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Abstract

The regulatory mechanisms underlying pulsatile secretion are complex, especially as it is partly controlled by other
hormones and the combined action of multiple agents. Regulatory relations between hormones are not directly observable
but may be deduced from time series measurements of plasma hormone concentrations. Variation in plasma hormone
levels are the resultant of secretion and clearance from the circulation. A strategy is proposed to extract inhibition,
activation, thresholds and circadian synchronicity from concentration data, using particular association methods. Time
delayed associations between hormone concentrations and/or extracted secretion pulse profiles reveal the information on
regulatory mechanisms. The above mentioned regulatory mechanisms are illustrated with simulated data. Additionally, data
from a lean cohort of healthy control subjects is used to illustrate activation (ACTH and cortisol) and circadian synchronicity
(ACTH and TSH) in real data. The simulation and the real data both consist of 145 equidistant samples per individual,
matching a 24-hr time span with 10 minute intervals. The results of the simulation and the real data are in concordance.
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Introduction

Hormones are important agents in the regulation of physiolog-

ical processes. Endocrine glands, producing hormones [1,2], often

secrete their product in short well-synchronized bursts, referred to

as episodic secretion [3]. The episodic secretion depends on the

circadian rhythm but also involves a strong stochastic component

[4–6]. Secretion results in changes in hormone levels, usually

leading to critical modulation of tissue function triggering the

secretion of other hormones.

Hormones can thus be seen as an ensemble of initiators and

inhibitors that critically modulate physiological processes. This

paper refers to regulatory mechanisms in the strict context of

actions between hormones, which can be initiatory, inhibitory or

both. It has been shown [1,7] that these regulatory relations

between hormones are subject to the physiological state, e.g., age,

gender, lifestyle and pathology, and thus exhibit some inter- and

intra-individual variability. Characterizing these regulatory mech-

anisms can give insight in how the implementation of regulation

varies among different individuals, and how such is influenced by

pathology or (drug) treatment.

Ideally, characterizing the regulatory mechanisms should be

based on fundamental physiological and kinetic models in which

the parameters are estimated from dynamic data obtained through

an optimal experimental design. Unfortunately, prior knowledge

about the interactions, constants, modalities, and (inter)dependen-

cies required for this model-based approach is often lacking and,

hence, optimal experimental designs can not be defined. Common

experiments are either intervention studies where the response of

one hormone to another hormone is registered in an infusion

experiment or time-resolved serum hormone concentrations under

standard physiological conditions. The infusion experiments are

laborious, invasive and do not necessarily reflect normal

physiological conditions. Time-resolved concentration measure-

ments, on the other hand, do not have these disadvantages. They

also contain information about regulation albeit in a concealed

form.

In this paper, we present a strategy to recover information on

regulation from time series of serum hormone concentrations.

More exactly, what is aimed for is to extract global information on

regulatory mechanisms, such as inhibition, activation, thresholds,

and circadian synchronicity. This strategy uses a set of global

measures, that can summarize the relations between hormone

time profiles. From these summarizing measures regulatory

patterns can be inferred. The introduced measures are a set of

cross-correlation profiles of the hormone time series. Considering

simulated hormone times series of which the generating regulatory

mechanism is known, it can be shown that different types of

regulatory behavior result in different types of cross-correlation

profiles. Additionally, a confirmation of the suitability of the
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measures is given for sets of measured hormone time series, for

which regulatory mechanisms are well understood.

The information obtained on regulatory mechanisms from these

measures can be exploited in several ways. From a theoretical

perspective, it can be used to improve time series sampling

schemes, or suggest developments in the field of fundamental

mechanistic models. More importantly, from a practical perspec-

tive, it can serve as a tool to characterize variations in regulation

between individuals or detect changes related to pathophysiology.

