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Abstract

This paper synthesizes available information on five Category A pathogens (Bacillus anthracis, Yersinia pestis, Francisella
tularensis, Variola major and Lassa) to develop quantitative guidelines for how environmental pathogen concentrations may
be related to human health risk in an indoor environment. An integrated model of environmental transport and human
health exposure to biological pathogens is constructed which 1) includes the effects of environmental attenuation, 2)
considers fomite contact exposure as well as inhalational exposure, and 3) includes an uncertainty analysis to identify key
input uncertainties, which may inform future research directions. The findings provide a framework for developing the
many different environmental standards that are needed for making risk-informed response decisions, such as when
prophylactic antibiotics should be distributed, and whether or not a contaminated area should be cleaned up. The approach
is based on the assumption of uniform mixing in environmental compartments and is thus applicable to areas sufficiently
removed in time and space from the initial release that mixing has produced relatively uniform concentrations. Results
indicate that when pathogens are released into the air, risk from inhalation is the main component of the overall risk, while
risk from ingestion (dermal contact for B. anthracis) is the main component of the overall risk when pathogens are present
on surfaces. Concentrations sampled from untracked floor, walls and the filter of heating ventilation and air conditioning
(HVAC) system are proposed as indicators of previous exposure risk, while samples taken from touched surfaces are
proposed as indicators of future risk if the building is reoccupied. A Monte Carlo uncertainty analysis is conducted and
input-output correlations used to identify important parameter uncertainties. An approach is proposed for integrating these
quantitative assessments of parameter uncertainty with broader, qualitative considerations to identify future research
priorities.
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Introduction

Biological weapons, also known as ‘‘the poor man’s atom bomb’’,

have been included in terrorists’ arsenal because of their capability

of producing mass causalities combined with natural access to the

pathogens, manageable technical challenges and relatively low costs

to launch an attack [1,2,3]. Prior to the 2001 anthrax letter attacks,

identified bioterrorism attacks included the release of Salmonella

typhimurium to eleven restaurant salad bars in the city of Portland in

1984 to influence an election, which caused the infection of 750

people, and the release of B. anthracis spores in Tokyo by the

religious group Aum Shinrikyo between 1990 and 1995, which

failed to infect any people [4,5]. The 2001 anthrax letter attacks

infected 22 people (11 inhalational cases and 11 cutaneous cases

[6]), caused the deaths of 5 people, and cost hundreds of millions of

dollars in clean up costs [7]. The attacks revealed that the U.S.

lacked the guidelines for a quick response to such attacks, as well as

decontamination standards for bioterrorism agents [8].

As a result, research has been undertaken to better understand

the risks resulting from a bioterrorist attack. Sextro et al. modeled

the spread of B. anthracis spores in a hypothetical office suite,

estimated occupants’ exposure, and found that activity-related

resuspension was an important source of human exposure [9]. This

model did not consider environmental decay of the pathogen. While

B. anthracis is a persistent pathogen whose environmental decay rate

can be treated as zero for a short time simulation [10], Sextro et al.’s

model would need to be modified to include environmental

attenuation in order to be used to estimate the fate and transport

of non-persistent biological agents. Price et al. [11] created a

framework to link the degree of contamination in a building to the

risk to the occupants, which could also be used to establish a

decontamination standard if an acceptable risk level is provided. In

addition, Price et al. linked the number of negative samples to the

level of statistical confidence in the determination that the building

had been effectively decontaminated [11]. However, this study did

not provide a mechanistic model to describe the long term fate and

transport and overall mass balance of the released pathogens,

instead using a proportionality relationship to link the short term

surface concentration of deposited pathogens to the short term

concentration of aerosolized ones. Hong et al. [12] modeled the
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distribution of both air and surface-released B. anthracis spores in an

office, and used concentrations found in different environmental

media (i.e., surface, wall, ventilation filter, etc.) to infer future or past

aerosol exposure. At the same time, they applied probability

sampling theory in determining the minimum sampling area

corresponding to certain levels of confidence in meeting allowable

residual risk targets. The variability during sampling recovery and

the potential for clumping of B. anthracis were taken into account.

Besides not including pathogen decay, the above-mentioned studies

quantify only inhalational risk, and omit threats from ingestion and

dermal contact.

