
CMV Infection Attenuates the Disease Course in a Murine
Model of Multiple Sclerosis
Istvan Pirko1*, Rhonda Cardin2, Yi Chen3, Anne K. Lohrey3, Diana M. Lindquist4, R. Scott Dunn4, Robert

Zivadinov5, Aaron J. Johnson3

1 Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America, 2 Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center,

Cincinnati, Ohio, United States of America, 3 Department of Neurology and Immunology, Mayo Clinic, Rochester, Minnesota, United States of America, 4 Imaging Research

Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America, 5 Department of Neurology and Buffalo Neuroimaging Analysis Center,

University of Buffalo, Buffalo, New York, United States of America

Abstract

Recent evidence in multiple sclerosis (MS) suggests that active CMV infection may result in more benign clinical disease. The
goal of this pilot study was to determine whether underlying murine CMV (MCMV) infection affects the course of the
Theiler’s murine encephalitis virus (TMEV) induced murine model of MS. A group of eight TMEV-infected mice were co-
infected with MCMV at 2 weeks prior to TMEV infection while a second group of TMEV-infected mice received MCMV two
weeks post TMEV. We also used 2 control groups, where at the above time points MCMV was replaced with PBS. Outcome
measures included (1) monthly monitoring of disability via rotarod for 8 months; (2) in vivo MRI for brain atrophy studies
and (3) FACS analysis of brain infiltrating lymphocytes at 8 months post TMEV infection. Co-infection with MCMV influenced
the disease course in mice infected prior to TMEV infection. In this group, rotarod detectable motor performance was
significantly improved starting 3 months post-infection and beyond (p#0.024). In addition, their brain atrophy was close to
30% reduced at 8 months, but this was only present as a trend due to low power (p = 0.19). A significant reduction in the
proportion of brain infiltrating CD3+ cells was detected in this group (p = 0.026), while the proportion of CD45+ Mac1+ cells
significantly increased (p = 0.003). There was also a strong trend for a reduced proportion of CD4+ cells (p = 0.17) while CD8
and B220+ cell proportion did not change. These findings support an immunomodulatory effect of MCMV infection in this
MS model. Future studies in this co-infection model will provide insight into mechanisms which modulate the development
of demyelination and may be utilized for the development of novel therapeutic strategies.
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Introduction

Multiple sclerosis (MS) is the most common inflammatory

demyelinating disease of the central nervous system (CNS). MS is

the leading cause of non-traumatic disability among young adults

in their most productive years [1]. Although the exact cause of MS

remains elusive, it is widely accepted that the pathology of MS is

mediated by the immune system in genetically susceptible hosts

[2]. In addition to genetic risk factors, which determine the

susceptibility and may influence disease severity, environmental

factors are also suspected to contribute as disease initiating events

[3]. Infections, especially of viral etiology, have long been

suspected as environmental factors that may contribute to the

development of MS in addition to environmental variables

including vitamin-D deficiency [4]. Several viruses have been

suspected as MS triggers. Currently, the most commonly studied

virus which appears to be associated with MS is Epstein-Barr

Virus (EBV), a member of the Herpesviridae family [5]. EBV

establishes a persistent infection in B cells. Interestingly, EBV is

also suspected to play a role in the pathogenesis of several classic

autoimmune diseases, including polymyositis, SLE, anti-phospho-

lipid antibody syndrome, rheumatoid arthritis, pemphigus vul-

garis, giant cell arthritis, Wegener’s granulomatosis, and polyar-

teritis nodosa [6]. A second herpes virus, human cytomegalovirus

(HCMV), has also been proposed as a potential MS trigger [7].

However, more recent studies with extensive case ascertainment

failed to demonstrate such an association [5]. Among systemic

autoimmune conditions, elevated HCMV IgG titers were observed

only in the sera of SLE patients [6].

