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Abstract

Background: The identification of early mechanisms underlying Alzheimer’s Disease (AD) and associated biomarkers could
advance development of new therapies and improve monitoring and predicting of AD progression. Mitochondrial
dysfunction has been suggested to underlie AD pathophysiology, however, no comprehensive study exists that evaluates
the effect of different familial AD (FAD) mutations on mitochondrial function, dynamics, and brain energetics.

Methods and Findings: We characterized early mitochondrial dysfunction and metabolomic signatures of energetic stress
in three commonly used transgenic mouse models of FAD. Assessment of mitochondrial motility, distribution, dynamics,
morphology, and metabolomic profiling revealed the specific effect of each FAD mutation on the development of
mitochondrial stress and dysfunction. Inhibition of mitochondrial trafficking was characteristic for embryonic neurons from
mice expressing mutant human presenilin 1, PS1(M146L) and the double mutation of human amyloid precursor protein
APP(Tg2576) and PS1(M146L) contributing to the increased susceptibility of neurons to excitotoxic cell death. Significant
changes in mitochondrial morphology were detected in APP and APP/PS1 mice. All three FAD models demonstrated a loss
of the integrity of synaptic mitochondria and energy production. Metabolomic profiling revealed mutation-specific changes
in the levels of metabolites reflecting altered energy metabolism and mitochondrial dysfunction in brains of FAD mice.
Metabolic biomarkers adequately reflected gender differences similar to that reported for AD patients and correlated well
with the biomarkers currently used for diagnosis in humans.

Conclusions: Mutation-specific alterations in mitochondrial dynamics, morphology and function in FAD mice occurred prior
to the onset of memory and neurological phenotype and before the formation of amyloid deposits. Metabolomic signatures
of mitochondrial stress and altered energy metabolism indicated alterations in nucleotide, Krebs cycle, energy transfer,
carbohydrate, neurotransmitter, and amino acid metabolic pathways. Mitochondrial dysfunction, therefore, is an underlying
event in AD progression, and FAD mouse models provide valuable tools to study early molecular mechanisms implicated in
AD.
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Introduction

Alzheimer’s Disease (AD) is a devastating neurodegenerative

disorder characterized by progressive memory loss and impair-

ment in behavior, language, and visuospatial skills [1]. The

familial form of AD (FAD) has an early-onset and is caused by

mutations in the amyloid precursor protein (APP) and presenilin 1

and 2 (PS1 and PS2) genes that lead to the accumulation of Ab

peptide [2]. Recent data suggest Ab directly affects mitochondria

early in AD contributing to the loss of synaptic function and

plasticity, which are increasingly recognized as major mechanisms

responsible for memory loss in AD [3]. Indeed, a decrease in

cytochrome oxidase activity and energy metabolism and an

increase in free radical production were detected in AD patients

and AD mice prior to the formation of amyloid plaques and

memory loss [4–7]. In neurons from AD mice, Ab associates with
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mitochondrial membranes altering their trafficking, function and

dynamics with synaptic mitochondria being particularly suscepti-

ble to Ab-induced damage [8–12].

Mitochondria are dynamic organelles that actively move within

the axons to ensure adequate energy supply. In the cell body,

mitochondrial movement is essential for proper calcium buffering

and energy transfer and distribution [13–16]. Therefore, it is not

surprising that altered dynamics could be a causative factor in

mitochondrial failure. However, the evaluation of the effect of

particular FAD mutations on the development of mitochondrial

dysfunction has not been done. Gaining such knowledge is

important in order to identify the best animal models that most

closely mimic human disease to reveal molecular mechanisms of

mitochondrial dysfunction in AD, to develop the efficient tools for

early diagnosis, and for the evaluation of the novel therapeutic

approaches.

In the present study, we utilized three FAD transgenic mouse

models, APP, PS1, and APP/PS1. In order to evaluate the impact

of the particular mutation on mitochondrial dynamics and

function, we examined organelle motility, distribution, ultrastruc-

ture and function in neurons and brain tissue of FAD mice starting

from embryonic day 17 till the age when the onset of memory and

the development of amyloid deposits become prominent for each

particular mouse model. Thus, axonal trafficking was examined in

embryonic neurons (E17); mitochondrial distribution and ultra-

structure was evaluated in neurons (E17) and brain tissue of FAD

mice 8, 12 and 40 weeks of age; brain function and metabolomic

profiling was done in brain tissue from 16, 28 and 36 weeks

old animals. We found that in all these mice mitochondrial

dysfunction preceded the onset of memory phenotype and the

formation of amyloid plaques, however, the development of

mitochondrial abnormalities was mutation specific. Inhibition

of axonal trafficking was the earliest dysfunction detected in

embryonic neurons from PS1 and APP/PS1 mice. Loss of

morphology was most prominent in APP and APP/PS1 mice.

Application of metabolomic profiling allowed identifying metab-

olites and metabolic pathways that were affected in all three FAD

mouse models, along with specific metabolomic signatures of

mitochondrial stress associated with particular FAD mutation.

Metabolic biomarkers adequately reflected gender differences

similar to that reported for AD patients and correlated well with

the biomarkers currently used for diagnosis in humans. Our data

validate the use of FAD mice as a tool to study mitochondrial

dysfunction, which underlies the development of AD in multiple

FAD mouse models regardless of the origin of mutation and is

accompanied by specific metabolic changes useful for early

diagnosis and monitoring the disease progression.

Results

Trafficking of mitochondria is inhibited in hippocampal
neurons from PS1 and APP/PS1 mice

Altered mitochondrial motility, distribution and dynamics were

shown to contribute to the development of AD in animal models

and in humans [8,17–22]. However, it is not clear whether

different FAD mutations affect mitochondrial dynamics and

function to the same extent and within the same time frame

relevant to the development of AD. To determine the effect of

FAD mutations on mitochondrial motility, we investigated axonal

trafficking of mitochondria in primary hippocampal (Hip) and

cortical (Ctx) neurons from three FAD transgenic mouse models.

The first model includes mice that over-express mutant human

APP gene. These mice are characterized by the presence of high

levels of soluble Ab by 6 months of age, and fibrillar plaque

deposition and behavioral deficits that appear between 9 and 11

months of age [23–25]. The second model, where mice express

mutant human PS1 (M146L), is characterized by increased levels

of murine Ab42. However, these mice do not form amyloid

plaques and do not demonstrate cognitive impairment till at least

12 months of age [26,27]. Transgenic mice from the third model

express both mutant human APP and PS1 (APP/PS1) [28]. These

mice have accelerated AD phenotype characterized by amyloid

deposits and behavioral deficits in as little as 13–16 weeks [28]. We

have examined axonal trafficking of mitochondria in live

embryonic neurons from APP, PS1 and APP/PS1 mice, and

compared it to control animals utilizing real time imaging [29].

Non-transgenic (NTG) littermates obtained from the crosses

between APP and PS1 mice were used as controls similar to the

previous study [28]. Mitochondria in neurons were visualized

using the specific dye tetramethylrhodamine methyl ester

(TMRM) that does not affect organelle motility [29] (Figure 1

A–C, Movie S1). For each neuronal genotype, we estimated rates

of mitochondrial movement in anterograde (from the cell body)

and retrograde (to the cell body) directions, distance each

mitochondrion traveled between stops, the percent of stationary

mitochondria, average mitochondrial length, and number of

organelles per axonal length (Figure 1D–I).

We have found that FAD mutations have markedly different

effects on mitochondrial dynamics. Thus, movement of mitochon-

dria in PS1 and APP/PS1 neurons was significantly inhibited in both

anterograde and retrograde directions comparing to NTG litter-

mates. Anterograde motility in NTG neurons (0.9360.55 mm/sec)

was reduced in PS1 (0.6860.33 mm/sec, p,0.001) and APP/PS1

neurons (0.4960.29 mm/sec, p,0.001) (Figure 1F). Similarly,

mitochondrial movement in retrograde directions changed from

0.9760.63 mm/sec in NTG neurons to 0.7160.33 mm/sec in PS1

(p,0.001) and 0.4160.63 mm/sec in APP/PS1 neurons (p,0.001)

(Figure 1G). Movement of mitochondria in APP/PS1 neurons was

affected to a greater extent than in singly transgenic PS1 mice

(Figure 1 F,G, p,0.05). However, trafficking of mitochondria in

neurons from APP mice was not affected and neither the velocities

nor the pattern of motion differ from NTG neurons (Figure 1D,F,G).