Materials and Methods

Endocrine time series
In observing cohorts of subjects with different features (age, sex,

phenotype, lifestyle) the hormone ensemble is likely differentially

regulated. Being able to characterize cohorts of subjects having a

disease or lifestyle feature in common, a normality study on

regulation helps to mark normal regulation and aids to distinguish

it from non-normal regulation. A group of nine lean healthy

volunteers, age 40+7:2 year and body mass index was

21:75+1:05 (mean + SD), consisting of four women (not

pregnant and in the early follicular phase), and five men, was

used in this study. The subjects were asked to refrain from

strenuous physical exercise, and did not use any hormonal

medication. The data are part of a normality study performed

by the Department of Endocrinology of the Leiden University

Medical Center, the ethical committee approved the study. All

participants gave written consent. The sampling scheme com-

prised drawing 145 whole blood samples with 10 minute intervals

over a 24-hour period. The data of this study include six hormones

(adrenocorticotropic hormone (ACTH), cortisol, thyroid-stimulat-

ing hormone (TSH), luteinizing hormone (LH), follicle-stimulating

hormone (FSH), and growth hormone (GH)), where quantification

of hormone concentrations was performed with sensitive immu-

noassays. The motivation for using the lean cohort in this paper

was to show the endocrine relations in healthy lean subjects. These

and other statistics about the cohort are summarized in Table 1.

Assay characteristics
Growth hormone, PRL, TSH, LH and FSH were all measured

by time-resolved fluoroimmunoassays (IFMA) (Delfia, PerkinEl-

mer-Wallac Oy, Turku, Finland). The standard (Genotropin) used

in the GH assay was obtained from Pharmacia and Upjohn,

Uppsala, Sweden, and calibrated against World Health Organi-

zation (WHO) Second Standard International Reference Prepa-

ration, IRP 80/505.The detection limit is 0:0038mg=L. The intra-

assay coefficient of variation (CV) is 1.6–8.4%. Prolactin was

calibrated against the 3rd WHO standard IRP 84/500. The

detection limit is 0:04mg=L and the intra-assay CV 3–5.5%.

Thyrotropin was calibrated against IRP 80/558. The detection

limit is 0:05mU=L and the intra-assay CV v5%. LH assay is

calibrated against LH standard 80/552. Detection limit is

0:02IU=L, intra-assay CV v3%. FSH is calibrated against IRP

94/632. The detection limit is 0:02IU=L, and the intra-assay CV

v3%. ACTH was measured with an immunoradiometric assay

(IRMA) (Nichols Institute Diagnostics, San Juan Capistrano, CA,

USA). The detection limit is 2ng=L, and the intra-assay CV is

between 2.8–7.5%. Cortisol was measured with a radioimmuno-

assay (DiaSorin, Stillwater, MN, USA). The detection limit is

25nmol=L, and the intra-assay CV ranges between 2–4%.

Association measures
The minimal model that is believed to underlie endocrine time

series data is composed of a secretion term and exponential decay,

together explaining the variation in hormone concentration [3]:

dx

dt
~b x(t)zw(t) ð1Þ

Equation 1 describes the changes in time t of the concentration x,

with b the decay constant and w the secretion term. The

identification of the parameters in such a model is not trivial as

the model is ill-posed; there is a trade off between the decay

constant (b) and the secretion (w). The model can successfully be

parametrized by explicitly enforcing the assumption of episodic

secretion through the constraint that the secretion term w should

have many zeros. Choosing the optimal number of zeros can be

performed by an appropriate model selection criterion [3].

The model of Equation 1 is used to extract the time series of

secretion pulses (w) from the hormone time series, which together

with the concentration level information (x) are used to construct a

series of association metrics. An example of a measured

Table 1. Estradiol levels in women were obtained in the (early) follicular phase of the menstrual cycle.

Basal characteristics of the volunteers

Subject Gender Age BMI Estradiol Testosterone IGF-1 fT4

yr kg=m2 pmol=L nmol=L nmol=L pmol=L

1 female 33 22.10 147 ND 18.9 15.5

2 male 36 21.60 57 15.7 23.8 21.2

3 female 33 20.59 85 ND 19.7 17.6

4 male 55 21.80 56 19.8 14.3 20.1

5 male 43 22.60 55 12.1 24.2 16.0

6 female 41 20.58 82 ND 30.6 16.5

7 male 44 22.69 54 19.1 12.3 19.6

8 female 34 20.42 40 ND 35.1 17.3

9 male 37 23.41 57 12.4 14.4 16.3

Testosterone levels in men were in the normal range (10–30 nmol/L). ND: not determined. Normal values for IGF-1 are age-dependent and range between 10–35 nmol/
L. Normal free thyroxine levels (fT4) are between 10–22 nmol/L. The BMI levels are all within the non-obese range.
doi:10.1371/journal.pone.0032985.t001

Detecting Regulatory Mechanisms

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e32985



concentration and an estimated secretion pulse time series is

shown in Figure 1.