In a recent study analyzing the role of active HCMV infection

in MS cases, multiple analyses demonstrated a clear association

between antibody positivity against HCMV and better clinical and

MRI outcomes [8]. These analyses indicated that patients positive

for antibodies against HCMV had significantly older age of disease

onset, lower lifetime relapse rate, higher brain parenchymal

fraction (BPF)on volumetric MRI, suggesting less brain atrophy.

HCMV-positive patients who had higher antibody titer presented

with lower T2 weighted lesion load and higher BPF compared to

patients with lower levels. Of note, this doesn’t mean that the

antibody itself would be responsible for the protective effect;

instead, it implies that recent active infection overall has a

protective role, via a mechanism that can’t be directly clarified in
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MS patients, but could be clarified via mechanistic studies in

animal models of the above phenomenon. The above was the first

study to suggest a protective role of HCMV infection in MS [8].

HCMV encodes multiple genes which serve to down modulate the

immune response during infection. These immune suppressive

aspects of HCMV infection could account for the protective effects

observed in HCMV-infected MS patients [9,10].

The goal of our study was to determine the extent murine CMV

(MCMV) infection exerts a similar protective effect in a mouse

model of MS. If protective, this model system could be analyzed

further to identify potential therapeutic exploitations of the

molecular mechanism(s) responsible for this effect. In the current

study, we utilized the TMEV infection based model of MS [11].

Mice of susceptible strains develop a demyelinating disease

characterized by clinical features of progressive myelopathy,

similarly to progressive forms of MS [11,12]. Since this MS model

itself is also based on a viral infection, our study can also be viewed

as a bi-pathogenic infection model. Based on the clinical

observations reported by Zivadinov et al [8] our hypothesis was

that in TMEV infected SJL/J mice, MCMV co-infection will

favorably modify the disease course similar to findings observed

clinically. Our main outcome measures were disability as assessed

by monthly rotarod performance, brain infiltrating lymphocyte

analysis by flow cytometry, and MRI based brain atrophy

measurements. All of these measures demonstrated a potential

protective effect of underlying MCMV infection in this MS model.

Results

1. Preservation of motor function in chronic TMEV
infected animals pre-infected with MCMV

To determine the effect of underlying MCMV infection in the

TMEV model of MS, a total of four groups of mice were

compared. One group of mice received MCMV i.p. 2 weeks prior

to i.c. infection with TMEV. The other group received i.p. PBS

injection as a control instead of MCMV. We chose to infect the

MCMV-infected mice with TMEV at 2 weeks after MCMV

infection to allow sufficient time for a MCMV-specific immune

response to be developed and for multiple tissue sites to be infected

with MCMV [13]. Two additional groups received TMEV

infection first, followed by MCMV infection or PBS. As shown

in Figure 1, there was a significant (p#0.024) protective effect of

MCMV pre-infection (MCMV/TMEV group) from the stand-

point of rotarod detectable functional disability, which first

became significant at 3 months post TMEV infection and

persisted beyond that. We also noticed the effects of ongoing

motor learning resulting in better than baseline performance in

these mice; however, this was not statistically significant (p$0.34).

A similar protective effect was not seen in the TMEV/MCMV

group, where MCMV infection was 2 weeks after TMEV infection

(p$0.44). Of note, MCMV infection appeared to be controlled at

8 months after infection since in the mice co-infected with TMEV

as MCMV replication in the salivary glands, a site for persistent

replicating virus, was not detected utilizing the MCMV assay as

described under ‘‘methods’’. In addition, no adverse effects, such

as weight loss and inactivity, were observed during the acute

infection phase for both the co-infected mice.