Remarkably, mitochondria in PS1 neurons not only moved slowly

but also tended to cover significantly shorter distances between stops

(Figure 1D). Thus, 80% of mitochondria in PS1 neurons covered

distances smaller than 2 mm comparing to 40% in NTG, APP and

APP/PS1 neurons, and almost none of the organelles in the PS1

neurons covered distances greater than 5 mm in both directions

(Figure 1D). Despite stronger inhibition of trafficking in APP/PS1

neurons compared to PS1 cells (Figure 1F,G), the distances covered

by mitochondria in APP/PS1 neurons did not differ from NTG or

APP cells (Figure 1D). We also analyzed the amount of stops per

distance and determined that mitochondria in PS1 and APP/PS1

cells stopped more often. Thus, the ratio of stops per distance was

0.23 and 0.27 in NTG and APP neurons, respectively. However, in

PS1 and APP/PS1 neurons, this number was significantly higher

and reached 0.45 and 1.17, respectively. Along with reduced

motility, mitochondria in PS1 and APP/PS1 neurons became

progressively immobilized. In neurons from NTG and APP mice 58

to 60% of organelles was stationary. In PS1 and APP/PS1 neurons,

the percent of immobilized mitochondria increased to 85 and 92,

respectively (p,0.01). Analysis of mitochondrial length and

distribution in axons of embryonic neurons revealed significant

reduction in the number of organelles per axonal length in APP/PS1

neurons comparing to NTG, PS1 and APP cells (p,0.01) (Figure 1I).

Mitochondria were significantly shorter in neurons from APP

(1.7161.17 mm, p,0.001) and PS1 (1.2460.69 mm, p,0.0001)

neurons compared to NTG (2.1561.13 mm) and APP/PS1

Mitochondrial Dysfunction in FAD Mice
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(1.9861.21 mm) cells (Figure 1H); however, their number per axonal

length was significantly increased compared to NTG and APP/PS1

neurons (Figure 1I). Thus, our data suggest that mitochondrial

trafficking and distribution are altered in embryonic neurons from

FAD mice. Individual FAD mutations differentially affect mito-

chondrial dynamics thus suggesting distinct mechanisms. Synergis-

Figure 1. Mitochondrial trafficking and distribution in primary embryonic neurons from APP, PS1 and APP/PS1 mice. A–C. Real time
imaging of mitochondrial movement within the axon of Hip neuron from PS1 mouse 7 days in culture. A. Phase image of the axon; cell body is in the
upper right corner. B. Same axon with mitochondria visualized using TMRM. Scale bar, 10 mm. C (a–c). Recording of mitochondrial movement in live
axon: arrow and circle indicate the progress of the same organelle along the axon with time. Images were acquired using LSM 510 laser scanning
microscope (Carl Zeiss) with 1006oil DIC (1.4 na) lens. Scale bar, 5 mm. D. Mitochondria in PS1 neurons cover significantly shorter distances between
stops in both, anterograde and retrograde directions compared to organelles in NTG, APP or APP/PS1 neurons. Almost no mitochondria in PS1
neurons cover distances longer than 10 mm. Number of organelles taken into analysis is the same as in (F,G). Blue – NTG; Red – APP; Orange – APP/
PS1; Green – PS1. *p,0.001. E. Selective analysis of mitochondrial dynamics was done using analytical software (Analyze) that allows to trace each
organelle from the first frame (a) through all 600 frames of the movie (stacked movie frames, b) to generate a final profile of movement (c). Resultant
kymograph (c) is used to calculate velocities and identify the number of stationary and moving mitochondria. Rates of organelle motility in
anterograde (F) and retrograde (G) directions include analysis of movement of 74 to 285 individual mitochondria in 24 to 33 neurons from at least
three individual platings for each genotype. *, p,0.001; **, p,0.05. H. Length of 85–156 individual mitochondrion was estimated in five randomly
selected axons in E17 neurons. *, p,0.001; **, p,0.0001. I. The number of organelles normalized per axonal length in embryonic neurons from NTG
and AD mice used in axonal trafficking analysis. Number of mitochondria increases in APP and PS1 mice, and decreases in APP/PS1 cells comparing to
NTG neurons. *, p,0.01. Colors as in D.
doi:10.1371/journal.pone.0032737.g001
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tic effect of PS1 and APP mutations on axonal trafficking might

explain the stronger phenotype observed in APP/PS1 neurons

comparing to PS1.

Inhibition of mitochondrial trafficking in PS1 and
APP/PS1 mice does not correlate with Ab levels

We next determined whether differences observed in the extent

of mitochondrial trafficking inhibition in FAD mice depended on

the levels of Ab. Estimation of Ab levels in the brain tissue of the

newborn mice has not been done before. To specifically compare

levels of Ab in the Ctx and Hip tissue of the FAD newborn mice,

we applied a well-established immunohistochemistry technique

[25] using a panel of anti-Ab antibodies (Figure 2). Detection with

a 4G8 monoclonal antibody that recognizes both, murine and

human abnormally processed Ab isoforms along with the

precursor forms of Ab revealed lack of plaques in any FAD

mouse brains examined (Figure 2 a–d). Levels of Ab in the CA1

region of the Hip were very low in PS1 mice compared to APP

and APP/PS1 animals (Figure 2A, f–h). Levels of Ab in CA1

region in APP/PS1 mice were dramatically increased compared to

APP mice (Figure 2A, g, h). Similar increase in Ab levels in APP/

PS1 mice compared to APP was observed using 6E10 antibody

that recognizes only human Ab (data not shown). Moreover,

application of polyclonal A11 antibody that specifically recognizes

murine and human Ab oligomers revealed abundant presence of

these species in all three FAD mouse brains (Figure 2A, i–l). The

densitometry measurements confirmed the increase of Ab levels in

APP and APP/PS1 mice specifically in the Hip as measured with

4G8 antibody (Figure 2B). The increase in the levels of Ab
oligomers was significant in both Ctx and Hip regions in PS1, APP

and APP/PS1 mice (Figure 2 B). The lack of correlation between

the extent of trafficking inhibition and levels of Ab in PS1 and

APP/PS1 mice suggests different mechanisms.

Inhibition of axonal trafficking is a general defect that
occurs in all three FAD mouse models and is not specific
for mitochondria

We next examined whether inhibition of axonal trafficking in

FAD mice was specific for mitochondria. Using the same movies

that were generated to study mitochondrial motility, we analyzed

Figure 2. Levels of Ab in brain tissue of 1-day-old APP, PS1, APP/PS1 and NTG mice. A. Levels of Ab in brain tissue were determined using
monoclonal antibody 4G8 that recognizes human and mouse abnormally processed Ab isoforms and precursor forms (a–d). Scale bar, 200 mm. Levels of
Ab in CA1 Hip pyramidal neurons detected with 4G8 antibody (e–h) or antibody A11 that recognizes Ab oligomers (i–l). Scale bar, 20 mm. B. Densitometry
measurements of immunostaining produced by 4G8 and A11 antibodies in a–l. The lighter staining of the NTG brain resulted in ratios closer to 1,
indicating the stained tissue was almost as bright as the bare slide and therefore, had lower Ab immunoreactivity. As the Ab immunoreactivity increases,
the normalized intensity ratios decrease, with the lowest values observed in the APP/PS1 mouse brain because the tissue becomes darker and closer to
black. Data is expressed as mean 6 SEM. Blue – Ctx 4G8; red – Hip 4G8; green – Ctx A11; purple – Hip A11. * ,0.01. Ab – antibody.
doi:10.1371/journal.pone.0032737.g002
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axonal trafficking of small round-shaped vesicles that were not

stained with the mitochondrial marker TMRM and which motility

was traceable in the bright field recording (Figure 3A, ‘‘e’’). Based

on their size and appearance, these vesicles most likely are

endosomes or lysosomes [29]. Similar to the results obtained for

mitochondrial movement, we have determined that round vesicles

moved slower in both anterograde and retrograde directions

(Figure 3B), covered shorter distances between stops (Figure 3C),

and stopped more frequently in neurons from PS1 and APP/PS1

mice (Figure 3D). However, contrary to the movement of

mitochondria, specific and significant inhibition of retrograde

transport of round vesicles was also observed in neurons from

APP mice (Figure 3B). Thus, rates of retrograde transport in APP

neurons (0.6860.31 mm/s) were significantly reduced comparing to

the rates in NTG neurons (0.9860.23 mm/s, p,0.001). Vesicles in

APP neurons also covered shorter distances comparing to NTG

neurons. In NTG cells, 42% and 55% of vesicles covered distances

longer than 4 mm in retrograde and anterograde directions,

respectively (Figure 3C). However, in APP neurons, the number

of vesicles that cover distances over 4 mm dropped to 24 and 32%,

respectively (p,0.01). In PS1 and APP/PS1 cells, the number of

vesicles that cover 4 mm was reduced to 10% (Figure 3C). The ratio

between stops per distance was significantly increased in PS1 (0.63,

p,0.001) and APP/PS1 (0.95, p,0.001) neurons compared to

NTG (0.22) or APP (0.27) neurons (Figure 3D). Our data suggest

inhibition of axonal trafficking in embryonic PS1, APP and APP/

PS1 neurons is a general defect that affects movement of multiple

vesicles and organelles.