Four association metrics that are specific implementations of the

cross-correlation function, exploit the covariation between hor-

mones considering both concentrations and secretion pulse

distribution and amplitudes. These metrics can be used to extract

information on regulation between hormones. Metric AM1

describes the association between the concentration time series

of two hormones. This first association metric is simply the cross-

correlation function of the concentration time series of two

hormones xa and xb (with t indicating the time lag, and r the

correlation coefficient):

AM1(t)~r(xa(izt),xb(i)) ð2Þ

AM2 describes in the same way the association between pulse time

series of two hormones:

AM2(t)~r(wa(izt),wb(i)) ð3Þ

Two other measures explicitly focus on the secretion induced

response, by conditioning the data series on (estimated) secretion

activity. One metric correlates the concentration levels of one

hormone with the secretion amplitude of the second hormone

conditional on the presence of secretion events of the second

(AM3). The other metric correlates the concentrations of both

hormones conditional on the presence of secretion events in one of

them (AM4).

The conditioning takes the time points at which secretion takes

place (wj(t)w0) as the conditioning vector (Equation 4), being a

subset of the original time vector.

Yb~fiDwb(i)w0g,i[ 1,2, � � � ,145f g ð4Þ

where wb is the vector holding the secretion amplitudes of

hormone b and Yb is the set of secretion indices. The AM3 metric

uses the concentration of xa and the secretion wb conditional on

non zero secretion events in wb. It describes the association

between the concentration time series of one and the pulse time

series for another hormone selecting only those time points where

a pulse in this second hormone was observed.

AM3(t)~r(xa(izt),wb(i)),i[fYbg ð5Þ

The AM3 metric, since concentrations of the first hormone are

used, contains accumulated information about past events, in

contrast to AM2, where only information on the pulse moment is

considered. AM4 describes the association between the concen-

tration time series of both hormones considering only those time

indices that do pulse in one of the hormones.

AM4(t)~r(xa(izt),xb(i)),i[fYbg ð6Þ

Instead of pulse amplitude information, circulating hormone

concentration levels are used, which might give more powerful

evidence of the existence of a response in a to secretion pulses of b.

AM4, as compared to AM1, does not concentrate so much on

decay patterns, but more on secretion related phenomena.

Generally, cross-correlations are mirrored around lag zero,

when interchanging the labels a and b in equations 2 and 3. Since

both cross-correlation profiles will yield the same information, only

one of the two is depicted in the figures.

Figure 1. An example of measured 24-hr 10-minute interval serum hormone profiles. The dark line in the upper figure represents ACTH;
the estimated secretion is shown by the dark bars in the lower panel. In this system, ACTH pulses drive or elicit pulses of cortisol pulses with a delay of
approximately one time unit. Cortisol (light line, scaled by factor 0.1) also receives some pulse stimuli from auxiliary inputs as not all cortisol pulses are
preceded by an ACTH pulse (see the lower figure).
doi:10.1371/journal.pone.0032985.g001
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For AM3 and AM4 the selection of indices in Equation 4 are not

identical for the two hormones involved in the cross-correlation

calculation (Ya=Yb). This implies that two versions of the metrics

AM3 and AM4 exist. One where conditioning is on the secretion

pulses of a and one for conditioning on pulses in b.

Inhibition is common in biology, and inhibitory actions can be

found on the molecular level and on higher levels involving

complex tissue responses, see Figure 2 subfigure 3. For this reason

a simulation example was set up that mimicked inhibition in

pulsatile systems. To this end, two sets of unrelated pulses were

constructed by random sampling. The pulse series of hormone a

was integrated to give concentration values. Then the pulse series

of hormone b was adapted such that when the concentration in a

exceeded a threshold value, the pulses in b were reduced in

amplitude by 90%. The resulting concentration and pulse series

were then analyzed by the different association metrics.