2. MRI results related to the development of brain
atrophy

We analyzed brain atrophy in the treated mice. As reported by

us previously, brain atrophy is a standard feature of the TMEV

infected SJL/J mice [14]. Age-related brain atrophy in this strain is

minimal and did not reach statistical significance in our published

experiments [14]. We therefore elected to determine the extent

underlying MCMV infection reduced brain atrophy in TMEV

infected animals. Measuring ventricular volumes, we observed a

close to 30% reduction in brain atrophy in TMEV infected

animals with underlying MCMV infection (Figure 2); however,

while suggestive of a trend towards a protective effect, this

experiment was underpowered to detect a statistically significant

difference (p = 0.19). The main reason for this was the relatively

high standard deviation of ventricular volume in the studied

groups of mice. Based on the observed standard deviation, we

would have needed 14 mice per group to demonstrate a significant

difference. It is important to note that the normal aging of SJL/J

mice doesn’t include the development of significant atrophy, as

demonstrated earlier [15]. In addition, brain MRI metrics other

than atrophy were not considered in this model, as the majority of

demyelinating lesions are located in the spinal cord and not in the

brain. In vivo spinal cord imaging was not considered due to the

limited resources available for our study.

3. Brain infiltrating lymphocyte analysis by FACS
To determine whether the preserved motor ability observed in

mice infected with MCMV prior to TMEV infection was due to

altered brain infiltrating lymphocytes, we collected and quantified

the expansion of CD45+ brain infiltrating immune cells at 8

months post infection. As shown in Figure 3, MCMV pre-infection

of TMEV infected mice resulted in a significant reduction reduced

numbers of CD3+ cells as a percentage of brain infiltrating CD45+
cells in the brain (p = 0.026). As part of this decrease in CD3+ cell

proportion, CD4+ cells exhibited a trend towards reduction in

TMEV infected mice pre-infected with MCMV (p = 0.17).

Meanwhile, the proportion of CD45+ Mac1+ cells significantly

increased in these animals (p = 0.003, Figure 3). Finally, the

proportions of B220+ or CD8+ cells did not change significantly in

TMEV infected animals (data not shown) pre-infected with

MCMV. In contrast, we did not observe statistically significant

changes in the proportions of CD3, CD4, CD8, Mac-1 or B220

positive cells infiltrating the brains of TMEV infected mice that

were subsequently infected with MCMV 2 weeks later. Overall,

these data suggest that pre-infection with MCMV reduces the

proportion of CD3+ T cell infiltration in the brain of mice

subsequently infected with TMEV. In the same animals,

underlying MCMV infection increases the proportion of Mac-1+
macrophage infiltration in chronic TMEV infected animals.

Discussion

Overall, our findings imply a beneficial immunomodulatory

effect of MCMV infection in the TMEV infection MS model.

MCMV prior to TMEV infection may therefore contribute to our

understanding to the clinical observation that underlying CMV

infection contributes to protection from MS. The overall reduction

in the proportion of CD3+ cells and the observed increase in the

proportion of Mac-1+ macrophages may contribute to this effect.

The role and significance of HCMV infection from the

standpoint of MS development remains controversial. Similarly

to most putative viral causes of MS, one key issue is the almost

ubiquitous positivity of the average population to markers of these

infections. A potential causative role for HCMV was suggested

over 30 years ago based on primate experiments in which a strain

of CMV was isolated from the brain and lymph nodes of a

chimpanzee that developed paralysis after intracerebral inocula-

tion with brain cell cultures derived from an MS case [7].

However, most studies have been unable to confirm this purported

HCMV association with MS. Meanwhile, a potential disease

CMV Infection as Immunomodulator in an MS Model
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initiating role for EBV was suggested as far back as 1983 in a study

where the HCMV infection rate and HCMV complement fixing

antibody production was found to be lower in MS cases [16].

However, a study on post-mortem brain tissue using PCR based

detection techniques failed to find any statistically significant

association between MS and common viral infections including

HCMV and EBV [17]. Meanwhile, a study in Norway found

elevated titers to EBV but not to HCMV in MS cases [18].

Recently, Ascherio reported a pathogenic role of EBV in MS

whereas no similar association was found regarding HCMV [5].