Neurons with inhibited mitochondrial trafficking are
more susceptible to excitotoxic cell death

Besides energy production, regulation of intracellular calcium is

another main function of mitochondria. Mitochondrial motility

and positioning in neurons is essential for proper calcium buffering

[13–15]. Since we found that axonal trafficking of mitochondria

was significantly altered in neurons from APP/PS1 and PS1 mice,

we investigated whether these cells exhibit increased sensitivity to

calcium entry caused by stimulation of NMDA receptors.

Figure 3. Inhibition of axonal trafficking in neurons from PS1 and APP/PS1 mice is not specific to mitochondria. A. Analysis of real
time movement of round-shaped vesicles (endosomes or lysosomes, ‘‘v’’) that were not stained with TMRM was done using same movies that were
acquired to study mitochondrial (‘m’) trafficking. Scale bar, 4 mm. B. Similar to mitochondria, round-shaped vesicles move with reduced velocities in
both, anterograde and retrograde directions, travel shorter distances between stops in neurons from APP, PS1 and APP/PS1 mice (C), and stop more
frequently in neurons from PS1 and APP/PS1 mice (D). Analysis was done in randomly selected neurons (13–19 for every genotype); pattern and rate
of motion of 10 to 58 individual vesicles was analyzed. *p,0.001.
doi:10.1371/journal.pone.0032737.g003
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Indeed, treatment with different doses of NMDA caused

excitotoxic cell death in neurons from all three FAD mouse models

that correlated with the extent of mitochondrial trafficking

inhibition (Figure 4A). Treatment with 80 mM of NMDA caused

25% loss of neurons from NTG and 30% from APP mice

(Figure 4A, open circles and squares). However, neurons from

PS1 and APP/PS1 demonstrated 45% and 50% cell loss,

respectively (Figure 4A, closed circles and triangles). The response

to the lower doses of NMDA was also more robust in APP/PS1 and

PS1 neurons compared to NTG or APP neurons (Figure 4A, doses

below 10 mM). Our data suggest that neurons with inhibited

mitochondrial motility become susceptible to excitotoxic cell death.

Alterations in mitochondrial morphology and localization
in FAD mice precede the onset of memory deficit and
formation of amyloid plaques

Mitochondrial distribution is essential for maintaining synaptic

function and transmission [20,30]. Mislocalization of mitochondria

induced by Ab42 in Drosophila was sufficient to cause late-onset

Figure 4. Mitochondrial distribution is altered in hippocampus of AD mice. A. Neurons in APP/PS1 and PS1 mice exhibit increased
sensitivity to NMDA treatment. Open circles – NTG; Open squares – APP; Close circles – APP/PS1; Triangles – PS1. B. Electron micrographs of an
altered mitochondrial distribution in brain of APP/PS1 mouse 8 weeks old compared to NTG mouse of the same age. Asterisk denotes mitochondria
with altered shape; arrowheads denote accumulation of mitochondria in neuropils. Scale bar, 5 mm (APP/PS1), 2 mm (NTG). C. Accumulation of
normal and degenerating (asterisks) mitochondria in brain of APP mouse 12 weeks old. Scale bar, 500 nm.
doi:10.1371/journal.pone.0032737.g004
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behavioral deficits [31]. Similarly, the degree of cognitive

impairment in AD transgenic mice has been linked to the extent

of synaptic mitochondrial dysfunction [32]. Therefore, we exam-

ined whether synaptic and non-synaptic mitochondrial structure,

integrity and distribution were altered in Hip tissue of APP, PS1,

and APP/PS1 mice 8, 12, 24, 30 and 40 weeks of age using electron

microscopy (EM). We have found that Mito distribution was already

altered in neuropils in all three FAD mice between 8 and 12 weeks

of age (Table 1). ‘‘Piling’’ of mitochondria in neuropils in APP/PS1

mice and trafficking ‘‘jams’’ consisted of normal and degenerating

mitochondria were observed in brain tissue from all three FAD mice

(Figure 4B, C). However, quantification of mitochondrial distribu-

tion revealed a reduction in the number of mitochondria per

neuropil or per the length of neuropil in all three FAD mice starting

at 8–12 weeks of age and persisting in APP/PS1 mice till 40 weeks of

age (Table 1). Neuropils from PS1 and APP/PS1 mice had the most

pronounced reduction in the number of organelles at 12 weeks. This

is consistent with our observations that the number of Mito was

significantly reduced in the embryonic APP/PS1 neurons suggest-

ing that altered mitochondrial distribution in these mice is

associated with the early stages of AD progression (Figure 1F).

Interestingly, mitochondrial length was significantly increased in the

brains of FAD mice with reduced number of mitochondria per

neuropil (Table 1, Figure 5A–C).

Table 1. Mitochondrial distribution and structural characteristics in brain tissue from NTG, APP, PS1, and APP/PS1 mice based on
electron microscopy examination.

Genotype
Age,
weeks

# of
Neuropils

Neuropil
length, mm

# of
Mito

Mito per
neuropil

Mito per
neuropil length

Mito
length, mm

Abnormal
Mito, %

NTG 8 83 290.5 143 1.7 0.49 1.1160.96 0

12 14 150.6 53 3.8 0.35 2.1160.89 0

40 25 239.6 62 2.5 0.26 2.3161.05 4

APP 8 29 405.3 58 2.0 0.14* 2.0361.71* 3

12 16 151.9 48 3.0 0.32 2.8561.72 5

40 21 158.5 39 1.9 0.25 2.0161.65 20

PS1 8 35 200.9 74 2.1 0.37 1.2761.01 2

12 21 231.6 40 1.9 0.17* 4.0663.12** 1

40 15 133.4 44 2.9 0.33 2.3261.42 5

APP/PS1 8 60 407.2 114 1.9 0.28* 1.2360.98 1

12 23 180.4 41 1.8 0.23* 2.8561.42* 7

40 23 407.7 49 2.1 0.12* 3.3162.89** 30

*P,0.001 and **P,0.0001 vs. 8, 12, and 40 weeks old NTG mice. Mito: mitochondria.
doi:10.1371/journal.pone.0032737.t001

Figure 5. Mitochondria in APP and APP/PS1 mouse brains acquire abnormal shape. A. 2D EM micrograph of mitochondrion with
abnormal shape in Hip tissue of APP mouse 40 weeks of age. B. 3D reconstruction of ten serial sections of consecutive EM micrographs of the same
tissue as in (A). C. 3D reconstruction of mitochondrial structure in Hip tissue of APP/PS1 mouse 24 weeks of age. Note the dramatic elongation of
mitochondrion in APP/PS1 tissue compared to the length and shape of the organelle in the brain of NTG mouse of the same age (D). Scale bar, 1 mm.
doi:10.1371/journal.pone.0032737.g005

Mitochondrial Dysfunction in FAD Mice
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Detailed examination of the mitochondrial morphology revealed

the presence of significant structural abnormalities in APP/PS1 and

APP mice starting at 8 and 12 weeks of age, respectively, and

reaching 20–30% by the age of 40 weeks (Figure 5A–C, Movie S2,

Table 1). Mitochondria acquired abnormal shape, which consisted

of very narrow membranous segments alternated with swollen

round-shaped areas with perturbed cristae resembling ‘‘beads-on-

the-string’’ (Figure 5A–C, Movie S2). Three-dimensional recon-

struction of the EM micrographs demonstrated the age-dependent

increase in the presence of these abnormal organelles in the neuropils

of APP and APP/PS1 mice while only 4 to 5% of similar structures

were found in the brain of PS1 and NTG mice 40 weeks of age

(Table 1). Abnormal mitochondria significantly increased in length

reaching in some cases 26–30 mm (Movie S2). These organelles were

characterized by complete loss of cristae (Figure 6A). Since narrow

segments of abnormal mitochondria are very thin, accurate

estimation of the organelle length in AD mice requires 3D

reconstruction of multiple consecutive micrographs. Therefore, the

estimation of mitochondrial length based on 2D micrographs

(Table 1) may underestimate the extent of organelle elongation in

‘‘beads-on-the-string’’ structures and could convolute the real

increase in mitochondrial length in AD mice with age.

