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Abstract

Bacterial lipoproteins (BLP) induce innate immune responses in mammals by activating heterodimeric receptor complexes
containing Toll-like receptor 2 (TLR2). TLR2 signaling results in nuclear factor-kappaB (NF-kB)-dependent upregulation of
anti-apoptotic factors, anti-oxidants and cytokines, all of which have been implicated in radiation protection. Here we
demonstrate that synthetic lipopeptides (sLP) that mimic the structure of naturally occurring mycoplasmal BLP significantly
increase mouse survival following lethal total body irradiation (TBI) when administered between 48 hours before and
24 hours after irradiation. The TBI dose ranges against which sLP are effective indicate that sLP primarily impact the
hematopoietic (HP) component of acute radiation syndrome. Indeed, sLP treatment accelerated recovery of bone marrow
(BM) and spleen cellularity and ameliorated thrombocytopenia of irradiated mice. sLP did not improve survival of irradiated
TLR2-knockout mice, confirming that sLP-mediated radioprotection requires TLR2. However, sLP was radioprotective in
chimeric mice containing TLR2-null BM on a wild type background, indicating that radioprotection of the HP system by sLP
is, at least in part, indirect and initiated in non-BM cells. sLP injection resulted in strong transient induction of multiple
cytokines with known roles in hematopoiesis, including granulocyte colony-stimulating factor (G-CSF), keratinocyte
chemoattractant (KC) and interleukin-6 (IL-6). sLP-induced cytokines, particularly G-CSF, are likely mediators of the
radioprotective/mitigative activity of sLP. This study illustrates the strong potential of LP-based TLR2 agonists for anti-
radiation prophylaxis and therapy in defense and medical scenarios.
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Introduction

Acute high dose radiation exposure affecting large populations

could result from multiple potential disaster scenarios, thus dictating

the need for safe and effective medical radiation countermeasures

(MRC) [1,2]. Use of MRC would be aimed at reducing near-term

mortality as well as limiting radiation damage that causes long-term

adverse health effects [3,4]. In addition, large numbers of people are

routinely exposed to anti-cancer radiation therapy and MRC could

be useful in ameliorating the negative side effects of the therapy and

enabling safe application of higher doses of radiation [5,6].

The biological effects of radiation on mammalian organisms are

strongly dependent upon the dose of radiation received [4]. Acute

radiation syndrome (ARS) developing from whole-body or

significant partial-body irradiation can involve hematopoietic

(HP), gastrointestinal (GI), and cerebrovascular components [7].

Cerebrovascular damage caused by massive neuronal apoptosis is

induced by the highest radiation doses (more than 10–20 Gy in

humans) and invariably leads to death within several days. In

contrast, mortality from HP syndrome (induced by TBI doses of 1

Gy or more in humans) and GI syndrome (induced by 5 Gy or

more) occurs with lower frequency and more slowly (over weeks
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rather than days) and is more likely to be amenable to

pharmacological countermeasures. Notably, GI syndrome always

occurs in concert with HP syndrome, and the HP component can

play a major role in mortality even if it stems primarily from GI

damage. For example, death of patients with GI ARS is frequently

caused by sepsis resulting from death of epithelial cells lining the

GI tract and loss of GI tract integrity together with concomitant

loss of immune/hematopoietic function. Even though isolated HP

syndrome is induced by lower radiation doses and has a better

prognosis than GI syndrome, it is a serious concern, typically

resulting in 50% mortality within ,3–6 weeks. Moreover, since

HP syndrome occurs at the lowest ARS-inducing dose range of

irradiation, it would likely affect the largest proportion of an

exposed population.

There are a number of potential MRC currently at different

stages of development, which fall roughly into two categories

depending upon their primary mechanism of action: immuno-

modulators/cytokines/growth factors [8,9,10] and antioxidants/

free radical scavengers [11,12]. In large part, the focus on

cytokines and growth factors has been based on their potential

ability to act as radiomitigators enhancing recovery of the HP

system from radiation damage, as demonstrated in multiple in

vitro and in vivo models [8,13]. These include stem cell factor

(SCF) [14,15], FMS-like tyrosine kinase-3 (FLT-3) ligand [16,17],

interleukin-1 fragment (IL-1b-rd) [18], keratinocyte growth factor

(KGF) [19], and G-CSF [9]. Some cytokines have received FDA

approval for treatment of neutropenia and thrombocytopenia

caused by anti-cancer radiotherapy and chemotherapy, and

several are in development [2,3,20]. The anti-radiation potential

of antioxidants and free radical scavengers derives from their

ability to reduce levels of reactive oxygen species (ROS) induced

by radiation, thus decreasing DNA damage, lipid peroxidation

and other types of chemical modification damage [12]. This

category of anti-radiation drugs is represented by the naturally

occurring antioxidant vitamin E and the synthetic phosphorothio-

ate amifostine (WR-2721), which is currently used to minimize the

side effects of radiation therapy [21]. Efficacy of this class of agents

is limited to prophylaxis of radiation injury.

Since ARS involves massive apoptosis in radiosensitive tissues

such as the HP system and GI tract [22,23,24], we have focused

on developing novel strategies to reduce radiation damage and

lethality by targeting cellular pathways that regulate apoptosis.

One such pathway involves a major regulator of all aspects of

immune responses, NF-kB, which mediates transcriptional

upregulation of anti-apoptotic genes [25]. The survival-promoting

capacity of this pathway is indicated by the fact that constitutive

activation of NF-kB is a common feature of tumors [26]. We

hypothesized that pharmacological activation of NF-kB might be a

promising strategy for both radioprotection and radiomitigation

since NF-kB regulates expression of not only anti-apoptotic genes

[25], but also those encoding (i) cytokines and growth factors that

induce proliferation and survival of HP and other stem cells

[27,28]; and (ii) potent ROS-scavenging antioxidant proteins, such

as MnSOD (SOD-2) [29]. The rationale for exploring this

approach was further strengthened by the finding that mice with

a genetic defect in NF-kB signaling displayed heightened GI

radiosensitivity [30].

To develop pharmacological activators of NF-kB, we exploited

one of the natural mechanisms by which the innate immune

system responds to microbial infections. Various pathogen-

associated molecular patterns (PAMPs) are recognized by host

cells due to their specific interaction with Toll-like receptors

(TLRs), which leads to activation of NF-kB [31]. We hypothesized

that drugs based on PAMPs might be safe since they are

commonly present in humans [32]. These features, as well as

significant in vivo radioprotective/mitigative efficacy, were

demonstrated for an NF-kB-activating TLR5 agonist based on

bacterial flagellin [33]. In the current work, we investigated use of

another type of PAMP, TLR2/6 agonistic synthetic mycoplasma-

derived lipoproteins (sLP), as radiation countermeasures.

Here we demonstrate that synthetic mimetics of diacylated

mycoplasma lipopeptides (sLP; e.g., Pam2-CSKKKK), agonists of

TLR2, have significant in vivo radioprotective and radiomitigative

efficacy. A single injection of sLP given either before or after

irradiation increased the survival of mice exposed to doses of total

body irradiation (TBI) inducing mortality primarily from the HP

component of ARS, but not those inducing GI-related ARS, and

had beneficial effects on bone marrow and spleen cellularity and

platelet levels. sLP injection led to strong induction of a number of

cytokines with known roles in hematopoiesis, which likely

contributes to the radioprotective/mitigative activity of sLP.