While models for B. anthracis have focused on a single pathway,

inhalation exposure, mathematical models have been developed for

influenza that take multiple disease transmission routes, such as

inhalation and ingestion, into account [13,14,15]. Nicas and Gang

introduced a Markov chain model to quantify multiple-pathway

exposure to influenza for a health-care worker who had close contact

with a patient [16]. Three exposure routes were concerned, hand-

mucous membranes, inhalation, and direct projection of pathogen-

containing droplets onto mucous membranes. In a subsequent study,

Nicas et al. applied their model to quantify the relative importance of

different influenza virus exposure pathways, and pointed out that

model uncertainties had significant impacts on the conclusion as to

which pathway is dominant [17]. Atkinson and Wein constructed a

four-person household transmission model to quantify the dominant

transmission route for pandemic influenza [14,15]. Both of the

studies performed analysis on the recognized major transmission

pathways: droplet, airborne, and contacts [18,19]. However, the

above-mentioned studies adopted fixed parameter values in the

computations instead of distributions across possible values, which

does not account for variability and uncertainty. There is evidence

that including uncertainty and variability is important [20,21].

Smieszek compared predictions from a mechanistic exposure model

and empirical data from a contact diary study to analyze the impacts

of different contact intensities and durations. Results showed that

treating all the contacts equally overestimated the expected number

of infected individuals [20]. A study by Julian et al. used Monte Carlo

simulation to analyze variability and uncertainty in the risk due to

nondietary ingestion of rotavirus, relying on a micro-level activity

time series [21], which may inspire future high-resolution microbial

risk assessment [22].

These multiple pathway models have been applied to common

transmissible pathogens but have not addressed Category A

agents. They have generally sought to identify which pathways are

of concern, rather than informing the development of quantitative

standards for response actions. To address the need for such

quantitative standards this paper synthesizes available information

on five Category A pathogens to develop a framework for relating

environmental pathogen concentrations to human health risk. The

five pathogens considered are: B. anthracis, Y. Pestis, F. tularensis,

Variola major, and Lassa. Properties of each of these pathogens are

described below.

B. anthracis is a Gram-positive, facultatively anaerobic, rod-shaped

bacterium of the genus Bacillus. It is the causative agent of anthrax,

an acute disease in humans and animals, which is highly lethal in

some forms. B. anthracis is one of only a few bacteria that can form

long-lived spores. Y. pestis, the causative agent of plague, is a Gram-

negative facultative anaerobic bipolar-staining bacillus bacterium

belonging to the family Enterobacteriaceae. Plague may be manifested

in one of three forms: bubonic, pneumonic, and septicemic plague

[23]. Francisella tularensis is a pathogenic species of Gram-negative

bacteria that causes the zoonotic disease tularemia. F. tularensis is

reported to be one of most infectious organisms known. It is an

intracellular pathogen, replicating mainly in macrophages, and has

also been reported in amoebae [24]. Variola major is the causative

agent of smallpox. There has been no effective treatment developed

for this disease, which has an average 30% mortality rate. Lassa

virus, the causative agent of one type of hemorrhagic fever, infects

more than 200,000 people per year causing more than 3,000 deaths

with a mortality rate of about 15% among the hospitalized cases

[25]. The selected Category A pathogens represent a range of

environmental persistencies from a pathogen with a very low decay

rate (B.anthracis), to several with high decay rates (Y.Pestis, F. tularensis,

and Lassa), as well as one with a moderate decay rate (Variola major).

The objective of this study is to expand the framework that

Hong et al. [12] developed for linking environmental concentra-

tions of B. anthracis with human health risk by 1) including the

effects of environmental attenuation, 2) considering a variety of

different pathogens instead of a single one (B. anthracis), 3) taking

account of contact exposure (ingestion or dermal risk) as well as

inhalational exposure, and 4) conducting an uncertainty analysis

and identifying key input uncertainties. Both detailed and reduced

form solutions to the equations linking risk to environmental

concentrations are developed, which could benefit in making risk-

informed response decisions, such as determining when prophy-

lactic antibiotics should be distributed, and whether or not a

contaminated area should be cleaned up. Monte Carlo methods

are used to assess uncertainty in the results and identify important

uncertainties in input parameters so that future research may be

directed towards reducing them.