Examination of the ultrastructure of synaptic mitochondria also

revealed the presence of the degenerating organelles with altered

cristae organization (Figure 6B, a–c). Abnormal synaptic mito-

chondria were detected in all three FAD mice starting at 8–12

weeks of age. Thus, changes in organelle structure and

morphology occur in all three FAD mouse models prior to the

onset of memory phenotype and plaque formation [23–25].

Mitochondrial activity is reduced in brain slices from APP,
PS1 and APP/PS1 mice

Next we examined whether mitochondrial structural abnormal-

ities observed in brains of APP, PS1 and APP/PS1 animals were

associated with the inhibition of mitochondrial function. We

adapted the method that allowed measuring mitochondrial mass

and activity in brain slices from control and FAD mice [33,34].

This approach utilizes application of two mitochondrial specific

probes, MitoTracker Green (MTG), which becomes fluorescent

when it accumulates in the mitochondrial lipid environment

regardless of membrane potential, and MitoTracker Orange

(MTO), which measures mitochondrial oxidative activity. MTO

becomes fluorescent only when oxidized with molecular oxygen in

actively respiring mitochondria. The use of both probes avoids

isolation and purification of mitochondria thus preserving cell and

tissue integrity. The ratio between MTO and MTG fluorescence

intensities determines the fraction of active mitochondria in total

organelle content. Brains from NTG, APP, APP/PS1 and PS1

mice 7 months old were cut into 50 mm-thick slices. Each brain

slice was incubated in either buffer alone or in buffer containing

MTG and MTO. Tissue slices were washed and imaged using

LSM 510 confocal microscope. We have found that mitochondria

in all three FAD mice lost oxidative activity comparing to NTG

mice (Figure 6C). The decrease was most prominent in the brains

of APP and APP/PS1 mice (loss of ,50%). The decrease of

oxidative activity in PS1 mice was about 35%. Thus, changes in

mitochondrial ultrastructure observed in FAD mice (Figure 5, 6)

correlate with the loss of mitochondrial function.

Expression of fission and fusion proteins is not altered in
APP, PS1 and APP/PS1 mice

Alterations in mitochondrial dynamics, fission and fusion in

particular, have been implicated in AD progression in humans

Figure 6. Mitochondria in AD mice have altered morphology
and reduced oxidative activity. A. Progressive age-dependent
accumulation of abnormal mitochondria in AD mouse brains with
dramatic loss of cristae integrity. Mitochondrion in APP mouse 45 weeks
of age is shown. Scale bar, 1 mm. B. Abnormal synaptic mitochondria in
APP/PS1 mouse brains were already observed at 8 weeks of age (a–c).
Arrow denotes swollen mitochondria with total loss of inner structure.
(d) Mitochondria in NTG mouse of the same age. Asterisks indicate the
synapses; scale bar, 100 nm. C. Loss of mitochondrial oxidative activity
in relationship to total mitochondrial mass in Hip live brain slices
detected using MTG and MTO. Mitochondria in NTG brain have
extensive colocalization of green (MTG, mitochondrial mass) and red
(MTO, oxidative activity) fluorescence with the ratio of MTG/MTO = 0.96.
Mitochondria in PS1, APP and APP/PS1 mouse brains have reduced
oxidative activity as judged by the loss of red fluorescence intensity.
The ratios of MTG/MTO were estimated to be: 0.8 (PS1), 0.6 (APP), and
0.5 (APP/PS1). Images were acquired using LSM 510 with 406 lens.
Scale bar, 10 mm.
doi:10.1371/journal.pone.0032737.g006

Mitochondrial Dysfunction in FAD Mice

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e32737



[9,30,35,36]. Therefore, we examined whether changes in

mitochondrial morphology observed in the brains of FAD mice

were related to the altered expression of key proteins involved in

mitochondrial dynamics. First, we investigated whether levels of

expression of mitochondrial fusion (Opa1, Mfn1, and Mfn2) and

fission proteins (Drp1 and Fis1) were altered in the whole brain

tissue extracts from NTG, APP/PS1 and PS1 mice 40 weeks of age

(Figure 7A). As a control, we used the essential component of the

inner mitochondrial membrane translocase complex Tim 23.

Immunoblot analysis revealed no changes in the levels of expression

of all six proteins. No significant differences in overall mitochondrial

content were noted between samples from APP/PS1, PS1 and

NTG mice evident by the constant expression levels of Tim 23, a

mitochondrial marker. We next determined levels of expression of

fission/fusion proteins in the different brain regions in APP and

NTG mice 45 weeks of age (Figure 7B). Immunoblot analysis of

protein extracts from Hip, Ctx and cerebellum (Cer) also revealed

no changes in the expression levels of all proteins examined

(Figure 7B). Our data suggest that changes in mitochondrial

morphology observed in APP and APP/PS1 mice (Figure 5, 6) were

not caused by altered expression of mitochondrial fission or fusion

proteins.

APP, PS1 and APP/PS1 mice have distinct gender- and
mutation- related changes in metabolomic profiles in
brain tissue

We have demonstrated that mitochondrial trafficking, distribu-

tion, morphology and function are affected in brain tissue from all

three FAD mice prior to the onset of cognitive decline or plaque

formation. However, the development of mitochondrial abnor-

malities was different in each FAD mouse model. Thus, inhibition

of mitochondrial trafficking was observed in embryonic neurons

from PS1 and APP/PS1 mice, but not in APP mice. Similarly,

changes in mitochondrial morphology were prominent in APP and

APP/PS1, but not in PS1 mice. To determine how particular FAD

mutation affects metabolic pathways involved in mitochondrial

function and energy metabolism, we analyzed metabolomic

profiles in the Hip tissue of PS1, APP and APP/PS1 mice

(Figures 8, 9, Table 2). Tissue from 36 week old APP and PS1

mice and 16 week old APP/PS1 mice was analyzed and compared

to age- and gender-matched NTG littermates. The selection of

mouse age for metabolomics was determined by differences

between the onset of memory phenotype and amyloid plaques in

FAD mice. Data analyses using PLS-DA revealed that PS1, APP

and APP/PS1 mice have metabolomic phenotypes that are

distinct from NTG littermates and also from each other

(Figure 8A). Separate analysis comparing metabolomic signatures

in APP/PS1 mice revealed significant gender-related differences

(Figure 8B). Thus, NTG female and male mice have very similar

metabolomic profiles, while profiles of APP/PS1 female and male

mice differed significantly (Figure 8B). Additionally, the extent of

alterations in metabolic signatures was greater in female APP/PS1

mice compared to male mice (Figure 8B, arrows between NTG

and APP/PS1 males and NTG and APP/PS1 females).

Since gender was found to have a significant impact on

metabolomic profiles, we focused on the comparison of the

changes in metabolites specifically in the brain tissue of age-

matched female APP, APP/PS1, PS1 mice and NTG littermates

(Figure 9, Table 2). Metabolites in the separate pair comparison

revealed presence of characteristic signatures of mitochondrial

toxicity with altered tissue levels of energy metabolites ATP, ADP,

AMP, nicotinamide adenine dinucleotide (NAD), adenosine,

fumaric acid, adenine, creatine and b-alanine (Figure 9, middle

panels). Increased levels of adenosine, AMP and fumaric acid and

decreased levels of N-acetyl aspartate (NAA) strongly suggest

presence of mitochondrial stress and energetic dysfunction.

Metabolic pathway analyses revealed that in all three FAD mouse

models there are significant alterations in the levels of metabolites

involved in energy metabolism including nucleotide metabolism,

mitochondrial Krebs cycle, energy transfer, carbohydrate, neuro-

transmitter and amino acid metabolic pathways (Figure 9, right

panels). However, along with the pathways equally affected in all

three FAD mouse models, we identified metabolic pathways and

metabolites that were specific to the mutation. Thus, alteration in

neurotransmitter metabolism and energy transfer pathway was

affected to a greater extent in APP and PS1 mice (Figure 9, right

panels). Synergistic effect of both mutations in APP/PS1 mice

resulted in significantly stronger alterations in glycolytic pathway

that involved Krebs cycle, and neurotransmitter and amino acid

metabolism (Figure 9, right panels, Table 2). Metabolites that were

uniquely affected in APP mice included panthotenic acid while

threonate and ethanolamine were uniquely affected in APP/PS1

mice (Table 2). Moreover, in all three FAD mouse models we also

found changes in the levels of NAA, myo-Inositol and creatinine

Figure 7. Expression of mitochondrial fusion and fission
proteins is not altered in brain tissue from AD mice.
Representative immunoblot (A) revealed no differences in expression
of fusion and fission proteins in brain tissue from 12 months old APP/
PS1, PS1 and NTG mice. B. No changes in expression of fission/fusion
proteins were found in different brain regions (hippocampus, Hip,
cortex, Ctx, and cerebellum, Cer) in APP mouse 13 months old
compared to NTG mouse of the same age. Each sample was loaded
twice with second sample having 26 concentration.
doi:10.1371/journal.pone.0032737.g007
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(Figure 9, middle panel), the biomarkers that are currently used for

the diagnosis of mild cognitive impairment and AD in humans

[37]. Our data demonstrate that mitochondrial dysfunction is

present early in development of AD in all three FAD mouse

models regardless of the origin of the mutation. Moreover,

metabolomic profiling could discriminate between the effect of

gender and specific mutations on the metabolic pathways involved

in mitochondrial dysfunction and energy failure.