Finally, through comparison of SLP-mediated cytokine induction

and radiation protection in reciprocal chimeric mice with either

wild type or TLR2-null bone marrow, we demonstrated that the

ability of SLP to protect against radiation damage to the HP

system is, at least in part, due to indirect effects of responses

initiated in non-bone marrow-derived cells. Overall, this study

provides a foundation for development of LP-based TLR2 agonists

for anti-radiation prophylaxis and therapy in defense and medical

scenarios.

Results

A synthetic mycoplasma lipopeptide mimetic (sLP)
protects mice from radiation-induced death

To test our hypothesis that pharmacologic imitation of BLP-

mediated TLR2 stimulation might be an effective anti-radiation

strategy, we used a synthetic mimetic of a mycoplasma di-

palmitoylated lipopeptide (R,R-Pam2Cys-SKKKK, sLP) as a

TLR2 ligand. We chose to focus on LPs from mycoplasma rather

than other types of bacteria since these organisms typically exist

asymptomatically as part of the commensal microflora in

mammals [32] and their products could, therefore, be expected

to have low toxicity and immunogenicity. Moreover, sLP was

previously shown to mimic the NF-kB-induction activity of natural

Mycoplasma-derived lipoproteins [34,35,36,37]. We confirmed that

sLP activated an NF-kB-dependent LacZ reporter in cultured

HEK293 cells expressing TLR2/6 or TLR2/CD14 receptors, but

not in TLR2/1 expressing reporter cells or in TLR-negative

HEK293 cells (data not shown).

Groups of female ICR mice (n = 15/group) were injected

subcutaneously (sc) with a wide range of doses of sLP followed by

exposure to 10 Gy total body gamma-irradiation (TBI) 24 hours

(h) after sLP injection, and were then monitored for survival for 30

days. 10 Gy is equivalent to an LD100/30 dose in ICR mice,

resulting in death of 100% of mice within 30 days (Figure 1). As

shown in Figure 1A, pretreatment with a single dose of sLP

dramatically improved the survival of mice exposed to this

otherwise lethal dose of TBI. The survival benefit was dose-

dependent. A substantial, although not statistically significant,

increase in survival was observed even with the lowest tested dose

of 4 mg/kg sLP (20% survival as compared to 0% in the PBS-

injected control group, p = 0.25). Survival increased to 46% with

12 mg/kg sLP and 82% with 40 mg/kg sLP (p = 0.02 and 0.0001,

respectively, for comparison to the PBS-treated group). Doses of

40–1200 mg/kg resulted in similar levels of radioprotection (82–

95% survival, p,0.05 for comparison to the PBS-treated group,

p.0.05 for all pair-wise comparisons between different sLP dose

Toll-Like Receptor 2 (TLR2) Activation and ARS
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groups). Based on these results, 40 mg/kg was selected as the

optimal radioprotective dose of sLP for use in subsequent

experiments. Specificity of the radioprotective effect of sLP

mimicking Mycoplasma-derived lipopeptides was indicated by our

finding that (Pam3)-CSKKKK, a synthetic lipopeptide mimicking

bacterial-derived that lacks the lipid moiety typical of Mycoplasma-

derived lipopeptides and does not activate NF-kB-dependent

reporter expression in vitro, did not improve survival of irradiated

mice (data not shown).

In order to determine the time window for effective adminis-

tration of sLP relative to radiation exposure, we injected female

ICR mice sc with 40 mg/kg sLP at different time points prior to 10

Gy TBI. The 30-day survival rate was 0% for both the control

group injected with PBS at 24 h prior to TBI and the group

injected with sLP at 72 h prior to TBI (Figure 1B). However,

injection of sLP at any of the other tested times (48, 36, 24, 12, 6,

3, 1 and 0.5 h prior to TBI) resulted in a significant increase in 30-

day survival relative to PBS injection (40–100% survival, p = 0.02

for comparison of sLP-treated groups with the lowest 30-day

survival (40%) as compared to the PBS-treated group). Injection of

sLP 24 h prior to TBI resulted in 100% survival and was therefore

selected as the optimal radioprotective time of administration. It is

notable, however, that the effective time window for achieving

significant radioprotection with sLP is broad, ranging from 48 h to

0.5 h prior to irradiation.

Having established an optimal radioprotective sLP dosing

regimen of 40 mg/kg injected sc 24 h before TBI, we tested this

regimen (versus PBS vehicle injection as a negative control) against

Figure 1. Synthetic lipopeptide (sLP) protects mice from radiation-induced death. (A) Dose-dependence of sLP-mediated radioprotection.
Female ICR (CD-1H) mice were injected sc with sLP (4, 12, 40, 120, 400, or 1200 mg/kg; n = 15/group; average mouse weight 2562 g) or PBS vehicle
(n = 10). Mice were irradiated with 10 Gy TBI 24 h after injection and monitored for survival for 30 days. The average 30-day survival from 3
independent experiments is presented. Error bars indicate standard error. No animals in the PBS-injected control group survived to day 30. The
differences in 30-day survival between sLP-treated and PBS-treated groups were statistically significant for sLP doses $12 mg/kg (as indicated by *,
P,0.05, Fisher’s Exact Test). (B) Time window for effective pre-irradiation administration of sLP. Female ICR mice (n = 15/group) were injected sc with
sLP (40 mg/kg) at the indicated time points before irradiation with 10 Gy TBI (30 min, 1, 3, 6, 12, 24, 36, 48, or 72 h before TBI at time ‘‘0’’). The control
group (n = 15) was injected with PBS 24 h before 10 Gy TBI. The average 30-day survival in each group in 2 independent experiments is shown. Error
bars indicate standard error. Injection of sLP at all times except for 272 h resulted in statistically significant improvement in 30-day survival relative to
PBS treatment (P,0.05, Fisher’s Exact test). (C) Determination of the dose reduction factor (DRF) for the optimal radioprotective regimen of sLP
administration. Probit analysis was performed using Kaplan-Meier survival curves generated from treatment of female ICR mice with PBS vehicle or
40 mg/kg sLP at 24 h prior to exposure to different TBI doses (see figure S1).
doi:10.1371/journal.pone.0033044.g001
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a range of TBI doses (Figure S1). Coverage of LD0–100/30 doses of

TBI required ranges of 7–10 Gy for the vehicle-treated groups (Figure

S1A) or 10–13 Gy for the sLP-treated groups (Figure S1B). The

LD50/30 was found to be 8.5 Gy for vehicle-treated mice and 11.25

Gy for sLP-treated mice using probit analysis (see below). Thus, it is

clear that sLP allows mice to survive exposure to higher radiation

doses than vehicle. However, there was a limit to the level of TBI

against which sLP was able to protect a significant number of mice.

While sLP provided complete protection of mice from 10 Gy TBI

(100% 30-day survival), its efficacy was lower at higher TBI doses.