More recently, EBV-specific CD8+ T-cell responses were shown

to be decreased in patients with clinically isolated syndrome (CIS).

In contrast, there was no difference between categories for EBV-

specific CD4+ T cell, or for HCMV-specific CD4+ and CD8+ T-

cell responses [19]. Intrathecal enrichment in EBV-, but not

HCMV-specific CD8+ CTL was also reported in early MS

patients by another group [20]. EBV but not HCMV IgG

antibody indexes were also increased in the CSF in this study.

These studies overwhelmingly demonstrate that while EBV may

be an important ‘‘trigger’’ of MS development, HCMV doesn’t

contribute to MS pathogenesis.

A surprising finding about HCMV was its potential protective

role in MS, both from the standpoint of MRI and functional

outcome measures, suggesting that HCMV infection in MS

patients results in a beneficial modulation of the immune response

[8]. This previous study demonstrated that recent HCMV

infection either by 1) primary infection or 2) secondary infection

(since humans can be infected with multiple CMV strains), or 3)

reactivation of latent virus leading to recent replication has

occurred in those patients, as reflected by the increased HCMV

antibody titers. Therefore, it is possible CMV-specific T cells were

activated or cytokine induction occurred, which has had an

immunomodulatory effect resulting in attenuated MS phenotype.

It is clear that both HCMV and MCMV infection affect the

responsiveness of T cells since CMV infected dendritic cells can

modulate naive and antigen specific T cell responses [21]. There is

also evidence that HCMV may cause activation of immunomod-

ulating and immune evasion mechanisms [22,23] which could

alter the adaptive immune processes involved in the pathogenesis

of MS [24]. The role of HCMV as an immunomodulating virus

has been recognized in solid organ transplantation where it

appears to contribute to the immunosuppressed state [25].

Figure 1. MCMV infection preserves motor function in SJL/J mice undergoing TMEV induced demyelinating syndrome. SJL/J mice
infected with MCMV two weeks prior to TMEV infection have significantly higher rotarod scores compared to controls that received PBS injection
instead of MCMV The intergroup difference first reaches significance at 3 months, and remains significant beyond that time point (p#0.024). The
figure also shows data acquired in mice infected with MCMV two weeks after TMEV infection; the data in those mice is virtually identical to our PBS/
TMEV control group. Error bars represent SD.
doi:10.1371/journal.pone.0032767.g001
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Infection of mice with MCMV reflects the infection of humans

with HCMV in many respects. MCMV infects numerous tissues

and cell types during the acute phase of infection and establishes a

lifelong persistent or latent infection similar to HCMV [13].