Discussion

Identification of the early molecular mechanisms underlying

AD is of great importance in order to develop efficient methods for

diagnosis and therapeutic intervention. Growing evidence suggests

that mitochondrial dysfunction occurs prior to the onset of

memory phenotype and plaque formation and is an important

factor that modulates AD pathophysiology [38,39]. Indeed,

mitochondrial bioenergetics deficits precede the onset of AD

symptoms in multiple AD animal models [40,41]. In humans,

regional glucose hypometabolism is detected many years before

the disease onset in PS1 mutation carriers [42]. Biochemical

studies demonstrate alterations in the activity of mitochondrial

enzymes involved in Krebs cycle and electron transport chains

in the post mortem AD brains [4,43]. Recently, defects in

mitochondrial morphology, distribution and dynamics have been

found in the human AD brain tissue and in cellular and animal

models of AD [20,22,36,44–46]. However, the molecular mecha-

nisms underlying mitochondrial dysfunction in AD remain elusive.

Part of the problem relates to the lack of a model organism that

recapitulates all aspects and complexity of AD, and specific

limitations of the multiple animal models currently used in research

laboratories.

We utilized three FAD mouse models to determine whether

mitochondrial dysfunction was implicated in the early stages of AD

regardless of the origin of FAD mutation, which would validate

mitochondria as the target for early therapeutic intervention. We

have found that inhibition of axonal trafficking of mitochondria

was among the earliest abnormalities already detected in

embryonic neurons from PS1 and APP/PS1 mice months before

the onset of memory phenotype or formation of amyloid deposits

Figure 8. Brain tissue of APP, PS1, and APP/PS1 mice has distinct metabolomic profiles compared to NTG mice. A. PLS-DA score plot
showing distinct metabolomic profiles of Hip brain tissue from PS1, APP and APP/PS1 mice compared to NTG mice. B. PLS-DA score plot
demonstrating a significant gender effect on metabolomic profiles in APP/PS1 mice. Metabolomic alterations associated with mitochondrial
dysfunction were more pronounced in female than in male APP/PS1 mice. Note significant differences in metabolomic profiles between APP/PS1
males and females and much smaller variation between NTG males and females. Each group included 3 mice 16 week of age.
doi:10.1371/journal.pone.0032737.g008
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[25,28]. Previous studies demonstrated the direct effect of Ab
peptides on mitochondrial motility [18,19,31,47,48]. However,

comparison of Ab levels in the Hip tissue of newborn FAD mice

with and without trafficking defect suggests that inhibition of

mitochondrial trafficking in PS1 mice occurs through Ab-

independent mechanism. Indeed, it has been shown that mutant

PS1 could directly affect axonal machinery by modulating the

activity of glycogen synthase kinase-3b (GSK-3b) that controls the

release of kinesin motor protein from the cargo [17,21,49]. In

addition, PS1 mutations may affect mitochondrial trafficking by

altering calcium homeostasis [50,51]. Elevated calcium levels

caused by PS1 mutations lead to an increased calcium uptake by

mitochondria resulting in trafficking inhibition [15,52]. However,

the exacerbated trafficking phenotype observed in double mutant

APP/PS1 mice where levels of Ab were significantly elevated in Hip

and Ctx tissue of newborn mice suggests synergistic effect of each

mutation and implication of Ab-dependent and independent

mechanisms. Our data also support recent observations suggesting

that Ab oligomers represent toxic species that disrupt axonal

trafficking [8,53,54]. The extent of trafficking inhibition in APP/

PS1 mice correlated with significantly elevated levels of oligomeric

Ab in the Hip brain tissue of the newborn mice. Surprisingly,

mitochondrial trafficking was not altered in embryonic neurons

from APP mice where levels of Ab were higher that in PS1 mice.

However, since we have found that axonal trafficking of other cargo

was inhibited in APP neurons, it is possible that levels of Ab in

embryonic neurons from APP mice did not yet reach the threshold

required to cause detectable trafficking inhibition of mitochondria.

This is supported by the observations that Ab levels increase with

time in the brain of the APP mice [23,28], and that axonal

trafficking inhibition of cargo other than mitochondria was detected

in APP mice in vitro and in vivo [55,56]. It remains to be determined

whether inhibition of mitochondrial motility occurs in APP mice

and whether that contributes to mitochondrial dysfunction.

Another important function of mitochondria in the cell includes

buffering of intracellular cytosolic Ca2+ [57]. Decreased age-related

Ca2+ buffering capacity and deregulation of Ca2+ homeostasis can

potentiate excitotoxicity, a phenomenon intimately associated with

neurodegeneration [30,57,58]. Positioning and ability of mitochon-

dria to move is important for proper Ca2+ buffering [59,60]. We

have found that embryonic neurons from all FAD mice exhibited a

higher level of cell death in response to the NMDA treatment.

However, neurons from PS1 and APP/PS1 mice were affected to

the higher extent suggesting that altered mitochondrial motility

predisposes neurons to excitotoxic cell death.

Analysis of the pattern of mitochondrial motion also revealed a

mutation-specific impact. Thus, only in PS1 neurons mitochondria

covered significantly shorter distances between stops. This is

Figure 9. Comparison of individualized metabolomic profiles and affected metabolic pathways in FAD mouse models. A, C and E.
PLS-DA score plots showing distinct metabolomic profiles of PS1 (A), APP (B) and APP/PS1 (C) female mice compared to NTG littermates. A, B and C,
middle panels. Panels of specific biomarkers as a plot of variable importance in the projection (VIP) indicating the 15 most significant metabolites in
discriminating between metabolomic profiles of NTG and Tg groups in the PLS-DA model. A, B and C, right panels. Metabolic pathways
specifically affected in each FAD mouse model. APP and PS1 mice were 36 weeks old, APP/PS1 – 16 weeks old.
doi:10.1371/journal.pone.0032737.g009
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consistent with the reported microtubule destabilization caused by

increased phosphorylation of cytoskeletal proteins observed in

FAD-linked PS1 mice [21,61,62]. However, changes in mitochon-

drial length and distribution were prominent in all three FAD

mouse models and already observed in embryonic neurons. The

significant increase in mitochondrial length in APP, PS1 and APP/

PS1 mice correlates with the reduced numbers of organelles in

neuropils. The dynamic relationship between the number of mito-

chondria in neuropils and mitochondrial length may represent the

attempt to maintain constant or increased mitochondrial mass to

ensure adequate energy supply. We have also observed the

dramatic change in the shape of mitochondria in the brain of APP

and APP/PS1 mice. To our knowledge, this is the first report of

such structures acquired by mitochondria in AD animal models.

Interestingly, the dramatic changes in mitochondrial shape

observed only in APP and APP/PS1 mice can’t be explained by

altered expression of fission and fusions proteins shown to be

implicated in AD before [9,63,64]. The mechanism involved in

the formation of such structures remains to be determined.

Examination of the ultrastructure of synaptic mitochondria revealed

the increased presence of organelles with altered morphology in all

FAD mice starting at 8 weeks of age.

Not surprisingly, alterations in mitochondrial distribution and

morphology coincide with the loss of mitochondrial oxidative

activity in the brain of all three FAD mouse models, which preceded

the onset of amyloid plaque formation and memory phenotype

[23,27,65,66]. Taken together, our data suggest that individual

FAD mutations facilitate loss of mitochondrial motility, alterations

in organelle distribution, loss of morphology and function, which

are the early events associated with AD progression.

Application of metabolomics, a global biochemical approach to

reveal disease-specific signature of metabolic perturbations, con-

firmed that mitochondrial function and cellular energy metabolism

were altered in all three FAD mouse models. Metabolomic

signature of mitochondrial dysfunction was detected in APP/PS1

mice at 16 weeks and in PS1 and APP mice at 8 months of age prior

Table 2. Relative changes of 30 most important metabolites in APP, PS1 and APP/PS1 transgenic mice compared to aged and
gender matched NTG littermates.