The paper’s objective is to show that regulation mechanisms can

be extracted from hormone concentration data by using the

proposed association metrics. To this end five different common

types of regulatory mechanisms were studied, (1) rapid activation

with lag (a activates b), (2) concentration threshold activation, (3)

inhibition (b inhibits a), (4) a combination of inhibition and

activation, (5) diurnal patterns, without direct action of one

hormone on the other (see Figure 2 for a schematic representation

of the regulatory mechanisms).

For each of the five types of regulatory triggering mechanisms a

hundred time series were simulated and, when available,

compared with real measured data (see Suppporting Information

S1 for a description of the simulations). The results of the

measured data series are shown with the 95% confidence interval

of the mean. The confidence statistics are calculated on the Fisher-

Z transformed correlation values after which the confidence

interval values are transformed back to the normal correlation

space. The result of this operation is that the confidence intervals

are not symmetric about the mean. The case of rapid activation

will be discussed and illustrated at length to show the

Figure 2. Schematic depiction of the simulated regulatory mechanisms in episodic secreting hormones. (1) Shows a mechanism in
which a pulse in a triggers a pulse in b. (2) Shows a mechanism that triggers a pulse to be released in b when a falls below a (preset) threshold. (3)
Shows a mechanism that inhibits the pulse amplitude in b when the concentration in a is above a (preset) threshold. (4) Shows that combining
mechanisms (1) and (2) appear as mechanism (1).(5) Depicts a diurnal pattern that is maintained by another (shared) variable.
doi:10.1371/journal.pone.0032985.g002
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interpretation of the metrics. It will be shown that it is possible to

extract certain regulatory mechanisms from time series data.

Results

Rapid activation
In a stimulatory system consisting of two hormones, a and b, a

pulse in a translates into a pulse in b. This activation system is the

simplest link between two hormones as all that is required is a

receptor, and a signal transduction cascade that triggers the

secretion of the other hormone into the circulation, see subfigure 1

in Figure 2.

The pulses in a are followed by the pulses in b which, in this

simulation study, are lagging by one sampling unit. There are no

additional inputs to b nor is there any other source of noise or

(measurement) error introduced in this simulation.

In Figure 3 AM1 shows a clear optimum at lag 1, which

matches the designed delay between pulses of the two hormones.

AM2, representing the cross-correlation between pulse profiles,

shows clearer that there is a nonzero relation between a and b at

lag 1. At other lags (by design) there is no relation, which is better

represented in AM2 than in AM1. AM3 shows the relation

between the pulse amplitude of one hormone at time indices with

actual secretion and the concentration of a second hormone. The

black solid line shows that the pulses in a correlate strongest with

the concentration of b at lag 1. It is noteworthy that before lag 1

there is no correlation between the pulse amplitude and the

concentration. At high lags correlations are present, which are due

to the correlation of the pulse of a with the exponential decay

profile of b. Conversely, the dashed line shows that the pulses in b
correlate strongest with the concentration in a at lag 21. As is

expected, on the solid line, there is a non zero relation after lag 21

and no relation before lag 21. AM4 shows the relation between

the concentrations at time indices with actual secretion; the cross-

correlation profiles depend on the secretion of a and b. The black

solid line is based on conditioning on the pulses in a while the

dashed line is produced by conditioning on the pulses in b. Both

show a clear peak at lag 1.

An introduction of variation in the lag, being either 1 or 2 lags,

when generating simulated data, is reflected in the association

metrics (see Figure 4). Along with the previous simulation model

pulse-to-pulse variation in the lag, with which a pulse in hormone

a induces a pulse in hormone b, is introduced. Optimum values of

the association values are now found at lag 1 as well as lag 2.

The association measures were applied to times series

measurements of adrenocorticotropic hormone (ACTH) and

cortisol from 9 healthy and lean subjects. Figure 5 shows the

association measures describing the relation between the two

hormones. The presented cross correlation profiles are averages

over individual profiles. Pulse profiles were estimated from the

concentration time series using a method described in [3]. The

relation between ACTH and cortisol is well known, there is rapid

activation of the secretion of cortisol by ACTH. AM1 and AM2
point to some optimum at lag 1, though AM2 shows that the

correlation at lag 0 is unequal to zero. Moreover, the true lag may

be smaller than 10 minutes, e.g., between lag 0 and 1. The results

are similar to those shown in Figure 4, though AM2 is much less

pronounced. The latter is likely caused by subject to subject

variation in the optima of AM2. The AM3 results are different

from those of the simulation study. It is postulated here that this

difference is related to temporal clustering of pulses and the

circadian rhythm that are not included in the simulation model.