Methods

2.1 Fate and transport model
In this study, an occupant is modeled as continuously present in

a one-room office with a heating, ventilation, and air conditioning

(HVAC) system (Figure 1). This person has the chance of inhaling

aerosolized pathogens and ingesting pathogens deposited on the

touched surfaces through the surface-hand-mouth transmission

route. For B. anthracis, the ingestion risk is replaced by cutaneous

risk since this was a more important exposure route than ingestion

in the 2001 anthrax letter attacks [6]. The room is modeled as a set

of completely mixed compartments. This assumption fails to

capture localized areas of high risks, such as a high concentrated

puff of pathogens right after the initial release. Thus, the approach

developed here is more appropriate for situations somewhat

removed in time and space from the initial release, where mixing

has occurred and concentrations are relatively uniform.

The governing equation for the fate and transport of released

pathogens is presented in Equation 1:

dM(t)
��!
dt

~K
!

M(t)
��! ð1Þ

and its initial conditions (M(0)
���!

) is defined as:

M(0)
���!

~M0
�!

The general solution to Equation 1 is expressed as:

M(t)
��!

~L
!

exp ({N
!

t)( L
!{1

M(0)
���!

) ð2Þ

where N
!

and L
!

contain the eigenvalues and eigenvectors after

eigendecompositing the transfer matrix K
!

based on Equation 3 [26]:
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Figure 1. Schematic of model. (HVAC stands for heating ventilation and air conditioning. a. cross section view, b. plan view).
doi:10.1371/journal.pone.0032732.g001
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K
!

~L
!

N
!

L
!T

ð3Þ

For the fate and transport model used in this paper, M(t)
��!

is a

vector representing the numbers of pathogens in each of 10

modeled states with subscripts: 1) air (indoor air, Mair), 2) ts

(horizontal touchable surfaces from which spores may be

transferred to human hands, Mts), 3) tf (tracked floor from which

spores may be re-suspended by walking or other activities, Mtf), 4)

utf (untracked floor from which there is no re-suspension, Mutf), 5)

w (walls, Mw), 6) f (HVAC filter, Mf), 7) n (the nasal passages, Mn),

8) h (hands of an occupant of the office, Mh), 9) ec (all areas

external to the room, Mec), and 10) d (decayed pathogens,Md).

Thus Equation 1 can be detailed written as:

Mair

.

Mts

.

Mtf

.

Mutf

.

Mw

.

Mf

.

Mec

.

Mn

.

Mh

.

Md

.