Thirty-day survival in sLP-treated groups exposed to 10.5, 11.0, 11.5,

12.0, and 13.0 Gy TBI was 87%, 63%, 28%, 13%, and 0%,

respectively (Fig. S1B). Given the well-defined preference of HP-ARS

or GI-ARS-induced mortality by different levels of radiation exposure

[4], the dramatic difference in the ability of sLP to improve survival of

ICR mice irradiated with 10 Gy versus 12 Gy suggests that this agent

is effective only against HP-arm of ARS.

The survival curves established for vehicle and sLP treatment at

different TBI doses (Figure S1A,B) were used to determine the

dose reduction factor (DRF) for sLP using probit analysis

(Figure 1C). DRF, defined as the ratio of LD50/30 between drug-

and vehicle-treated groups, is a standard means for quantifying the

radioprotective efficacy of drugs. This analysis revealed that sLP

increased the LD50/30 in the ICR mouse model from 8.5 Gy to

11.25 Gy, yielding a DRF of approximately 1.32. The slopes of the

probit lines for the drug- and vehicle-treated groups were not

substantially different; however, the probit line for the drug-treated

groups was shifted significantly to the right (p,0.05).

sLP acts as a radiomitigator to improve mouse survival
when administered after irradiation

Having demonstrated significant radioprotective efficacy for sLP

administered prior to radiation exposure, we evaluated whether sLP

could also act as a radiomitigator and improve mouse survival when

injected after irradiation. Female ICR mice were injected sc with sLP

or PBS at different times after TBI and monitored for survival. sLP

did not improve 30-day survival when administered to mice at any

time point after exposure to TBI doses of 10 Gy (LD100/30) or

greater. However, at lower TBI doses (e.g., LD50/30–LD90/30, 8.5–9

Gy), sLP treatment led to significantly improved 30-day survival as

compared to vehicle treatment (data not shown). For mice exposed

to 9 Gy TBI, injection of sLP at all tested times of administration

from 10 min to 24 h post-irradiation increased 30-day survival

relative to PBS injection (Figure 2A). Injection of sLP 48 h after 9

Gy TBI did not have any beneficial effect on mouse survival. The

observed sLP-mediated survival benefit was statistically significant

for administration at 10 and 30 min and 1, 3, and 24 h post-

irradiation (p,0.05), but not for administration at 6, 9, or 12 h post-

irradiation. Thus, sLP showed significant radiomitigative efficacy

when injected as a single dose as late as 24 h after radiation

exposure. However, since the greatest degree of radiomitigation was

observed with injection of sLP 1 h after TBI (73% survival versus

7% in the vehicle-treated group, p = 0.0002), this time point was

selected as the optimal time point for radiomitigation by sLP.

The DRF for post-irradiation administration of sLP was

determined using probit analysis as described above for the pre-

irradiation regimen of sLP treatment. Thirty-day survival curves

were established for groups of female ICR mice injected with

50 mg/mouse sLP 1 h after exposure to 7.5, 8.0, 8.5, 9.0, 9.5, or

10 Gy TBI (Figure S2A). The LD50/30 for this regimen of sLP

treatment was found to be approximately 9.25 Gy as compared to

8.5 Gy for vehicle treatment, indicating a DRF of 1.09 (Figure 2B).

This is illustrated by the slight shift in the probit line for sLP

treatment to the right as compared to the line for vehicle

treatment; however, the difference between the drug- and vehicle-

treated groups was not significant (p.0.05). The different slopes of

the probit lines for drug- and vehicle-treated groups is illustrative

of the lack of sLP-mediated radiomitigation at higher TBI doses

(e.g., 9.5–10 Gy) as compared to lower doses (e.g., 8.5–9.0 Gy).

Despite its relatively low DRF for radiomitigation, it is clear that

following certain TBI doses, sLP injection effectively mitigates

radiation-induced death (Figure 2, S2A). In fact, we found that a

single dose of 50 mg/mouse sLP given 3 h after 8 Gy TBI was as

effective in rescuing C57BL/6 mice as 16 daily post-irradiation

injections of recombinant G-CSF (NeupogenH, Amgen, Inc.), the

current standard of care for myelosuppression associated with

cancer treatment (Figure S2B). Survival was increased from 70%

(21/30) in the PBS-treated group to 96.7% (29/30) and 96.2%

(25/26) in the sLP at +3 h and G-CSF616 treatment groups,

respectively. When given as late as 24 h post-TBI, the single dose

of 50 mg/mouse sLP increased survival to 90% (27/30). The

increases in survival afforded by sLP at +3 h and G-CSF were

statistically significant relative to the PBS control (p = 0.006 and

p = 0.014, respectively), while survival increase by injection of sLP

at +24 h was marginally significant compared to PBS (p = 0.054).

There were no statistically significant differences in survival

between any of the treated groups in this experiment.

sLP is efficacious in the context of low dose rate total
body irradiation

The experiments described above, as well as the majority of

those reported in the radiobiology field, were performed with

equipment that delivers radiation at a high dose rate (0.1–1 Gy/

min), such that LD30–100/30 doses are achieved within a matter of

minutes. While the radiomitigative efficacy of sLP under such

conditions is important, we also wished to evaluate the radio-

mitigative potential of sLP under another realistic scenario of

irradiation that involves high dose radiation received at a low dose

rate. We first established that, in female ICR mice, delivery of

approximate LD50 and LD90 doses of TBI at a rate of 0.4 cGy/

min required 60 and 70 h of continuous irradiation, respectively

(data not shown). Assessment of the morphology of the small

intestine in morbid animals following irradiation under these

conditions indicated that gastrointestinal (GI) damage was

insignificant; therefore, damage to the HP system is likely to play

a primary role in the lethality of these low dose rate irradiation

regimens (data not shown). We next performed a survival

experiment in which groups of mice were irradiated at 0.4 cGy/

min for 60 or 70 h and injected sc with either PBS or 10 mg/

mouse sLP half-way through the irradiation period (i.e., at 30 or

35 h after the start of irradiation). As shown in figure 2C, under

both scenarios of ‘‘low dose rate’’ TBI, injection of sLP

significantly improved 30-day survival of mice. With 60 h of

irradiation (14.4 Gy TBI), 30-day survival was 100% (15/15) in

the sLP-treated group as compared to 40% (6/15) in the PBS-

treated group. Administration of sLP at the mid-point of 70 h of

irradiation (16.8 Gy TBI) increased survival from 20% (3/15) in

the PBS-treated group to 80% (12/15) in the sLP-treated group.

For both TBI doses, the survival benefit provided by sLP

treatment was statistically significant (p,0.05).

sLP treatment promotes recovery of the hematopoietic
system following irradiation

As described above, the TBI dose range against which sLP

demonstrated radioprotective efficacy suggested that the drug is

specifically effective in protecting and/or promoting regeneration of

cells and tissues of the HP system (as opposed to cells of the GI tract).

Toll-Like Receptor 2 (TLR2) Activation and ARS
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In addition, mice rescued from radiation-induced death by sLP

treatment survived for at least 9 months with no evidence of

hematopoietic failure and showing normal structure and cellularity of

hematopoietic and lymphoid organs (data not shown). This indicates

that sLP induced long-term repopulation/recovery of the HP system.