The slight differences observed between AM4 and the simulation

model need to be interpreted in the same terms.

Threshold activation
An activating system is considered which creates a single trigger

secretion pulse in b when the concentration of a falls below a

Figure 3. Pulses in a induce pulses in b after 1 lag, without auxiliary (noise) pulses in b. The solid black lines represent the cross correlation
profiles after conditioning on a, the dashed lines after conditioning on pulses in b.
doi:10.1371/journal.pone.0032985.g003
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Figure 4. Pulses in a induce pulses in b after lags of 1 or 2 (randomly drawn with an equal probability). In AM3 and AM4 the solid line is
related to conditioning on pulses of a and the dashed line on the pulses of b.
doi:10.1371/journal.pone.0032985.g004

Figure 5. Overview of the metrics on the HPA axis hormones ACTH and cortisol. The shaded area around the white lines marks the 95%
confidence interval of the mean, the thin lines show the individual results. The four metrics unanimously point to lag 1, but the different metrics
center on different aspects of the relation between ACTH and cortisol.
doi:10.1371/journal.pone.0032985.g005
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relative set point, see Figure 2 subfigure 2. This is a conditional

activating system that yields strikingly different results, as shown in

Figure 6, when compared to the rapid activation system. The

AM1 and AM2 results are weakly negative from lag 0 and up, as

expected, since low concentrations of hormone a, will induce

pulses in b and therefore show negative correlation patterns. The

AM3 elucidates a striking pattern in the relation between pulses of

b and the concentrations of a. The conditioning on pulses of b
correlates these pulses with the decaying pattern of hormone a
before it drops below the threshold, when it induces a pulse in b.

The patterns for the four association metrics are very different for

rapid activation and threshold activation, serving the goal of this

study.

Inhibition
Figure 7 shows that inhibition can be identified by negative

associations, especially for the concentration based measures AM1
and AM4. When the concentration in a is high it will diminish the

secretion of b. The small values for the associations as measured

with AM2 are caused by the fact that the pulses of a and b are

generated randomly and independently. The negative associations

found for inhibition contrast with the positive associations found

for rapid activation, and with the very distinguishing patterns for

concentration threshold activation.

Activation and inhibition
Many biological systems are thought of as being regulated by a

combination of activation and inhibition, see Figure 2 subfigure 4.

The tight integration of the two mechanisms especially allows for a

finely regulated system. This poses some intriguing questions for

the analysis as variation is believed to be dominated by secretion.

When the negative inhibition becomes active, the new secretion

episodes are dampened, meaning that active inhibition cannot be

detected directly but needs to be deduced from the absence (or

diminishing amplitudes) of secretion pulses in the inhibition target.

Mechanistically, this system can be a self limiting system composed

of two components. Some formalized argumentation is provided in

the Supporting Information S1 (see Equations S.13, S.14 and

S.15). The result of the association metrics of a set of hormones in

a system with strong inhibition is shown in Figure 8. There are no

differences between Figure 8 and 3, indicating that the two systems

can not be distinguished from each other based on the proposed

metrics. The examination of the distribution of pulse amplitudes of

the inhibition target conditional on the (lagged) concentrations of

the inhibitor may reveal inhibition. However, for real data it is

questionable if this kind of information can be retrieved as data on

the inhibited as well as the uninhibited pulse amplitude

distributions need to be available.

Diurnal patterns
Many hormones are secreted in diurnal patterns. The processes

that drive the secretion of such hormones are not required to be

causally dependent on each other, see Figure 2 subfigure 5. No

physiological relation has to exist between the secretion pulses

other than the cyclical temporal association of the secretion

processes. The observed association patterns (Figure 9) are the

result of diurnal behavior that presents itself with similar

fluctuation patterns, apart from some time shift. This type of

associations shows a particular wave form and is most dominant

for the concentration profiles (AM1 and AM4).