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

~

{A m m 0 0 0 0 0 0 0

lts {(mzctszrshfsh) 0 0 0 0 0 0 rhsfhs 0

ltf 0 {(mzctf ) 0 0 0 0 0 0 0

lutf 0 0 {cutf 0 0 0 0 0 0

lw 0 0 0 {cw 0 0 0 0 0

ef p Q
V

0 0 0 0 {cf 0 0 0 0

(1{p) Q
V

0 0 0 0 0 {cec 0 0 0

Inhen
V

0 0 0 0 0 0 {cn 0 0

0 rshfsh 0 0 0 0 0 0 {(chzrhsfhs) 0

cair cts ctf cutf cw cf cec cn ch 0

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

Mair

Mts

Mtf

Mutf

Mw

Mf

Mec

Mn

Mh

Md

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

ð4Þ

where

A~{½(1{ef )p{1�Q
V

z(ltszltf zlutf zlwz
Inhen

V
zcair) ð5Þ

The solution to this set of ordinary differential equations gives

the concentration of pathogens in the 10 different compartments

as a function of time. Because the system is linear, masses in

different compartments will be proportional to the release

quantity. Thus, solving the system gives the constant of

proportionality so that measured surface concentrations can be

related to release quantity and risk to occupants. In Equation 4,

the deposition from the air compartment to compartment i is

modeled as a first-order process with rate constants of li (with i

values as described above). A second source of removal is by the

HVAC system. The total air flow rate through the HVAC system

is denoted by Q (units of m3/s), p (dimensionless) is the fraction of

total air flow that is recirculated into the building by the HVAC

system, ef (dimensionless) is the efficiency of the filter at removing

particles, and V is the volume of the room (m3). Removal to the

occupants’ nasal passages is also modeled with Inh (m3/s),

denoting the breathing flow rate, and en (dimensionless), the

efficiency of the nasal passages at removing particles. Removal by

losing viability in each compartment is modeled as a first order

rate with separate decay rates, ci. However, due to limited data,

only two types of decay values are available (Table 1), 1) the air

decay rate (cair), which is used for the air and external

compartments, and 2) the fomite decay rate (cfomite), which is

Table 1. Category A Pathogen’s Environmental Persistency.

Pathogen

Averaged
decay rate in the
air (cair) (hr21)

Range of decay
rate in the air
(cair) (hr21)a Condition Source

Averaged decay
rate on fomite
(cfomite) (hr21)

Range of decay
rate on the fomite
(cfomite) (hr21)a Condition Source

B. anthracis 8.1661025 (1.1161025,
1.9761024)

NA [43,44] 3.3661025 (1.9261025, 4.6461025) NA [43,45,46,47]

Y. pestis 2.75 (2.10, 3.49) T = 26uC,
rH = 20–87%

[48] 4.5561021 (0.04, 1.24) T = 11–22uC, rH = 30–55%
metal, steel, glass, paper,
and Polyethylene

[49,50]

F. tularensis 3.27 (0.55, 9.20) T = 20–40uC,
rH = 85%

[51,52,53] 2.3961021 (0.01, 0.46) T = 25–37uC, rH = 10–
100% on metal

[50]

Variola major 4.5561022 (1.0061022,
1.3061021)

T = 10–34uC,
rH = 20–80%

[54,55] 6.8961023 (5.4561023, 9.9561023) T = 25–37uC, rH = 3–96%
on glass

[56]

Lassa 2.6 (0.78, 4.14) T = 24–28uC,
rH = 30–80%

[57] 7.6761021b (0.68, 0.92) T = 20uC, rH = NA on
aluminum

[58]

aUniform distribution is assumed between the maximum and minimum values.
bDue to the lack of information on Lassa, the average of the decay rates of Bunyaviridae hantavirus, Sicilian virus Sabin, and Crimean-Congp on fomites are used for
Lassa.
doi:10.1371/journal.pone.0032732.t001
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used for the loss of viability in other media. Resuspension from the

tracked floor due to occupants walking and other activities is also

modeled as a first order process with rate constant m (units of s21).

The interactions between human and fomites are represented by

hand-surface (rhs) and surface- hand (rsh) contact rates, as well as

mass transfer fractions between hand to surface (fhs), surface to

hand (fsh), and hand to mouth (fhm).

The deposition rates can be expressed in terms of parameters

representing the indoor air flow conditions [27,28,29]:

ltf (utf )~
Atf (utf )

V
|

v

1{e
{ pv

2
ffiffiffiffiffiffiffiffiffiffiffi
Ddif ke
p ð6Þ

lw~
Aw

V
|

2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ddif ke

p
ð7Þ

v~
gddia

2(rp{rair)

18mair

ð8Þ

where Atf(utf) is the surface area of the tracked or untracked floor,

Aw is the surface area of the walls, Ddif is the particle’s diffusivity,

ke is turbulence intensity, v is particle settling velocity, which is

given in Equation 8 as a function of the gravitational constant (g),

the particle’s diameter (ddia), the viscosity of air (mair), the density of

the particle (rp), and the density of air (rair).

2.2 Release scenarios
Two pathogen release scenarios are considered. In the first

scenario, pathogens are released to the air compartment. The

occupant directly inhales aerosolized pathogens and ingests the

deposited ones via surface-hand-mouth contacts. Environmental

concentrations measured at the end of the exposure period are used

to characterize the risk from the past aerosol release, and as such it is

termed the retrospective scenario. In the second scenario, pathogens

are initially present on the touched surfaces, where they may be

ingested by surface-hand-mouth contacts. In addition, human-

caused resuspension introduces the pathogens into the air where

they can be inhaled by the occupant. Environmental concentrations

at the beginning of the exposure period are used to predict the

future risk and as such the scenario is termed the prospective

scenario. This scenario addresses the residual risk present after

aerosolized particles have had the opportunity to deposit onto

surfaces, a key issue in establishing a decontamination standard.