The beneficial effect of sLP on the HP system in irradiated animals

was directly demonstrated by our finding that sLP pretreatment

accelerated recovery of cellularity of both the bone marrow and

spleen in BALB/c mice exposed to a sub-lethal dose of 4 Gy TBI

(Figure S3). Moreover, we showed that sLP reduced the severity of

radiation-induced thrombocytopenia and accelerated recovery of

circulating platelet levels (data not shown). This is a highly relevant

finding since the severity of radiation-induced thrombocytopenia has

been identified as the HP marker that is most closely correlated with

radiation-induced mortality in primates [38].

Administration of sLP leads to induction of multiple
cytokines with potential roles in radioprotection and
recovery of the hematopoietic system

In order to gain insight into the mechanism(s) underlying the

radioprotective/mitigative activity of sLP, we assessed whether

sLP treatment of mice affected their serum levels of various

Figure 2. Radiomitigation by sLP: administration of sLP after lethal TBI improves mouse survival. (A) Time window for effective post-
irradiation administration of sLP. Female ICR (CD-1H) mice (n = 15/group) were irradiated with 9 Gy TBI (at time ‘‘0’’) and then injected sc with PBS at
1 h after irradiation or with sLP (50 mg/mouse) at 10 or 30 min, or 1, 3, 6, 9, 12, 24, or 48 h after irradiation. Mouse survival was monitored for 30 days.
The differences in 30-day survival between the vehicle-treated group and groups treated with sLP between 10 min and 3 h after TBI and at 24 h after
TBI were statistically significant (as indicated by *, P,0.05, Fisher’s Exact test). (B) Determination of the DRF for the optimal radiomitigative regimen of
sLP administration. Probit analysis was performed using Kaplan-Meier survival curves generated from treatment of female ICR mice with PBS vehicle
or 50 mg/mouse sLP at 1 h after exposure to different TBI doses (see figure S2A). (C) SLP-mediated mitigation of death induced by low dose rate
irradiation. Female ICR (CD-1H) mice (n = 15/group) received TBI at a continuous exposure rate of 0.4 cGy/min for 60 or 70 h (total dose of 14.4 or 16.8
Gy, respectively). At the mid-point of the irradiation period (i.e., 30 or 35 h after irradiation was started for the 60 and 70 h TBI groups, respectively),
irradiation was halted for about 5 min during which time mice were injected sc with 10 mg/mouse sLP. Mouse survival was monitored for 30 days.
doi:10.1371/journal.pone.0033044.g002
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cytokines. Our rationale for testing cytokine levels was three-fold:

(i) sLP counteracted HP syndrome and cytokines are known to

regulate survival and proliferation of HP cells, (ii) many cytokine-

encoding genes are transcriptional targets of NF-kB, which is

activated downstream of sLP-TLR interaction, and (iii) a number

of cytokines were previously shown to have radioprotective

efficacy [8]. Therefore, we collected blood samples from groups

of 6 female C57BL/6 mice per time point at 1, 2, 4, 8, 24, and

48 h after sc injection of 10 mg/mouse sLP (without irradiation).

Blood samples from 6 untreated female C57BL/6 mice were

collected for use as a baseline control (referred to as time ‘‘0’’).

Analysis of blood serum samples in multiplex Luminex assays

provided quantitation of G-CSF, IL-6, KC, IL-1b, IL-10, IL-

12(p70), SCF, granulocyte macrophage colony-stimulating factor

(GM-CSF), and tumor necrosis factor (TNF) levels (Figure 3A,B).

All of the tested cytokines showed transient induction following

sLP administration, but the extent of induction was much higher

for IL-6, G-CSF and KC than for the other induced cytokines.

Peak levels of IL-6, G-CSF, and KC were 34,000-, 10,000- and

5,000-fold higher than baseline, respectively. In contrast, peak

levels of other induced cytokines were in the range of 50- to 375-

fold higher than baseline. Levels of IL-6, G-CSF and KC were

increased at the earliest tested time point (1 h post-injection) and,

for IL-6 and KC, peaked 2 h after injection and returned to

baseline within 8–24 h post-injection. Induction of G-CSF by sLP

was unique among the tested cytokines both in the strength of the

response (fold increase over baseline) and its duration. G-CSF

levels peaked at 8 h post-injection, but high levels (more than

20,000-fold over baseline) persisted from 2 h to 24 h post-

injection, only returning to baseline at 48 h after injection. As

shown in Figure 3B, IL-1b, IL-10, IL-12(p70), SCF and TNF also

showed induction within the first several hours after sLP

administration, peaking at 2–4 h post-injection and declining to

baseline within 24–72 h. GM-CSF was distinct in that it showed

very moderate induction as compared to the other tested

cytokines. These results demonstrate that sLP treatment induces

multiple cytokines and suggests that activity of the induced

cytokines may underlie, at least in part, the radioprotective/

mitigative effects of sLP. The list of cytokines that were measured

but did not change in response to sLP administration includes

TPO, IL1a, IFN-c, IL-2, IL-3, IL-4, and IL-11(data not shown).

The radioprotective/mitigative activity of sLP requires
TLR2 signaling

It is well documented that BLPs and their synthetic analogs

interact with heterodimeric cell surface receptors comprised of

TLR2 paired with either TLR6 or TLR1 and that this results in

activation of NF-kB signaling [39,40,41]. We have shown that sLP

treatment produces dose-dependent activation of NF-kB-depen-

dent reporter gene expression in cultured cells expressing TLR2/6

or TLR2/CD14 receptor heterodimers, but not in TLR-negative

cells (data not shown). To confirm that the in vivo radioprotective

activity of sLP is dependent upon its interaction with TLR2

receptor complexes, we compared its effects in TLR2 knockout

(KO) mice and isogenic wild type (WT) control C57BL/6J mice

(see Materials and Methods). WT and TLR2 KO C57BL/6J mice

were exposed to 9 Gy TBI 24 h after sc injection of PBS or sLP

(3 mg/mouse). At 30-days post-irradiation, there were no surviving

PBS-treated WT mice (0/15), confirming 9 Gy TBI as the LD100/

30 for C57BL/6J mice (Figure 4A). In contrast, 100% (15/15) of

WT mice that received sLP prior to 9 Gy TBI survived to day 30

post-irradiation. In TLR2 KO mice, sLP pre-treatment did not

ameliorate radiation-induced death. Thirty-day survival was 0%

(0/15) in the sLP-treated TLR2 KO group and 13% (2/15) in the

corresponding PBS-treated group. These data clearly indicate that

TLR2-containing receptor complexes are required for sLP-

mediated radioprotection.

Responses of both bone marrow and non-bone marrow
cells contribute to sLP-mediated radioprotection and
cytokine induction

Having determined that TLR2 expression is critical for sLP-

mediated radioprotection/mitigation, we generated TLR2 KO/

wild type chimeric mice to evaluate the roles of bone marrow

(BM)-derived cells versus other cell types in this effect. Reciprocal

BM mouse chimeras were generated as follows: TLR2 KO or wild

type (WT) C57BL/6 ‘‘recipient’’ mice were lethally irradiated

(266 Gy TBI 24 h apart) and then transplanted with BM cells

(56106 cells/recipient mouse) from TLR2 KO or WT C57BL/6

‘‘donor’’ mice (untreated and unirradiated). The level of

chimerism in the transplanted mice was checked 60 days later

by FACS analysis as described in Materials and Methods. Only

chimeric mice with .95% of peripheral blood cells displaying

surface antigens specific to the BM donor mouse strain were used

in subsequent experiments.