An example of this type of association in real data is given in

Figure 10. The associations of ACTH and thyroid-stimulating

hormone (TSH) extracted from hormone concentration profiles of

9 lean controls, the AM1 and AM4 plots reveal similar patterns

with two optima. ACTH and TSH are not believed to directly

regulating each other. A potential modulator that regulates the

action of both hormones, can possibly found outside this two-

Figure 6. A concentration drop of a below a certain threshold induces a pulse in b. In AM3 and AM4 the solid line marks the conditioning
on pulses of a and the dashed line the pulses of b.
doi:10.1371/journal.pone.0032985.g006
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Figure 7. The association metrics for a two hormone system in which increased concentrations of a diminish the pulse amplitudes
of b by 90%.
doi:10.1371/journal.pone.0032985.g007

Figure 8. The association metrics in a system in which a drives b with a time lag of one and b acts as an inhibitor when the
concentration of b exceeds a certain threshold such that the new pulses in a are reduced by 90%.
doi:10.1371/journal.pone.0032985.g008
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Figure 9. The association metrics of simulated concentration profiles from a simple system of two hormones exhibiting diurnal
patterns, but without direct activation or inhibition.
doi:10.1371/journal.pone.0032985.g009

Figure 10. Overview of association metrics of ACTH and TSH. The shaded area around the white lines marks the 95% confidence interval of
the mean, the thin lines show the individual results. The metrics point at a relation at two optima at lags 242 and 22.
doi:10.1371/journal.pone.0032985.g010
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hormone system in corticotropin-releasing hormone (CRH) and

thyrotropin-releasing hormone (TRH) levels.

Discussion

The identification of pulse patterns in hormone concentration

time series, combined with the estimation of association measures

can reveal the functional relations between hormone pairs. Basic

biological regulatory mechanisms were investigated, and associa-

tion measures were evaluated on their ability to distinguish these

mechanisms. In a rapid activation system such as presented in two

simulation studies, the AM2 clearly unmasks the underlying

mechanism and is the best metric for this type of mechanism. This

was also confirmed by the real system of ACTH-cortisol

measurements. On the whole the mechanisms show distinct

association measure patterns, making it possible to determine

regulatory mechanisms based on hormone concentration profiles.

The exception is when activation is combined with inhibition.

Without additional information about the activation process, and

the secretion of the activating hormone, no information on the

inhibition can be extracted. Diurnal behavior of hormones also

shows distinct association patterns. This may give rise to the

hypothesis of the existence of a regulatory relation, however, the

associations are calculated within the ‘closed system’ assumption

which cannot exclude influences from outside the ‘system’. The

detected diurnal relations are, in a broader context, the result of

regulatory relations.

In the proposed explorative approach for revealing functional

relations, basal secretion is not included in the simulations, though

there are good indications that at least some hormones have a

basal secretion [1,7]. The undesired increase in the simulation

complexity is the reason for not including basal secretion. Another

motivation for not including basal secretion is that it can be hard

to identify without the (extensive) use of prior information.

The generic detection of relations in time series with episodic

activity was our motivation for developing an assumption-free set

of metrics to detect regulation and diurnal relations, which is what

we describe in this manuscript. An alternative strategy to using

association measures for the inference of (functional) relations

would be an approach where a pharmacological model, expressed

in differential equations, is used. Keenan and Veldhuis et al [8,9]

show that based on this approach dose-response curves can

explicitly be estimated based on time series hormone data. Keenan

and Veldhuis et al [8,9] showed that such an approach is tractable

and can provide valuable information about the differences

between, for instance, age groups. Our strategy, as described in

the method section, on the contrary, uses very few assumptions

and focuses on detecting relations, opposed to fitting a complex set

of equations to data.

In this study it is shown that regulatory mechanisms can be

detected in time series data. In hypothesis generation it is very

valuable to probe observed concentration profiles with the

association metrics that are proposed here. This approach can

be used to compare regulatory behavior between cohorts. Changes

in cross correlation profiles may point to changes in regulatory

behavior due to disease or treatment. This will be the subject of

future study.

Supporting Information

Supporting Information S1 The supplementary material

describes the mathematical details of the simulations.

(PDF)
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