Similar to HCMV, MCMV encodes viral genes which function to

evade or alter the host immune response [9,10]. Some of these

appear to contribute to the observed lifelong viral persistence,

while others exploit immune cells that contribute to antiviral

immunity [24]. Both HCMV and MCMV inhibit MHC class I

expression on infected cells [9,24,26], and MCMV has been

shown to impair IFN-gamma induced MHC class II-dependent

antigen presentation by macrophages [27,28]. HCMV was also

demonstrated to inhibit the induction of HLA class II antigens by

IFN-beta dependent and independent molecules including ICAM-

1 and VCAM-1, which are thought to be involved in MS

pathogenesis [29]. In addition, CMV-infected endothelial cells

have the capability to induce IFN-beta production [30]. Interferon

beta represents the most commonly used disease modifying agent

for relapsing forms of MS [1]. Another possible mechanism to

explain the effects of prior MCMV infection on TMEV-mediated

MS development could result from modulation of the immune

response to TMEV infection itself. In mouse infection studies with

either MCMV or other viruses, prior infection of mice with one

virus influences the immune response to other heterologous

infections [31,32,33]. Thus, prior MCMV infection in the TMEV

model of MS could lead to attenuation of the MS-like disease as

shown in our studies by modulation of the immune response to

TMEV infection. In addition, cytokines released as part of an

antiviral immune response can activate the hypothalamo-hypo-

physeal axis, resulting adrenal glucocorticoid release, which in turn

provides strong negative feedback on the further synthesis and

release of cytokines, and exerts an overall protective effect from the

detrimental consequences of an overactive immune response

[34,35]. Lastly, as another potential, but at this stage purely

speculative explanation to our observations of increased propor-

tion of Mac-1+ cells, these cells may contribute to a more efficient

elimination of TMEV infected CNS cells, and as such led to a

better overall outcome. In addition, macrophages may exert

immunosuppressive effects on T-cells, as commonly demonstrated

in cancer models.[36,37]

Given that our study was designed as a pilot project paving the

way to future larger scale proposals, there are clear limitations to

our data. These include the relatively low number of mice per

group, which resulted in being underpowered from the standpoint

of demonstrating significant MRI-based differences. In addition,

due to the same limitation, only one time point was studied with

FACS, and we only studied brain and not spinal cord samples -

ideally both should be assessed given the prevalence of TMEV in

the spinal cord at late time points. We utilized the most commonly

studied immune cell markers in the FACS based studies; however,

additional immune subset markers, cytokine assay, microarray

studies would enable us to study this phenomenon in more details,

and all the above are planned in future extensions of this study.

The 2-week lag between MCMV and TMEV infections was

Figure 2. MRI results. Ventricular volumetry at 8 months post TMEV infection. Lower numbers represent less atrophy. The observed close to 30%
lower atrophy in the MCMEV/TMEV group only showed a trend (p = 0.19) due to low statistical power, which was the consequence of the relatively
high standard deviation observed in these groups. Of note, ventricular volumetry of SJL/J mice undergoing normal aging does not demonstrate the
development of significant atrophy as demonstrated earlier [15].
doi:10.1371/journal.pone.0032767.g002
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chosen because MCMV virus titers peak in the salivary gland at 2

weeks and all other tissues are infected and some are even starting

to be cleared from the tissue, indicating virus-specific immune

response. However, it is possible that a different lag time may have

resulted in enhanced immunomodulatory effects. We also did not

demonstrate the effects of MCMV alone on the observed outcome

measures, including there was no control group where SJL/J mice

would be infected with MCMV alone. Histology time course

analysis was also not done, but given that we clearly documented

significant differences in motor performance, and motor perfor-

mance in this model is determined by the extent of both

demyelination and axonal loss, we anticipate that quantitative

measures of the aforementioned would also have demonstrated

significant differences.

In conclusion, in the studied chronic-progressive model of MS,

MCMV infection prior to demyelinating disease induction resulted

in an attenuated clinical phenotype. Overall, the mechanisms by

which human or mouse CMV effectively results in reduced disease

activity in MS or in the studied MS model remain unclear.

However, this study recapitulates in a rodent model the clinical

observation that underlying HCMV infection is protective in

human MS. We plan to study the observed phenomenon in

additional details in future extensions to this study, which will

address all the limitations of the current study, and include

additional time points and outcome measures. In our view, the

presented new model system will enable us to gain insights into the

beneficial immunomodulatory mechanism(s) associated with this

common viral infection, and may pave the way to novel

therapeutic strategies in MS.

Materials and Methods

Mice and Experimental Infection
The study was approved by the institutional committee for

animal care and use at the University of Cincinnati (approval

number 06-10-09-01). 4 week old female SJL/J mice were

purchased from the Jackson Laboratory (Bar Harbor, Maine).