The exposure dose (ddose) is composed of two sources: inhalation

and ingestion. Based on Equation 9, the inhalation dose is

obtained by integrating the inhalation rate (Inh) and the

pathogen’s air concentration (Cair) over the total exposure

duration (the exposure begins at t1 and ends at t2, while the agent

is introduced at t = 0), and the ingestion dose equals the integral of

the hand-mouth contact rate (rhm), mass transfer fraction from

hand to month during each contact (fhm), the involved area of a

human hand (Ah), and the pathogen’s concentration on the hand

(Ch) over the same exposure period:

ddose~Inh

ðt2

t1

Cair(t)dtzAhrhmfhm

ðt2

t1

Ch(t)dt ð9Þ

For dermal contact, ingestion dose is replaced by the total amount

of pathogen transferred to the hand from touched surfaces:

ddose~Inh

ðt2

t1

Cair(t)dtzrshfsh

ðt2

t1

Cts(t)dt ð10Þ

This equation is applied for B. anthracis instead of Equation 9,

where Cts is pathogen’s concentration on the touched surface.

However, separate dose-response coefficients are used for the

different exposure pathways for anthrax. The dermal dose-

response parameter is tuned so as to produce equal numbers of

dermal and inhalation cases for the aerosol release scenario, as was

observed in the 2001 attacks.

2.3 Dose-response functions
The exponential (Equation 11) and beta-Poisson (Equation 12)

dose-response models, which have been widely used in microbial

risk assessment [30], are used in this study:

P(ddose)~1{e{Rddose ð11Þ

P(ddose)~1{ 1z
ddose

N50

| 2
1
a{1

� �� �{a

ð12Þ

In Equations 11 and 12, P(ddose) is the probability of positive

response (infection, illness, or death) for a population average dose,

which allows for Poisson variability in individual exposure [31]. R

is the parameter of the exponential dose-response model, N50, and

a are the parameters of the beta-Poisson model. When the risk is

relatively small, a first-order Taylor series expansion can be used

to approximate Equations 11 and 12 as [12]:

P(ddose)&Rddose ð11aÞ

P(ddose)&
a

b
ddose~

a

N50
(2

1
a{1)ddose ð12aÞ

This transformation can simplify the low dose risk estimation,

which is where this approach is intended for use (i.e., for areas

removed from the initial release where concentrations will be

relatively uniform over spatial scales of interest. When the exposure

dose is high, the full model (Equations 11 and 12) should be used.

2.4 Linking pathogen concentrations to risk
2.4.1 Retrospective scenario. Given that it is rarely possible

to have real-time pathogen air concentrations during a biological

attack, the objective in the retrospective scenario is to use surface

samples to infer what exposure and risk resulted from the release.

Thus, the following discussion develops relationships between

pathogen concentrations on surfaces and average dose.

After an aerosol release, the amount of pathogens in the air

(Mair), on the touched surfaces (Mts), and on occupants’ hands (Mh)

can be acquired by solving Equation 13, which is obtained by

separating out the compartments which exchange microbes from

Equation 4, with the resuspension process omitted because of its

minimal impact over the short time period required for the aerosol

release to disperse (hours) [12]:

Mair

.

Mts

.

Mh

.

0
BBB@

1
CCCA~

{A 0 0

lts {(ctszrshfsh) rhsfhs

0 rshfsh {(chzrhsfhs)

0
B@

1
CA Mair

Mts

Mh

0
B@

1
CA ð13Þ

whose initial conditions are:
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Mair(0)

Mts(0)

Mh(0)

2
64

3
75~

Mair0

0

0

2
64

3
75

Based on the general solution listed in Equation 2, the solutions

to Equation 13 are:

Mair~Mair0e-At ð14Þ

Mts~

BMair0

V

W

eAt
{

((C{F )Wz2BeE) sinh ( H
2

t){HWcosh( H
2

t)