PS1 mice FC VIP p APP mice FC VIP p APP/PS1 mice FC VIP p

ADP 20.56 1.59 0.003 NAA 23.76 1.83 0.004 Threonic acid 1.08 1.59 0.003

NAD 20.49 1.53 0.006 Myo-inositol 20.50 1.76 0.006 Ethanolamine 1.67 1.52 0.012

ATP 20.50 1.50 0.011 Pantothenic acid 21.74 1.71 0.011 Alanine 2.22 1.51 0.048

Pi 20.92 1.49 0.016 Pi 20.93 1.69 0.014 Mannitol 1.22 1.48 0.024

Fumaric acid 20.88 1.47 0.014 Adenosine 0.60 1.69 0.031 Glycerol 3-P 1.46 1.46 0.020

Myo-inositol 20.55 1.46 0.016 AMP 1.60 1.58 0.041 Pyroglutamic acid 0.54 1.44 0.026

Malonic acid 20.50 1.42 0.024 Threose 20.16 1.54 0.047 NAA 0.65 1.41 0.032

Lysine 20.65 1.41 0.030 Creatinine 20.78 1.51 0.054 Creatinine 0.62 1.37 0.062

GDP 20.41 1.34 0.044 IMP 20.76 1.43 0.078 Lactic acid 0.50 1.37 0.044

Threose 20.81 1.32 0.052 Malonic acid 20.29 1.40 0.088 Succinic acid 0.88 1.35 0.054

Glycerol 20.83 1.30 0.082 ATP 20.63 1.33 0.114 Methylglutamate 0.69 1.33 0.143

GTP 20.35 1.29 0.061 Glycerol 20.42 1.32 0.123 NAD 0.22 1.33 0.057

NAA 20.42 1.28 0.067 Adenine 0.50 1.28 0.135 Adenosine 1.39 1.32 0.063

Glutamic acid 20.96 1.28 0.072 Fumaric acid 0.21 1.27 0.412 Adenine 0.70 1.30 0.065

GMP 20.30 1.27 0.078 Inosine 20.61 1.27 0.138 Citric acid 0.69 1.28 0.073

Malic acid 20.55 1.27 0.076 Citric acid 20.31 1.25 0.152 Inosine 1.65 1.24 0.090

Creatinine 20.73 1.25 0.074 ADP 20.46 1.23 0.181 Glycine 1.75 1.23 0.095

Citric acid 21.64 1.21 0.110 Beta- alanine 0.28 1.20 0.175 Aspartic acid 1.42 1.23 0.099

4-guanidinobutyrate 20.58 1.18 0.114 Lactic acid 20.28 1.12 0.216 Glyceric acid 1.33 1.20 0.107

AMP 20.39 1.16 0.115 Nicotinic acid 0.79 1.09 0.318 Glutamine 2.21 1.18 0.155

IMP 20.28 1.16 0.158 Lyxose 20.25 1.06 0.299 Lysine 2.25 1.16 0.122

Beta- alanine 20.57 1.16 0.124 Uracil 20.28 1.00 0.378 THBA 0.95 1.14 0.181

Palmitic acid 0.43 1.15 0.134 Pyrophosphate 0.48 0.97 0.356 Uracil 0.54 1.12 0.143

Urea 1.28 1.13 0.355 GDP/NADP 20.21 0.96 0.413 4-Aminobutyric acid 1.94 1.09 0.165

Cholesterol 22.57 1.05 0.258 O-phosphocolamine 0.30 0.96 0.395 Cytidine/Hypoxanth 0.81 1.02 0.195

Succinic acid 20.58 1.04 0.179 Methylglutamate 20.39 0.92 0.325 Glycolic acid 0.82 1.02 0.205

Stearic acid 0.46 1.03 0.194 Glutamic acid 20.35 0.91 0.359 Serine 2.43 1.01 0.258

Glycolic acid 20.26 1.00 0.201 GTP 20.25 0.89 0.413 IMP 0.52 1.01 0.234

Adenosine 0.42 0.99 0.200 Stearic acid 0.55 0.89 0.341 Uridine 0.94 0.97 0.228

Uracil 20.50 0.98 0.224 Iminodiacetic acid 0.60 0.89 0.410 GMP 0.53 0.95 0.246

For each group, the relative values of each metabolite (mean6SD) are the average obtained from three mice. The average basal metabolite values of NTG group were
arbitrarily set at 1 for each group. The value of fold change (FC, log2 of fold change) for each metabolite is relative to the value in aged and gender matched NTG mice.
Metabolites were selected based on VIP values; p values were estimated using Student’s t-test.
doi:10.1371/journal.pone.0032737.t002
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to the formation of amyloid deposits or the onset of memory deficit.

Data analysis using PLS-DA showed distinct metabolomic pheno-

types in brains of PS1, APP and APP/PS1 mice. Metabolomic

signatures of 15 most important metabolites in group separation

included molecules linked to mitochondria and energy metabolism,

such as inorganic phosphates (Pi), creatinine, NAA, AMP,

adenosine, malonic acid, IMP, adenine, b-alanine, lactic acid,

ATP, and glycerol. Metabolic pathway analysis revealed that in all

three FAD mouse models there are significant alterations in the

levels of metabolites involved in energy metabolism including

nucleotide metabolism, mitochondrial Krebs cycle, carbohydrate,

and amino acid metabolic pathways, which is in agreement with

studies conducted in patients and AD mice [67–70]. However,

along with the pathways equally affected in all three FAD mouse

models, we identified metabolic pathways and metabolites that were

affected differentially. Thus, alteration in lipid metabolism and

energy transfer pathway was specifically observed in APP and PS1

mice, while alterations in glycolytic pathway were prevalent in

APP/PS1 mice. Also, mitochondrial Krebs cycle and amino acid

metabolism were affected to a greater extent in APP/PS1 mice

compared to PS1 and APP mice indicating synergistic effects of both

mutations. We have also found that APP/PS1 mice display marked

gender differences with female mice having greater metabolic

disturbances similar to that observed in human AD patients [71].

Discrimination analysis of individualized metabolomic profiles

between single and double mutant FAD mice in simultaneous

comparison identified panels of metabolic biomarkers that have

predictive power for distinction among three groups, i.e. NTG,

PS1 and APP/PS1 and between NTG, APP and APP/PS1 with

different degree of AD progression. Metabolites that were uniquely

affected in APP mice included panthotenic acid while threonate

and ethanolamine were uniquely affected in APP/PS1 mice. Thus,

metabolomic signatures of PS1, APP, and APP/PS1 mice indicate

individual differences and common metabolic traits in disease

development and progression. In all FAD mice, levels of NAA,

allo-Inositol and creatinine, molecules that are currently used for

the diagnosis of mild cognitive impairment and AD in humans

using 1H MRI [37], were also affected indicating similarity with

human AD. Taken together, our data demonstrate the presence of

distinctive changes in mitochondrial motility, dynamics and

morphology that correlate with the changes in the levels of

metabolites reflecting altered energy metabolism and mitochon-

drial dysfunction in brain of FAD mice. These changes are

mutation specific and could be used for an early diagnosis and

monitoring the disease progression. Thus, AD could be viewed as

mitochondrial movement disorder with evolving energetic deficit

epitomized in the panel of metabolomic biomarkers.

Materials and Methods

Animals
Three transgenic mouse lines carrying mutations associated

with FAD were used in the study. The APP mice were

heterozygous transgenic mice (C57B6/SJL, I.D. No. Tg2576) that

expressed mutant human APP695 containing a double mutation

(K670N, M671L) [23]. The PS1 mice were homozygous

transgenic mice (Swiss Webster/B6D2; I.D. No. M146L) that

express mutant human PS1 containing a single mutation (M146L)

[26]. The double transgenic mice, APP/PS1, were produced in

house by crossbreeding of homozygous PS1 and heterozygous APP

mice [28]. The animals were genotyped for the expression of both

transgenes by a PCR method using a sample of mouse tail DNA.

Littermates that did not carry transgenes were used as non-

transgenic control (NTG). All procedures were performed using

humane and ethical protocols approved by the Mayo Clinical

Institutional Animal Care and Use Committee, in accordance with

the National Institute of Health’s Guide for the Care and Use of

Laboratory Animals.