Groups of 8 chimeric mice for each of the four types ((i)

TLR2KO BM transplanted into TLR2KO background

(‘‘TLR2KO-to-TLR2KO’’), (ii) TLR2KO BM into WT back-

ground (‘‘TLR2KO-to-WT’’), (iii) WT BM into TLR2KO

background (‘‘WT-to-TLR2KO’’) and (iv) WT BM into WT

background (‘‘WT-to-WT)) were tested for sLP-mediated radio-

protection. Mice were injected sc with 20 mg of sLP and then

irradiated 24 h later with 9 Gy TBI. As expected based on our

results with non-chimeric WT mice, ‘‘WT-to-WT’’ chimeras were

protected from radiation-induced death by sLP pretreatment (88%

30-day survival, figure 4B). Similarly, WT mice transplanted with

TLR2-negative BM cells (‘‘TLR2KO-to-WT’’ chimeras) were

fully protected (100%). On the other hand, mice completely

deficient in TLR2 (‘‘TLR2KO-to-TLR2KO’’ chimeras) were not

protected (0% 30-day survival) and mice with TLR2 expression

only in the BM (‘‘WT-to-TLR2’’ chimeras) were only partially

protected (50% survival). Our unrelated studies using another

mouse strain (CD2F1) with BMT after lethal irradiation

demonstrated that mice did not show altered sensitivity to TBI

after they recovered from transplantation of syngeneic bone

marrow (data not shown). These data show that TLR2 expression

in BM cells is partly dispensable for sLP-mediated radioprotection,

while TLR2 expression in non-BM cells is not.

We next treated the four established types of chimeric mice

(‘‘WT-to-WT’’, ‘‘TLR2KO-to-WT,’’ ‘‘WT-to-TLR2KO’’ and

‘‘TLR2KO-to-TLR2KO’’) with sLP in the absence of radiation

to determine the contributions of BM- and non-BM cells to sLP-

mediated cytokine induction. Twenty animals of each type of

chimeric mice (10M+10F) were injected with 20 mg/kg of sLP. At

time points 0 (before injection), 1 h, 2 h, 4 h, and 8 h after

injections 4 mice/time point (2M and 2F) were euthanized, blood

was collected and used to prepare serum for measurement of

cytokine levels using multiplex Luminex assays. The Total

Amount of Produced Cytokines (TAPC) was calculated as the

sum of the amount of cytokine at all measured time points after

sLP injection and averaged for the four animals in each group.

These mean TAPC values are presented as a percentage of the

mean value for the ‘‘WT-to-WT’’ chimeric group in Figure 4C.

The level of G-CSF in the serum of sLP-treated ‘‘TLR2KO-to-

WT’’ chimeric mice was similar to (89% of) that in ‘‘WT-to-WT’’

mice. However, sLP-mediated induction of G-CSF was much

lower in ‘‘WT-to-TLR2KO’’ mice (4% of the ‘‘WT-to-WT’’

value) and essentially absent in ‘‘TLR2KO-to-TLR2KO’’ mice.
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These data confirm that sLP-mediated induction of G-CSF

requires TLR2. However, since chimeric mice with TLR2-

negative BM cells on a WT background showed the same G-

CSF response to sLP as completely WT mice, it is clear that direct

response of BM cells to sLP is not involved in the observed

upregulation of G-CSF. Rather TLR2 expression in the mouse

background (non-BM cells) is critical for G-CSF induction. All of

the other tested cytokines (IL-1b, IL-6, IL-10, IL-12(p70), GM-

CSF, KC, and TNF-a) showed a similar pattern of expression in

the different chimeras: the level of induction was closest to ‘‘WT-

to-WT’’ in ‘‘TLR2KO-to-WT’’ chimeric mice, reduced in ‘‘WT-

to-TLR2KO’’ mice, and lowest in ‘‘TLR2KO-to-TLR2KO’’

animals. Like G-CSF, IL-6 and KC showed essentially no sLP-

mediated induction in mice completely deficient in TLR2

(‘‘TLR2KO-to-TLR2KO’’ chimeras), while the other tested

cytokines showed residual induction (,10–30% of ‘‘WT-to-WT).

The contribution of BM was greater for sLP-induced cytokines

other than G-CSF; however, in all cases it was clear that non-BM

cells also play a role (TLR2 expression in the mouse background

led to higher levels of cytokine induction).

Taken together, the results obtained with TLR2KO-WT

chimeric mice demonstrate that the beneficial effect of sLP on

the HP system following irradiation is at least partially indirect

(i.e., not mediated by a direct response in radiosensitive BM cells).

Additionally, the data suggest that (i) G-CSF is likely the main

mediator of the radioprotective efficacy of sLP (since sLP

specifically protects ‘‘TLR2KO-to-WT’’ chimeras and G-CSF

shows a unique profile of induction in mice of this genotype), (ii)

cytokines other than G-CSF might act to potentiate the effect of

sLP on post-irradiation survival (since sLP partially protected

‘‘WT-to-TLR2KO’’ chimeric mice and there is very little G-CSF

induction in this genotype, although other cytokines are induced),

and (iii) the low levels of induction of other cytokines observed in

sLP-treated ‘‘TLR2KO-to-TLR2KO’’ chimeras are not involved

in protection of mice from radiation-induced death or at least are

not sufficient to confer such protection.

Figure 3. Administration of sLP in mice results in cytokine induction. Non-irradiated female C57BL/6 mice were injected sc with 10 mg sLP
and euthanized 1, 2, 4, 8, 24, or 48 h later (n = 6/time point) for blood collection. Blood from untreated female C57BL/6 mice (n = 6) was analyzed as
the ‘‘0 hour’’ time point. G-CSF, IL-6, and KC (A) and IL-1b, IL-10, IL-12(p70), SCF, GM-CSF, and TNF-a (B) levels were determined in individual mouse
serum samples using multiplex Luminex assays. The mean cytokine concentration at each time point is shown. Error bars indicate standard error.
doi:10.1371/journal.pone.0033044.g003
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Discussion