He
CzF

2
t

( )
ð15Þ

Mh~
BEMair0

2HV

HzY

e
(CzFzH

2
)t

{
H{Y

e
(CzF{H

2
)t

{2He{At

( )
ð16Þ

where sinh and cosh are hyperbolic trigonometric functions. The

coefficient A is defined by Equation 5 above while the coefficients

B to F, H, V, W, and Y are defined below:

B~lts

C~ctszrshfsh

D~rhsfhs

E~rshfsh

F~chzrhsfhs

H~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(C{F )2z4eE

q

V~eE{A2zACzAF{CF

W~A{F

Y~2A{C{F

Combining Equations 14, 16 with Equation 9 (10), the total

exposure dose from time t1 to t2 can be written in terms of the

amount of pathogens released (Equation 17).

doset~doseinhzdoseing

~

ðt2

t1

(
Inh

Vol
MairzrhmfhmMh)dt

~Mair0
2BEH

CzF

(C{2AzF ){ 2(C{AzF )H
Hz(CzF )½ �

2e
CzFzH

2
tHV

"(

{
(C{2AzF ){ 2(C{AzF )H

H{(CzF )½ �

2e
CzF{H

2
tHV

#
{(

G

A
{

BEH

AV
)e{At

)�����
t2

t1

ð17Þ

where the coefficients represented by G and H are listed below:

G~
Inh

V

H~rhmfhm

The overall risk is composed of inhalation risk and ingestion

risk. In this work it is assumed that these two types of risk are

independent of each other; in this case the overall risk is expressed

in Equation 18:

Riskoverall~1{(1{Riskinh)(1{Risking) ð18Þ

In reality there is little evidence to assess the joint effects of

inhalation and ingestion exposures, but this assumption is

probably most defensible at low risk levels when the probability

of successful colonization by both routes is low.

Equations 17 and 18 solve the forward problem of estimating

risk from a known release amount. The inverse problem is to

estimate the release amount from measured environmental

concentrations. The amount of released pathogens (Mair0), can

be estimated by Equation 15, if the number of pathogens

deposited on the touched surfaces (Mts) can be acquired from

surface sampling and the time after release (t) is known. However,

the mass on touched surface is influenced by many parameters

such as touch rate and transfer rate, which are generally highly

uncertain. The mass on the untracked floor is most suitable for

estimating the release quantity as it provides an integration of air

concentration values over time without human interference. This

can be obtained by taking the expression from the fourth row of

Equation 4 and substituting Equation 14 for Mair:

dMutf

dt
~lutf e{AtMairo{cutf Mutf ð19Þ

and integrating it to give the release quantity, where tm stands for

the elapsed time when measurements are taken:

Mairo~
Mutf (A{cutf )

lutf e
{cutf tm{e{Atm

	 
 ð20Þ

Once the release quantity (Mair0) is known, Equations 11, 12,

17, and 18 can be used to estimate risk. Concentrations in the

compartments omitted from Equation 13 (i.e., the compartments

that do not transfer microbes to other compartments, namely

HVAC filters, walls, nasal passages, and the external compart-

ments) can be obtained by integrating the produce of the air

concentration and the transfer rates from the air over time.

Prioritizing Risks of Category A Pathogens
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2.4.2 Prospective scenario. The prospective scenario

considers a case where the initial aerosol release has dissipated.

However, the time scale for attenuation of microbes can be much

longer on surfaces than in the air (i.e, pathogens on surfaces are not

subject to attenuation by deposition or by air exchange with the

exterior of the building). Thus much of the longer term risk to

occupants will come from microbes on surfaces as surface can both

serve as a reservoir for re-suspension into the air compartment and for

exposure via fomite contact. In such cases surfaces could be sampled

to assess whether a building is suitable for re-occupancy. Thus, the

prospective scenario can be thought of as a re-occupancy assessment.