Preparation of neuronal cultures
Preparation and culturing of primary hippocampal (Hip) and

cortical (Ctx) neurons were performed as described previously

[72]. Briefly, mice were anesthetized with isoflurane on gestational

day 17–18 and fetuses were rapidly removed. Fetal brains were

extracted and placed in sterile HEPES- buffered saline (HBS)

(pH 7.3). The hippocampi were dissected from each embryo and

treated separately. Tissue from each embryo was collected for

genotype identification using PCR. Hippocampi were placed in

1 mg/mL papain (Warthington, NJ) in HBS for 20 min at 37uC.

After two washes in HBS, the dissociated tissue was triturated in

Dulbecco’s modified Eagle’s medium (DMEM) containing 10%

Ham’s F12 with glutamine (Gibco/BRL, Grand Island, NY), 10%

heat inactivated fetal calf serum (Hyclone Laboratories Logan,

UT) and 16 pen/strep antibiotic mixture. Cells were counted,

diluted to 36105 cells/mL, and 2 ml of this stock was placed in

each well of a 6-well dish containing glass coverslips coated with

poly-L-ornithine (1 mg/2 mL sterile borate buffer, pH 8.4). Plated

cells were maintained in an incubator with 5% CO2 at 37uC. After

72 h in culture, serum-containing medium was replaced with a

serum-free Neurobasal-based medium (without glutamine, Gibco/

BRL, Grand Island, NY) containing 16pen/strep antibiotic

mixture and 16B27 supplement (Gibco/BRL, Grand Island,

NY). Quantification of neurons and glial cells using specific

antibody staining (GFAP for astrocytes, AB5804, Millipore, and

neuron specific bIII-tubulin, ab18207, Abcam) demonstrates that

neurons represent 95% of cells present on the coverslip. In cases

where experiments required especially pure neuronal cultures,

cells were treated with cytosine b-D-arabinofuranoside (Ara-C,

Sigma, MO) to a final concentration of 2 mM after 3 and 5 days in

culture to suppress proliferation of the glial cells. Such conditions

resulted in obtaining fully developed pure Hip neurons exhibiting

synaptic activity as judged by staining with synapsin antibody (ab8,

Abcam).

Real time imaging of axonal trafficking in live neurons
Experiments with mitochondrial trafficking were performed as

described previously [29]. Briefly, neurons after 7 days in culture

(DIC) were treated for 15 min with TMRM (Molecular Probes,

Eugene, OR) (final concentration 50 nM). TMRM was washed

away with fresh F-12K medium prior to imaging. The

experiments were performed using confocal microscope LSM

510 (Carl Zeiss Inc, Germany) with a Plan-Apochromat 1006 (1.4

na) oil objective. Cells were incubated at 37uC during the time of

recording. All recordings were started five minutes after the

coverslip was placed on the microscopic stage to allow equilibra-

tion of the sample. Laser was set up to 543 nm for excitation;

emission was collected at 585 nm and greater. Axons were selected

based on the lack of branching through the whole length. In some

cases, verification of neurite identity was made by applying specific

antibodies to distinguish dendrites from the axons. A total of 600

images were recorded per cell. Images were taken every 1 sec at

highest scan speed (0.9 sec) for 10 min. Three different cells were

imaged from one coverslip. Movies were analyzed using LSM 510

software that allowed animation of 600 images into a ‘‘movie’’.

Along with the channel that recorded fluorescence images of

moving mitochondria, we recorded axonal movement of the

vesicles that were clearly visible in the bright field and were

not stained with TMRM. For analysis of axonal trafficking of
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mitochondria and other vesicles, each organelle was traced from

the first frame of the movie to the last. We recorded time and

distance that particular mitochondrion traveled in axons, and

calculated velocities in anterograde and retrograde directions. We

also analyzed the pattern of motion for each mitochondrion. Thus,

we estimated whether Mito moved in smooth or stop-and–go

mode, what the distances were that Mito covered between stops,

and how often did it stop and change direction. We also estimated

the fraction of time each Mito spent in motion or stationary state

during the time of observation. Data were analyzed for each

genotype. At least 22 neurons from 3–5 independent platings were

analyzed for each genotype. In some cases, axonal trafficking was

analyzed using analytical software Analyze where each Mito was

traced through all 600 frames producing kymographs (Figure 1D).

NMDA treatment
Primary Hip or Ctx neurons (E17) from WT mice were plated

as described above. Six days after plating, neurons were switched

to DMEM medium without Ca2+ and Mg2+ ions. Cells were

treated with different doses of NMDA (1–80 mM) for 5 min. Cells

were washed 36 with (DMEM without Ca2+, Mg2+) media and

returned to the incubator for 24 hrs. Cells were scraped and spun

down; medium was aspirated; and cells were re-suspended in

100 ml of fresh DMEM medium. Cell viability was examined using

trypan blue staining. Experiments were repeated four times in

triplicates with different neuronal platings.

Immunohistochemistry
The brains from one-day old neonatal APP, PS1, APP/PS1 and

NTG mice were immersion fixed with neutral-buffered 10%

formalin. Twenty-five micron sections were cut on a cryostat and

thaw-mounted on gelatin coated slides. Three sets of adjacent

sections from each mouse underwent immunohistochemistry with

two different anti-fibrillar Ab mouse monoclonal antibodies (4G8,

1:1000, SIG-39220; 6E10, 1:1000, SIG-39320; Covance Research

Products, Berkeley, CA) and an anti-oligomeric Ab rabbit

polyclonal antibody (A11, 1:5000, AB9234; Chemicon/Millipore,

Temecula, CA) using standard ABC immunoperoxidase methods

(mouse monoclonal - Vector M.O.M. Peroxidase Kit, PK-2200;

rabbit polyclonal – Vectastain Elite ABC, PK-6101; Vector

Laboratories, Burlingame, CA). The sections were dried overnight

in an oven at 37uC. The sections were then rehydrated with 0.3%

Triton X in phosphate-buffered saline (PBST). Endogenous

peroxidase activity in the sections was quenched by reacting with

0.5% H2O2 in PBST for 30 min. The sections were blocked with

M.O.M. blocking solution (mouse monoclonal) or 10% goat serum

(rabbit polyclonal) in PBST for 60 min. The sections were

incubated with the primary antibody at the designated dilution

in 0.1% BSA/0.3% Triton-X/PBS overnight at 4uC. The second

day, sections were rinsed twice with PBST for 5 min each and

then incubated with the appropriate biotinylated secondary

antibody at a dilution of 1:250 for 60 min. After rinsing twice in

PBST for 5 min each, sections were incubated with the ABC

reagent for 60 min and then rinsed twice in PBS (minus 0.3%

Triton X-100) for 5 min each. Sections were reacted with

peroxidase substrate (VIP; SK-4600; Vector Laboratories) for an

equal amount of time and were then rinsed three times in tap

water for 5 min each. Sections were then dehydrated with

successive changes of ethanol and xylene and coverslipped.

Densitometry measurements
Using grayscale images with black equal to 0 and white equal to

255, the mean gray level intensity was measured in three

100 mm6100 mm reticles in cortex and CA1 hippocampal subfield

of neonatal NTG, PS1, APP, and APP/PS1 mouse brain. All

histochemical conditions, as well as microscope and camera

settings were kept constant between all brain sections. The

intensity values were normalized against the background intensity

of the bare glass slide adjacent to the tissue sections. The

normalized values are expressed as ratios with lower values

indicating darker, more intense antibody staining and therefore

higher levels of Ab. The normalized intensity ratios for 4G8

immunostaining of Ab for the cortex and CA1 of the NTG mouse

brain were 0.9560.01 (mean 6 SEM) and 0.9460.01, respec-

tively. The normalized intensity ratios for the cortex and CA1 of

the PS1 mouse brain were 0.9360.01 and 0.9360.00, respective-

ly. The normalized intensity ratios for the cortex and CA1 of the

APP mouse brain were 0.9260.00 and 0.8960.00, respectively.

The normalized intensity ratios for the cortex and CA1 of the

APP-PS1 mouse brain were 0.8660.01 and 0.7560.01, respec-

tively. The normalized intensity ratios for A11 immunostaining of

oligomeric Ab for the cortex and CA1 of the NTG mouse brain

were 0.9360.01 (mean 6 SEM) and 0.9360.01, respectively. The

normalized intensity ratios for the cortex and CA1 of the PS1

mouse brain were 0.7760.00 and 0.8160.00, respectively. The

normalized intensity ratios for the cortex and CA1 of the APP

mouse brain were 0.8060.01 and 0.8160.00, respectively. The

normalized intensity ratios for the cortex and CA1 of the APP-PS1

mouse brain were 0.7060.00 and 0.6860.00, respectively.