This work demonstrates the radioprotective and radiomitigative

capacity of sLP that mimic the N-terminal structure of naturally

occurring mycoplasmal lipoproteins and their ability to activate

NF-kB via TLR2-containing receptors. sLP is notable in that it

significantly increases survival of lethally irradiated mice when

administered as a single injection as early as 48 h before

irradiation or as late as 24 h after irradiation. While sLP is

effective as a radiomitigator injected after TBI, its efficacy is

greater when administered before TBI. When injected at the

optimal prophylactic time of 24 h before TBI, sLP increased 30-

day survival of ICR mice exposed to 10 Gy TBI from 0% to 100%

(Fig. 1). The DRF for sLP administered to ICR mice prior to

irradiation was calculated to be 1.32. This indicates that the TBI

dose needed to cause 50% lethality within 30 days was 1.32-fold

higher in sLP-treated mice than in vehicle-treated mice. This DRF

is in the same range as those for many other proposed radiation

countermeasures (e.g., Vitamin E (a-tocopherol) with a DRF of

1.23 [42], 5-AED with a DRF of 1.26 [43], SCF with a DRF in the

range of 1.3–1.35 [14], etc.). Nevertheless, there are examples of

compounds with higher DRFs (e.g., amifostine with a DRF up to

Figure 4. sLP-mediated radioprotection and cytokine induction is TLR2-dependent and involves both bone marrow and non-bone
marrow cells. (A) TLR2-dependence of sLP-mediated radioprotection. Groups of isogenic TLR2(2/2) and wild type C57BL/6 mice (n = 15/group)
were injected sc with vehicle (PBS) or sLP (3 mg/mouse) and irradiated (9 Gy TBI) 24 h later. Survival was monitored for 30 days. (B) sLP-mediated
radioprotection in chimeric mice with wild type (WT) or TLR2(2/2) (TLR2KO) bone marrow (BM). Reciprocal radiation BM chimeras were generated as
described in Results and Materials and Methods. Four types of chimeric mice, (i) TLR2KO BM transplanted into TLR2KO background, (ii) TLR2KO BM
into WT background, (iii) WT BM into TLR2KO background, and (iv) WT BM into WT background, were injected sc with 20 mg/mouse sLP and irradiated
with 9 Gy TBI 24 h later (n = 8/group). Survival was monitored for 30 days. (C) sLP-mediated cytokine induction in chimeric mice with WT or TLR2KO
BM. The four types of chimeric mice described in (B) were injected with 20 mg/kg sLP without irradiation. Four sLP-injected mice of each genotype (2
males and 2 females) were euthanized at each time point (1, 2, 4, and 8 h post-injection) and serum cytokine levels of individual mice were
determined using multiplex Luminex assays. The AUC for each cytokine was calculated as described in Materials and Methods and is presented for
‘‘TLR2KO to TLR2KO’’, ‘‘TLR2KO-to-WT’’, and ‘‘WT-to TLR2KO’’ chimeric mice as the percentage of that in ‘‘WT-to-WT’’ chimeric mice.
doi:10.1371/journal.pone.0033044.g004

Toll-Like Receptor 2 (TLR2) Activation and ARS

PLoS ONE | www.plosone.org 8 March 2012 | Volume 7 | Issue 3 | e33044



2.0 in mice [21] and the flagellin derivative CBLB502 with a DRF

of 1.6 [33]). It should be noted, however, that sLP has an

important advantage over some other compounds in the context of

prophylactic use since it is practically non-immunogenic. This

overcomes the biggest problem associated with repeated admin-

istration of CBLB502.

Another important advantage of sLP is that, in addition to

acting as a radioprotectant, it is also effective as a radiomitigator

administered after radiation exposure has occurred. Athough post-

irradiation treatment with sLP was not effective against 10 Gy TBI

and the maximal increase in survival observed in ICR mice after 9

Gy TBI was 65% (Fig. 2), the observed radiomitigative efficacy of

sLP is nevertheless a relatively unique feature among MRC under

development and is clearly important for potential use in

biodefense applications in which advance warning of radiation

exposure is not likely to be available. Radiomitigative efficacy has

also been demonstrated for vitamin E [44] and the TLR5 agonist

CBLB502 [33], whereas amifostine is not effective when

administered after exposure [45]. We speculate that the lower

DMF (efficacy) observed with post-irradiation (mitigative) sLP

treatment as compared to pre-irradiation treatment might be

explained as follows: when applied after irradiation, the ability of a

drug to suppress apoptosis in damaged cells can no longer

contribute to its efficacy, only its ability to stimulate regeneration

can. This hypothesis can be tested in future detailed studies of the

efficacy and mechanism of action of sLPs as radiation counter-

measures.

An additional feature of sLP treatment that can be noted as a

benefit in terms of likely biodefense applications is that this agent is

effective against high dose TBI delivered at a high or low dose rate

(as tested in this study, within several minutes or over 60–70 hours,

respectively). It is not clear whether other radiation countermea-

sures share this feature since low dose rates have not been tested in

most previous studies. sLP also has the advantage of being

efficacious as a single injected dose. While this characteristic is

particularly important for biodefense applications, it provides a

clear benefit even in medical scenarios over drugs such as G-CSF

(NeupogenH) which requires multiple daily injections for up to 2

weeks in chemotherapy patients.

The radioprotective and radiomitigative effects of sLP are

limited to doses of TBI that cause primarily HP syndrome-

dependent mortality. While sLP’s lack of efficacy against higher,

GI syndrome-inducing TBI doses may be viewed as a disadvan-

tage vis-à-vis countermeasures such as amifostine and CBLB502,

HP-specific radiation countermeasures can be projected to have a

significant impact in many biodefense and medical scenarios in

which both short-term mortality and long-term health conse-

quences stem from radiation damage to the HP system. In this

communication, we report that sLP treatment accelerated

regeneration of radiation-depleted bone marrow cells, spleen cells,

and thrombocytes. Ongoing experiments are focused on more

precisely defining the effects of sLP on different tissues and cell

lineages of the HP system, such as hematopoietic stem cells.

In terms of mechanism of action, testing of sLP in TLR2

knockout (KO) mice confirmed that the ability of sLP to reduce

the lethality of TBI is dependent upon TLR2. Moreover, through

analysis of TLR2 KO/WT bone marrow chimeras, we showed

that TLR2 responses to sLP in both BM and non-BM cells

contribute to the radioprotective efficacy of this agent. This

indicates that the beneficial effects of sLP on HP cells are

mediated, at least in part, through indirect, non-cell autonomous

mechanisms. The involvement of such indirect mechanisms is

consistent with the capacity of sLP to reduce radiation damage

even when administered after radiation exposure. Therefore, the

anti-ARS activity of sLP likely involves multiple mechanisms

including direct protection of radiosensitive cells (via activation of

NF-kB-dependent anti-apoptotic factors) as well as indirect effects

mediated by sLP-induced cytokines (see below) or other factors

produced by BM-derived cells as well as cells outside the HP

system. Such indirect effects might impact both preservation of HP

tissue cellularity (protection against cell death) and stimulation of

tissue regeneration.

Injection of sLP resulted in strong transient induction of a

number of cytokines with known roles in hematopoiesis, including

G-CSF, KC, and IL-6. Thus, sLP-induced cytokines are likely to

mediate, at least in part, the radioprotective/mitigative activity of

this countermeasure. In particular, G-CSF is a promising

candidate mediator of sLP’s radioprotective activity due to its

striking induction following sLP injection (Fig. 3A) and its known

biological effects. Recombinant G-CSF (NeupogenH) is currently

widely used in the clinic to facilitate recovery of the HP system in

situations such as bone marrow transplantation and chemother-

apy. However, we found that a single injection of sLP was just as

effective as 16 daily injections of NeupogenH in increasing survival

of irradiated mice (Fig. S2B). The efficacy of sLP likely derives

from its ability to not only induce G-CSF, but also multiple other

cytokines that impact HP cell differentiation, proliferation, and

survival. Therefore, sLP can be projected to be preferred as a

radiation countermeasure over single cytokine therapies. It would

be interesting to evaluate changes in cytokine levels when sLP is

applied after irradiation to define the mechanisms responsible for

the observed dependence of efficacy on the time of drug injection

relative to irradiation. Notably, the TLR5 agonist CBLB502

produces a cytokine response that is very similar to that induced by

sLP [33], but protection/mitigation of GI ARS is only seen with

CBLB502, and not with sLP. This suggests that the induced

cytokines are not involved in, or at least not sufficient for, altering

the course of radiation-induced events in GI cells.

