antigen respectively; the positive terms (the terms involving l9)

correspond to the water-mediated interactions – the first positive

term accounts for the interactions between the waters on the

surface of the antibody and the atoms on the surface of the

antigen, and the second positive terms accounts for the

interactions between the waters on the surface of the antigen

and the atoms on the surface of the antibody. The first two

negative desolvation terms are against binding of the antibody and

antigen, while the two positive water-mediated interactions terms

are favorable for the antibody-antigen interactions (hydration

pattern prediction request to http://ismblab.genomics.sinica.edu.

tw/. predict . protein hydration pattern).

The calculation of the structural propensity Zji for amino acid i

in position j has been described in details in a previous paper [46].

Briefly, local structures in PDB similar to the CDR structures

flanking with two stem b-structures in the unbound antibody

structure (2FJF) were collected with PrISM using the threshold of

PSD,0.1[47]; these local structures were multiple-aligned based

on structural similarity with PrISM [46,47,48,49,50]. Zji was

calculated with the structure-based multiple sequence alignments

as the following [46]:

Zji~2log2

Cjiz(BzM{
P20

k~1 Cjk)pi

(BzM)pi

" #
, ð3Þ

where Cji is the number of the amino acid i that appears in the

position j of the multiple sequence alignment; pi is the background

probability for amino acid i in proteins; M is the number of rows in

the sequence profile; the term (B+M-Sk = 1,20Cjk) is the Bayesian

prediction pseudo-count, where B = M0.5 is adequate in the

calculation.

Predicted amino acid preference in binary form dpWji for amino

acid type i at position j was determined by the logistic regression

model:

pWji~
1

1ze
{(xjiXjizyjiYjizzjiZjizaji )

ð4Þ

dpWji = 1 when pWji$ti; otherwise dpWji = 0, where

Xji~max(Xji(rotamer1),Xji(rotamer2),

Xji(rotamer3),:::Xji(rotamerk))

Yji~min(Yji(rotamer1),Yji(rotamer2),

Yji(rotamer3),:::Yji(rotamerk))

The Xji in Equation (4) is the upper bound of the atomistic contact

term for amino acid i at position j; Xji for each of the rotamer

model structures 1,k (here, k is the total number of rotamers for amino

acid type i) for amino acid i at position j was calculated (Equation

(1)) and the largest Xji in this set of Xji(rotamer1,k) was used in

Equation (4). This term corresponds to the most favourable

contribution from amino acid i at position j to the protein-protein

complex formation. Yji(rotamer1,k) for each of the rotamer model

structures 1,k of amino acid i at position j was calculated

(Equation (2)) and the smallest Yji in this set of Yji(rotamer1,k) was

used in Equation (4). This Yji reflects the maximal desolvation

energy penalty due to the amino acid i at position j in forming the

protein-protein complex; the rotamer conformation with the

maximal desolvation energy penalty is the most favourable

conformation in the hydration environment before forming the

antibody-antigen complex.

At each position j, one logistic regression model was trained for

each of the 20 amino acid types. The weights (xji,yji,zji,aji) in

Equation (4) for predicting the preference of amino acid type i at

position j were optimized with a logistic regression algorithm in

MATLAB to minimize the difference between pWki in Equation (4)

with Wki from Equation (5) (see below), where k represents all the

positions except for the position j. The optimized weights

(xji,yji,zji,aji) were then applied to Equation (4) to predict pWji for

amino acid type i at position j (i.e., leave-one-out cross validation

approach to mimic the prediction situation). The leave-one-out

training process was carried out through all the 24 positions in this

work. The thresholds ti for the 20 amino acid types were optimized

in the training process to maximize the Matthews correlation

coefficient (MCC, Equation (10)) for the leave-one-out cross

validation predictions.

The experimental amino acid preferences Wji, as shown in

Table 1 and in Table S4 are expressed in half-bit units calculated

with the Bayesian prediction pseudo-count method [46,51]:

Wji~2log2

Cjiz
ffiffiffiffiffiffi
M
p

pi

(Mz
ffiffiffiffiffiffi
M
p

)pi

" #
ð5Þ

dWji = 1 when Wji$0; otherwise dWji = 0, where Wji is the

preference for amino acid i at position j in the CDR of the

antibody; Cji is the count for amino acid i at position j; M is the

count of VEGF-binding CDR sequences containing position j; pi is

the background probability for amino acid i encoded in the NNK

degenerate codon [51]; the square root of M in the equation is the

pseudo count to prevent singularity when Cij equals to zero. In

practice, positive Wji (observed count for amino acid i at position j

is greater than the anticipated frequency of amino acid i encoded

in the degenerate codon NNK) for amino acid type i is considered

as positive in position j (dWji = 1 when Wji$0).

The predictions were assessed by comparing the positives

(dWji = 1, see Equation(5)) and negatives (dWji = 0, see Equation(5))

with the predicted positives (dpWji = 1, see Equation (4) and the

predicted negatives (dpWji = 0, see Equation(4)). The predicted

positives are composed of true positives (TP) and false positives

(FP), while the predicted negatives are composed of true negatives

(TN) and false negatives (FN). The accuracy, specificity, recall

(sensitivity), precision and Matthews correlation coefficient (MCC)

[52] of the binary predicted results are expressed as below:

accuracy~
TPzTN

TPzFPzTNzFN
ð6Þ

precision~
TP

TPzFP
ð7Þ
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recall~
TP

TPzFN
ð8Þ

specificity~
TN

TNzFP
ð9Þ

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p ð10Þ
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