Western blot analysis
Expression of mitochondrial fission and fusion proteins was

detected using the following antibodies: rabbit polyclonal Opa1

(1:1000, Novus Biologicals), mouse monoclonal Opa1 (1:1000, BD

Transduction Laboratories), mouse monoclonal Dlp1 (1:1000, BD

Transduction Laboratories), chicken Mfn1 (1:1000, Novus Bio-

logicals), rabbit polyclonal Mfn2 (1:1000, Sigma-Aldrich), mouse

monoclonal Mfn2 (1:1000, Abnova), rabbit polyclonal Fis1 (1:500,

Alexis Biochemicals), and mouse monoclonal Tim23 (1:1000, BD

transduction Laboratories). Tissue extracts were prepared from

either the whole brain or from dissected cerebellum, cortex and

hippocampus from APP/PS1, PS1, APP and NTG mice 11–12

months old. Tissue was homogenized and lysed using 16 RIPA

Buffer plus inhibitors. 20 and 40 mg of protein from the same

sample was loaded in every well. Proteins were separated by SDS-

PAGE using 4–20% Criterion Tris-HCl gels (Bio-Rad). Proteins

were visualized by fluorophores conjugated with secondary

antibodies (ZyMaxTM Goat Anti-Rabbit IgG (H+L) CyTM 5

conjugate and/or Alexa Fluor 488 goat anti-mouse IgG (H+L),

Invitrogen) and analyzed using a PharosFX Plus Molecular

Imager (Bio-Rad).

Estimation of mitochondrial mass and activity
NTG, APP, APP/PS1 and PS1 mice 7 months old were

sacrificed by decapitation, brains were quickly removed and

placed in ice-cold Krebs-Ringer Bicarbonate Buffer (KRB)

pH = 7.3 [73]. Brains were embedded in 2.5% agar and cut

coronally by Vibratome into 50 mm-thick slices. Each brain slice

was incubated for 15 min at RT in either KRB alone or KRB

containing MitoTracker Green (MTG) and MitoTracker Orange

(MTO) (both from Molecular Probes) as described in [34]. Tissue

slices were washed in KRB and imaged using LSM 510 confocal

microscope (406 lens; MTG, ex 490/em 516 nm; MTO, ex 551/

em 576 nm). Estimation of MTG and MTO fluorescence

intensities was done using LSM Physiology software. The ratios

between MTG and MTO fluorescence were taken as a measure of

mitochondrial activity. At least five images for each genotype were

taken into analysis.
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Electron microscopy
For conventional electron microscopy, animals were perfused

with 4% paraformaldehyde, brains were removed and post-fixed

in Trump’s solution overnight. Next day, Hip (CA1 region) was

dissected from each brain and subjected to EM staining. CA1 Hip

tissue was incubated in 1% osmium tetroxide, dehydrated in a

graded series of ethanol and embedded in Quetol 651 (Ted Pella,

Inc). Thin sections (0.09–0.1 mm) were cut parallel to the ventral

surface using a diamond knife (Diatome US) and an Ultracut E

microtome (Reichert-Jung, Wien, Austria). Sections were collected

on copper grids, post-stained with lead citrate and viewed at

,80 kV with a JEOL 1400 transmission electron microscope

(JEOL USA). Three to five randomly selected micrographs per

each age and genotype were analyzed by blinded investigator. The

following parameters were estimated: the number of mitochondria

with abnormal shape, the number of mitochondria per neuropil,

neuropil length, number of mitochondria per neuropil length, and

the average length of mitochondria. The following mice were used

for the EM examination: APP/PS1, PS1, APP and NTG of 8, 12,

24, 30, 33, 40, 45 and 64 weeks of age.

Sample preparation and metabolomic analysis
Metabolic signatures were generated in three female NTG, PS1

and APP mice 36 weeks old, and in the groups of three female and

three male NTG and APP/PS1 mice 16 weeks old. Adult mice

were sacrificed; brains were rapidly removed; Hip tissue was

dissected and flash-frozen in liquid nitrogen. Tissue was pulverized

under liquid N2 and extracted in a solution containing 0.6 M

HClO4 and 1 mM EDTA [74,75]. Extracts were neutralized with

2M KHCO3 and used for metabolomic analysis. For gas-

chromatograph/mass-spectrometer (GC-MS) analysis, 100 mL of

extract was transferred into Eppendorf tube and spiked with 5 mL

internal standard (IS), myristic-d27 acid, (1 mg/mL) at ambient

temperature. After gently vortexing, samples were completely

dried in a SpeedVac concentrator. The samples were subsequently

methoximated using 20 mL of a 20 mg/mL solution of methox-

yamine hydrochloride in pyridine at 30uC for 90 min and then

derivatized using 80 mL of N-methyl- N-trimethylsilyltrifluoroace-

tamide with 1% trimethylchlorosilane (MSTFA+1% TMCS,

Pierce) at 37uC for 30 min [76]. Metabolite levels were

determined using GC-MS (Hewlett-Packard, HP 5980B) with

DB5-MS column and HPLC (Hewlett-Packard, series 1100) with

Mono QTM column (GE Healthcare Bio-Sciences AB) using a

triethylamine bicarbonate elution buffer (pH 8.8), and a reverse

phase C-18 column using a phosphate buffer, tetrabutylammo-

nium sulfate and methanol mixture [77–79]. GC-MS spectra were

deconvoluted using AMDIS software, after that SpectConnect

software was used to create metabolite peaks matrix [80,81]. The

Agilent Fiehn GC/MS Metabolomics RTL Library was used for

metabolite identifications. The matrix data were exported to

SIMCA-P+ software (v12.0, Umetrics, Umea, Sweden) for

multivariate data analysis. Unsupervised principal component

analysis was run to detect any innate trends and potential outliers

within the data. Supervised partial least squares discriminant

analysis (PLS-DA) was performed to obtain additional information

on differences in the metabolite composition of groups. PLS-DA

models were calculated with unit variance scaling, and the results

were visualized in the form of score plots to show the group

clusters. The VIP (variable importance in the projection) values

and regression coefficients were calculated to identify the most

important molecular variables for the clustering of specific groups.

The PLS-DA model was validated by comparison to the

classification statistics of models generated after random permu-

tations of the class matrix [82,83].

Statistical Analysis
Statistical analyses of means for more than two groups were

performed using one-way analysis of variance (ANOVA) with the

categories of genotype and age as independent factors followed by

the Newman-Keuls post-hoc test for multiple comparison. For

analyses of means involving only two groups with a sample size

n,30, the F-test was used to determine if the variances between the

two groups were significantly different. For samples with a

significant difference in variance, the Welch’s t test was applied.

Student’s t test was applied for the samples with an insignificant

difference in variance of where n$30. The null hypothesis was

rejected at the 0.05 level. All statistical computations were carried

out using Prism (Graphpad Software). Results for the vesicular

motility and length are expressed as the mean 6 S.D. For

multivariate data analysis, unsupervised principal component

analysis (PCA) and supervised PLS-DA were done using SIMCA-

P+ software (v12.0, Umetrics, Umea, Sweden). The details of data

analysis implemented in metabolomic study are described above.

Supporting Information

Movie S1 Axonal trafficking of mitochondria in primary
neuron from NTG mouse. Visualization of mitochondria in

E17 Hip neuron was done using TMRM. 600 frames were acquired

by imaging the axon every second using LSM 510 confocal

microscope. Imaging was done focusing on the axon with the cell

body located at the top of the image. Resulting movie was analyzed

using Analyze, a comprehensive multidimensional medical image

processing, visualization and analysis software package developed

by the Biomedical Imaging Resource of the Mayo Clinic [84]. By

treating the microscope image sequence as a spatial stack of cross-

sectional images, the volume rendering algorithms in Analyze

produce a 3D digital kymograph, allowing the motion of multiple

organelles over a period of time to be visualized in a single static 2D

image. Final kympgraph allows tracing each mitochondrion

through all 600 frames to generate a final profile of movement.

(MPG)

Movie S2 Animated 3D reconstruction of mitochondrial
structure in Hip tissue of APP/PS1 mouse 24 weeks of
age. For 3D reconstruction of the mitochondrial structure, the

grayscale of the individual EM section images was first inverted so

that the organelle became bright objects. The inverted images

were then sequentially co registered using the Normalized Mutual

Information 2D registration program in Analyze [84]. This is an

automated procedure that aligns similar images based on the

statistical distribution of paired pixels compared to the distribution

in either image alone. The inverted, co-registered stack was then

rendered using Maximum Intensity Projection. Each pixel in the

rendered image represents the brightest voxel in a ray from the

viewers’ eye through the entire stack of sections.

(MPG)
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