Overall, this study illustrates the strong potential of sLP-based

TLR2 agonists for radioprotection and mitigation in defense and

medical scenarios. The biodefense indication is key given the risk

level in today’s world and the fact that there are currently no FDA-

approved radiation countermeasures suitable for use in mass-

exposure scenarios [46]. Medical use of sLP for protection against

cancer treatment side effects would also have a substantial impact

on human health. However, development of sLP in this direction

will require clarification of some critical issues. Foremost, does sLP

protect not only normal cells, but also tumors, against radiation-

induced killing? Although this remains to be tested directly for sLP,

our previous work with the TLR5 agonist CBLB502 indicated that

the anti-radiation effects following from activation of NF-kB via

TLR stimulation were indeed specific to normal cells [33] and,

therefore, not sensitive to the stimulatory effects of TLR agonists.

Intratumoral administration in humans [47] or systemic admin-

istration in experimental tumor models in mice [48] demonstrated

that sLP administration is not only safe during anti-cancer

therapy, but provides survival benefits as well. Moreover, TLR-

mediated NF-kB signaling is known to activate both the innate

and adaptive immune systems, including anti-tumor immunity

[49,50,51,52]. Thus, temporary activation of NF-kB by sLP might

not only result in radioprotection of normal tissues, but also reduce

the incidence of secondary cancers due to the simultaneous

immunostimulatory effect of NF-kB activation. Second, does sLP

treatment have any positive effect on tumor growth or metastasis?

This will be important to resolve given a recent report [53]

indicating that TLR2 agonism can stimulate metastasis. Third, is

sLP effective against radiation delivery characteristic of anti-cancer

radiotherapy regimens (e.g., local fractioned irradiation)? This has
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also been positively resolved for the TLR5 agonist CBLB502 [54]

and is readily testable for sLP. Ongoing work is focused on

resolving these issues and developing optimized sLP for use as safe,

practical and effective radiation countermeasures. The data herein

provide a strong foundation for these efforts, demonstrating that

sLP has a number of promising characteristics including a broad

time window for effective administration, attractive DRF, efficacy

against slowly delivered radiation, and capacity to induce

cytokines with desirable activities.

Materials and Methods

Mice
Female 10–12 week-old ICR(CD1) mice were purchased from

Harlan (Indianapolis, IN). Female 10–12 week-old BALB/cJ,

C57BL/6J, B6.SJL-Ptprca Pepcb/BoyJ, and breeding pairs of

TLR2(2/2) mice (C57BL/6 genetic background after 11 back-

crosses) were purchased from the Jackson Laboratory (Bar Harbor,

ME). All mice were housed (up to 5 mice per cage with exception of

ICR - 4 mice per cage) in an air-conditioned facility accredited by

the Association for Assessment and Accreditation of Laboratory

Animal Care International. All mice were maintained in rooms on a

12-h light/dark cycle, at 2162uC, with 10–15 hourly cycles of fresh

air, and relative humidity of 50610%. Upon arrival, the mice were

held in quarantine for 1 week and provided certified rodent rations

and acidified water (HCl, pH = 2.5–2.8) ad libitum. All animal

procedures were performed according to protocols approved by

Institutional Animal Care and Use Committees of the Cleveland

Clinic Foundation (CCF), Roswell Park Cancer Institute (RPCI),

and Indiana University. Research was conducted according to the

Guide for the Care and Use of Laboratory Animals prepared by the

Institute of Laboratory Animal Resources, National Research

Council, U.S. National Academy of Sciences.

Irradiation
For all experiments except those shown in Figures 2C and S2B

(described below), mice were exposed to bilateral total body

irradiation (TBI) using J.L. Shepherd MK I-68 137Cs c-irradiators

located at Cleveland Clinic Foundation (dose rate = 2.3 Gy/min

on the day of irradiation) or Roswell Park Cancer Institute (dose

rate = 1.55 Gy/min on the day of irradiation). Dose rates were

recalculated daily. Mice were irradiated in a well-ventilated

Plexiglas bucket accommodating 8–10 mice per irradiation round.

The irradiation bucket was elevated on the irradiator turntable

using a 2 cm-high plastic riser in order to provide a more uniform

radiation field. For irradiation, mice from different treatment

groups were mixed and then returned to their corresponding

cages.

Experiments shown in Figure 2C (low dose rate irradiation)

were conducted at Colorado State University (Fort Collins, CO)

using a J.L. Shepherd Model 81 S/N 7014 137Cs (600Ci) c-

irradiator with a dose rate 0.4160.05 cGy/min under CSU

IACUC protocol #07 - 239A. Sustained irradiation for 60 or

70 hours provided total irradiation doses of 14.4 Gy and 16.8 Gy,

respectively.

The experiment shown in Figure S2B was performed at the

Indiana University School of Medicine (Indianapolis, IN). Groups

of C57BL/6 mice were irradiated using a GammaCell 40 137Cs c-

irradiator (Nordion International, Kanata, Ontario, Canada) with

a dose rate of 675 cGy/min to achieve a total dose 7.96 Gy.

Reagents
R-Pam2-CSKKKK (S-[(2R)-2,3-bis(palmitoyloxy)propyl]-cystei-

nyl-SKKK) and other sLP were purchased from EMC micro-

collections GmbH (Tuebingen, Germany) as pure dry powder.

The powder was reconstituted in D-PBS at a concentration of

2.5 mg/ml and stored as a stock solution for up to 6 months at

+4uC. Final desired dilutions were made in D-PBS just before

administration. Each vial of NeupogenH (Amgen, Inc., Thousand

Oaks, CA) contained 300 mg of r-metHuGCSF (at a specific

activity of 1.060.66108 Units/mg; 30 million total units/vial) in a

total volume of 1 ml. NeupogenH was stored at 4uC and

administered to mice at a dose of 2.5 mg/mouse/day (,125 mg/

kg/day dose based on expected average mouse weight of 20 g;

actual average mouse weights were 15–21.5 g and 19–28 g for

females and males, respectively, on the day before TBI). All

substances were administered to mice via subcutaneous or

intraperitoneal injections without anesthesia.

Preparation of WT and TLR5KO bone marrow cells for
generation of bone marrow chimeras

Preparation of bone marrow single cell suspensions was

performed as previously described [55]. Briefly, 4 bones per

mouse (2 tibias and femurs) from 3 donor mice of each genotype

were flushed with 1 ml medium (Iscove’s +0.5% BSA, no

antibiotics) into 5 ml round-bottomed tubes. Cell suspensions

were filtered through a 40 mm strainer into a 50 ml tube. Washed

cells were collected by centrifugation and resuspended in 2.0 ml

medium for counting of nucleated cells. After counting, the

volume was adjusted to have ,56106 cells/recipient in 0.2 ml

volume.

Preparation of spleen cells
Single cell suspensions from spleens were prepared as described

[56]. Viable (trypan blue-excluding) cells were counted under a

microscope.