Four groups of 8 mice were studied: MCMV inoculation either

preceded the infection with TMEV by 2 weeks, or was established

2 weeks after TMEV. We also used 2 control groups where PBS

was used as control for the MCMV inoculation, either 2 weeks

before or 2 weeks after infection. To induce the MS-like

demyelinating disease, all groups received TMEV infection by

intracranial (i.c.) injection of 105 PFU of TMEV from the DAV

strain as published earlier [38,39]. Mice that received MCMV

were inoculated by intraperitoneal (i.p.) injection of 16105 PFU

Figure 3. Flow cytometric analysis of brain infiltrating immune cells in 8 months TMEV infected mice that were either sham/PBS
injected, pre- or post-infected with MCMV. Shown are CD45+ cells that are: A.) CD3+, B.) CD4+, and C.) Mac1+, respectively. The observed
reduction in CD3+ cells compared to PBS controls was significant (p = 0.026), and so was the increase in MAC1+ cells (p = 0.003). The decrease in CD4+
T-cells demonstrated a trend (p = 0.17).
doi:10.1371/journal.pone.0032767.g003
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MCMV (K181+, salivary gland passaged stock [40]). Matching

control groups received PBS instead of MCMV (PBS/TMEV and

TMEV/PBS groups). All mice were followed for a total of 8

months after TMEV infection. Our earlier observations suggested

that mice reach their peak disability by approximately 240 days

post infection [14]. Premature animal loss due to co-infection was

not observed during this study.

Viral assays
At the end of the study, tissues were collected to determine the

effects of co-infection on normal levels of MCMV or TMEV

infection. At 8 months post infection, salivary glands were

collected to determine whether MCMV continued to persist or

replicate as a result of the TMEV co-infection. As previously

described, 10% salivary gland tissue homogenates (w/v) were

sonicated and plaque assays performed on NIH 3T3 cells [41,42].

Following incubation of the monolayers for 6 days under

carboxymethylcellulose-2X media, the cells were stained with

Giemsa and plaques enumerated by light microscopy. The limit of

detection for the plaque assay is ,10 PFU/ml of tissue

homogenate.

Disability measurement
The rotarod assay (Rotamex rotarod, Columbus Instruments,

Columbus, OH) was performed as a functional outcome measure

(assessment of disability) every month, as previously published

[38]. Mice were trained on the rotarod daily for one week prior to

infection to minimize effects of motor learning.

Brain atrophy measurements
MRI based brain volumetry was performed to assess brain

atrophy at the last time point (8 months post TMEV). For image

acquisition, a Bruker Biospec 7 Tesla horizontal bore small rodent

MR imaging system was used as described earlier [14]. A T2

weighted three dimensional RARE sequence was utilized for data

acquisition (TR: 1500 ms, effective TE: 65 ms, RARE factor: 16,

isometric 125 micron resolution, total acquisition time ,40 min-

utes). We analyzed atrophy by performing volumetric measure-

ments of the ventricular enlargement as reported earlier [14].

Briefly, volumetric analysis using the 3D ROI tool was conducted

using the Analyze software package, developed by Mayo Clinic’s

Biomedical Imaging Resource [43,44].

FACS analysis
Mice were euthanized and their brains were harvested at 8

months post infection, immediately following the MRI acquisition.

Brain-infiltrating lymphocytes were isolated from mouse brain

through collagenase digestion and a percoll gradient as previously

described [45,46]. Inflammatory cells isolated from the brains of

each mouse were stained with anti-CD4 PE (BD catalog

#553730), anti-CD8 PerCP (BD catalog #553036), anti-CD3

APC (BD catalog #553066), anti-CD45 PE-Cy7 (BD catalog

#552848), anti-B220 FITC (BD catalog #553087), and anti-Mac-

1 FITC (BD catalog #55557396) antibodies. Samples were then

washed twice with fluorescence-activated cell sorting buffer,

resuspended in cold phosphate-buffered saline, and fixed in 1%

paraformaldehyde. Samples were then analyzed on a BD LSRII

instrument (BD Biosciences) [47,48].

Statistical analysis
Intergroup differences were analyzed statistically using standard

statistical methods in JMP! (SAS Institute, Cary, NC) and

SigmaPlot (Systat Software, Chicago, IL).
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