The initial conditions are that Category A pathogens are present on

the touched surfaces in a quantity equal to the area of the touched

surfaces (Asurf) multiplied by the corresponding concentration (Csurf),

which would be estimated from surface sampling (Equation 21). Thus

the initial conditions can be expressed as:
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Mair

Mts

Mtf

Mh

2
6664

3
7775~

0

CtsAts

0

0

2
6664

3
7775 ð21Þ

Due to the longer time scale associated with the prospective

scenario, human-caused resuspension cannot be omitted. Thus,

the tracked floor compartment is included in the system of

equations to be solved:
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After acquiring the concentrations of the pathogen on different

surfaces over time (based on Equation 2), the total exposure dose

can be calculated via integration. To conservatively estimate

exposure dosage, one may use the maximum exposure duration

which is achieved if t1 = 0 and t2 = ‘.
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The equations derived in this section provide the exposure input

for dose-response models (Equations 11 and 12) and thereby link

the surface concentration of a pathogen with an occupant’s future

risk. This procedure is shown in Information S1, and Equations 24

and 25 (25a is for ingestion risk, 25b is for dermal contact risk;

schematic figures are provided in Figures S1 and S2) are the

resulting approximate solutions for the exponential dose-response

model at low doses (i.e., where the Taylor series approximation is

accurate. A Comparison between approximated equations and

simulated results is provided in Information S1, table 1):
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where rhmfhm is set to 1 for dermal contact, A is defined by

Equation 5, and Qpros, and Qhand are given by:

wpros~mzctszrshfsh ð26Þ

whand ing~rhmfhmzctszrhsfhs ð27aÞ

whand dermal~ctszrhsfhs ð27bÞ

For the beta-Poisson model these equations would hold at low

dose, except that R would be replaced by a/b. At higher doses

(where the Taylor series linearization does not hold) one would

compute the exposure dose using Equations K and N from
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Information S1, and then input this dose into the appropriate dose

response model.

2.5 Model Inputs
Environmental decay rates, best fit dose-response models, and

dose response parameters for different pathogens are listed in

Tables 1 and 2, while other parameters such as the dimensions of

the room, the operational parameters of the HVAC system, the

deposition velocities of released pathogens, etc. are included in

Information S2, table 2). Since the particle size of a pathogen

affects its deposition velocity, resuspension rate, filter removal, and

even dose-response coefficient [32], this study considers four

different aerodynamic diameters: 1 mM, 3 mM, 5 mM, and 10 mM.

Results

Figure 2 presents the inhalation, ingestion and overall risks

associated with the aerosol release (i.e., the retrospective scenario)

of 1 micron Category A pathogens. The overall risk and inhalation

risk match so closely as to be indistinguishable in the graph,

indicating that risk from inhalation is the main component of

overall risk. Particle deposition drives the time required for this risk

to reach steady state. Hence, the time to reach this asymptote is

the same for different pathogens of the same size.

Figure 3 presents different types of risks associated with the

presence of 1 micron Category A pathogens on surfaces (i.e., the

prospective scenario). In this case total risk and ingestion risk

match so closely as to be indistinguishable, indicating that risk

from ingestion (dermal contact for B. anthracis) is the main

component of overall risk. In Figure 3, the time scale over which

each pathogen’s overall risk reaches its asymptote varies over 4

orders of magnitude, which can be explained by the huge

variability among pathogen attenuation rates.

To summarize which exposure routes dominate under which

conditions, Figure 4 presents the ratio of accumulated inhalation

and ingestion exposure. If pathogens are aerosolized (retrospective

scenario), the dominant exposure route is inhalation (see also

Figure 2), because inhalation is more significant for small particle

sizes, which remain in the air longer before settling. If pathogens

are initially present on a surface (prospective scenario), the

dominant exposure route is ingestion (see also Figure 3), and this

trend is most significant for small particle sizes as they are least

prone to resuspension.