Preparation of mouse bone marrow (BM) radiation
chimeras

Four types of reciprocal radiation BM chimeras were preapred:

TLR2 (2/2) mice reconstituted with either TLR2 (2/2) or wild

type (WT) BM cells and WT mice reconstituted with either TLR2

(2/2) or WT BM cells. B6.SJL-Ptprca Pepcb/BoyJ (CD45.1) mice

were used as the WT counterpart to TLR2 (2/2) mice on a

C57BL/6 (CD45.2) genetic background. Recipient mice were

exposed to two rounds of TBI (6 Gy/round) 24 h apart. Within

3 hours after the second dose of TBI, recipient mice were injected

iv with 56106 BM cells prepared from unirradiated donor mice of

the appropriate genotype. Sixty days after BM transplantation,

100 /l of blood was obtained from the tail vein of recipient mice

and analyzed by FACS to determine the extent of chimerism in

each mouse. For FACS analysis, samples of whole blood were

stained with the following antibodies (2 /l/106 cells): CD45.1

FITC-labeled (11-0453-82), Ly-6G PE-labeled (12-5931-85),

CD19 PE-Cy5.5-labeled (35-0193-82), and CD45.2 APC-labeled

(17-0454-82) (eBioscience, San Diego, CA 92121). After 30 min

staining, red blood cells were lysed by adding 1 ml pre-warmed

(37uC) lysis buffer (00-4333-57, eBioscience) and mixing at room

temperature for 5 min. White blood cells were collected by

centrifugation at 400 g for 10 min at 4uC, resuspended in 300 ml

staining buffer (00-4222-57, eBioscience) and analyzed using a

four-color FACSCalibur instrument (Becton Dickinson, San

Diego, CA). BM chimeric mice were used in experiments only if

.98% of GR1+ and CD11b+ cells were donor-derived (positive for

CD45.1 or CD45.2 as appropriate depending upon donor

genotype) and if .90% of CD19+ and CD3+ cells were donor

derived.
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Analysis of serum cytokine levels
For cytokine analysis, blood was collected 1, 2, 4, 8, 24, or 48 h

after sLP injection. Blood was collected from mice by cardiac

puncture, transferred to CapiJect serum separator tubes (T-MQK,

TERUMO, Somerset, NJ), and centrifuged at 1000 rpm for

10 min. Serum was stored at 270uC until used for cytokine analysis.

Serum levels of multiple cytokines were simultaneously

determined using cytokine analysis kits custom ordered

(M200003JZX) from Bio-Rad, Inc. (Hercules, CA) on with the

Luminex-200 dual-laser flow analyzer (Luminex Corp, Austin,

TX). Interleukin-1b (IL-1b), IL-6, IL-10, IL-12(p70), granulocyte

colony-stimulating factor (G-CSF), granulocyte macrophage

colony-stimulating factor (GM-CSF), keratinocyte-derived chemo-

kine (KC), and tumor necrosis factor-a (TNF-a) were measured.

The bead-based sandwich immunoassay kits from Bio-Rad

included all necessary reagents for cytokine analysis. Briefly,

anti-cytokine antibody-conjugated beads were added to wells of

flat-bottom 96-well plates (Bio-Rad, Inc.). Serum samples diluted

1:4 with the provided diluent were added to the wells. After

incubation, plates were washed using a Bio-Plex Pro wash station

(Bio-Rad, Inc.). Diluted detection antibody was added and plates

were incubated for 1 h. After washing again, streptavidin-

phycoerythrin was added. After final incubation and washing,

the signal from the bound fluorochrome was quantified using the

Luminex-200 analyzer. The instrument was calibrated with

calibration microspheres (Bio-Rad, Inc.). The median fluorescence

intensity of fluorochrome-conjugated antibody bound to individual

microspheres was derived from flow analysis of 50 microspheres/

region. For quantification of cytokines, standard curves were

plotted using standards supplied with kit. The intensity of the

fluorescence was directly proportional to the concentration of

cytokine. Calculations were performed using Bio-Plex Manger

software version 5.0 (Bio-Rad, Inc.). The Total Amount of

Produced Cytokines (TAPC) was calculated as the sum of the

amount of cytokine at all measured time points after sLP injection.

Statistical analysis
For survival experiments, the Log-Rank test was used to

compare the kinetics of mortality (mean survival time of

decedents). Fisher’s Exact test was used to compare survival rates

at the end of 30 days post-irradiation, with Bonferroni correction

used to control for type-I errors if multiple comparisons were used.

Results were considered statistically significant if p,0.05. All

statistical tests were two-sided. For calculation of does modification

factors (DRFs), Probit analysis was performed using the SPSS

statistical package (http://spss.en.softonic.com/).

Supporting Information

Figure S1 Effect of sLP pre-treatment on survival of
mice exposed to different doses of TBI. Thirty-day Kaplan-

Meier survival curves for groups of female ICR (CD-1H) mice

injected sc with vehicle (PBS, n = 14) (A) or 40 mg/kg sLP (n = 15)

(B) 24 hours before TBI with the indicated doses. TBI doses

ranging from 7 Gy to 10 Gy for vehicle-treated groups (A) and

from 10 to 13 Gy for sLP-treated groups (B) were used to cover

LD0–100/30 lethality ranges.

(TIF)

Figure S2 Effect of post-irradiation administration of
sLP on survival of mice exposed to different doses of
TBI. (A) Thirty-day Kaplan-Meier survival curves for groups of

female ICR (CD-1H) mice irradiated with the indicated TBI doses

(7.5 - 10 Gy) and injected sc with 50 mg/mouse sLP 1 hour after

TBI (n = 15/group). (B) Comparison of sLP and NeupogenH
radiomitigation capacities. Groups of 30 C57BL/6 mice (15

males+15 females) were irradiated with 7.96 Gy TBI. Following

irradiation, groups were treated as follows: (i) single sc injection of

50 mg/mouse (,2.5 mg/kg dose based on expected average

mouse weight of 20 g) sLP 3 hours after TBI; (ii) single sc

injection of 50 mg/mouse sLP 24 hours after TBI; (iii) daily sc

injection of NeupogenH starting 24 hours after TBI and

continuing for 16 days at a dose of 2.5 mg/mouse/day

(,125 mg/kg/day dose based on expected average mouse weight

of 20 g); and (iv) single sc injection of vehicle (PBS) at 24 hours

after TBI. All groups contained 15 male and 15 female mice each,

except for the NeupogenH-treated group which contained 15

males and 11 females. Mouse survival was monitored for 30 days.

Fisher’s Exact tests were used to determine whether differences in

30-day survival were statistically significant.

(TIF)

Figure S3 Effect of sLP pre-treatment on radiation-
induced changes in mouse hematopoietic organs. Female

BALB/c mice (n = 24/group) were injected ip with vehicle (PBS)

or sLP (3 mg/mouse) 24 h before exposure to 4 Gy TBI. Bone

marrow (from two femurs of each individual mouse) (A) and spleen

(B) cell suspensions were prepared (3 ml final volume) from 8 mice

euthanized on days 1, 7 and 14 after TBI. Bone marrow and

spleen cell suspensions were prepared similarly from 8 age-

matched naı̈ve control mice were not injected or irradiated. Viable

(trypan blue-excluding) cells were counted under a microscope.

Error bars indicate standard errors.

(TIF)
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