3.1 Linking pathogen concentrations to risk
Another application of the model is to link measured pathogen

concentrations on the surfaces with health risk. In the case of a

persistent pathogen, a surface concentration reflects a fraction of

the integral of the air concentration (provided there has been no

resuspension from the surface). In contrast, for a pathogen subject

to environmental decay, surface concentrations reflect both the

integrated air concentrations and surface decay over time. The

relationship between surface concentration and accumulated

(retrospective) dose changes as pathogen concentrations attenuate

on the surface over time. As deposited microbes decay, each

surviving microbe becomes indicative of a larger number having

been present previously. Figure 5, which depicts the retrospective

risk for a concentration of 10 pathogens per m2 on an HVAC

filter, illustrates this. If one finds the concentration of Lassa virus

particles is 10 pathogens per m2 with a diameter of 1 mm on an

HVAC system filter 1 hour after a release, this implies that

occupants were subject to a risk of 1.061023 due to the past

1 hour of exposure. The same concentration found 4 hours after

the release would imply a risk close to 1.061022, as fewer of the

deposited virus remain viable after 4 hours. In reality it may not be

realistic to detect pathogens in the environment on anything

approaching the time scale of several hours, but this serves as an

example of how great a challenge it is to use environmental

samples to characterize risks associated with a pathogen that

attenuates in the environment. In contrast risks associated a given

concentration of B. anthracis (a persistent microbe) are relatively

constant over time.

The results of this modeling can be summarized in a series of

charts that link surface concentration to previous exposure risk for

Table 2. Best Fit Dose-Response Model.

Pathogen
Strain
information

Exposed animal
and route

Dose-response
function type

Best-fit Virulence
coefficienta

Uncertainty ranges of
virulence coefficients
(95% Confidence Interval)

Uncertainty distributions
and parameter used for
virulence coefficientsb Source

B. anthracisc ATCC 6605 Female Hartley guinea
pigs (250 to 300 g),
intranasal

Exponential 7.1561026 (6.2661026, 7.4361026) Normal distribution
(m= 6.9361026,
s= 3.9861027)

[59]

Y. pestis CO92 C57BL/6 mice,
intranasal

Exponential 1.0261023 (9.8761024, 1.0561023) Normal distribution
(m= 1.0261023,
s= 1.9161025)

[23]

F. tularensis SCHU S-4 Monkey (4000–5000 g),
aerosol

Exponential 5.3261022 (5.2861022, 5.3661022) Normal distribution
(m= 5.3261022,
s= 2.2261024)

[60]d

Variola major Yamada Swiss Webster albino
mice (age from 2 hr to 6
days), intraperitoneal

Beta-Poisson 2.3161026 (8.1961027, 4.8061026) Normal distribution
(m= 2.6561026,
s= 1.2161026)

[61]e

Lassa NA pigs (180 to 300 g),
aerosol

Beta-Poisson 3.5861022 (4.1661024, 5.5961021) Log-Normal distribution
(mln = 21.69, sln = 0.80)

[57]f

aIn exponential dose-response model, R is used as virulence coefficient, while in beta-Poisson dose-response model, the ratio of a/b is used as virulence coefficient.
bThe distributions are fitted to bootstrap samples of dose response parameters using @RISK [62].
cThe intestinal risk is replaced by cutaneous risk since the fractions of inhalational anthrax and cutaneous anthrax were the same in the 2001 anthrax letters attacks [6].
dThe data for 2.1 mm particles are used.
eThe data for 4.5 mm or less in diameter are used.
fThe data for the age group of 5 days and above are used.
doi:10.1371/journal.pone.0032732.t002
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different time periods (Figures 6 and 7 for pathogens of B. anthracis

and Y. Pestis, while the rest are provided in the Information S3,

Figures S3, S4, and S5). The difference between curves for the

same pathogen for different time periods reflects the environmen-

tal persistence of the pathogen. A rapidly decaying pathogen will

have widely separated curves to reflect that the same concentration

of pathogens remaining after a longer time period implies a higher

exposure risk (i.e., each pathogen remaining indicates that a

greater number were present during the earlier part of the

exposure period), while a persistent pathogen will have closely

spaced curves as the risk to concentration relationship is relatively

constant over time.

There are essentially two options for addressing prospective (re-

occupancy) risk, restrict access to the contaminated site until

pathogen concentrations decline to acceptable levels through

natural attenuation or actively decontaminate the site. The

selection of a strategy depends on the survival capability of the

pathogens. If the passive decontamination approach is chosen, the

time required depends on the initial concentration to reach a given

residual risk target, but one can get a rough idea of the relative

feasibility of this approach by comparing the time to achieve a

significant concentration reduction across different pathogens. The

time scale for a 6-log risk reduction due to natural attenuation for

different pathogens is shown in Table 3. Values in Table 3 vary by

more than 4 orders of magnitude. B. anthracis has a best estimate of

17,100 days or over 46 years. It is probably more appropriate to

compare the upper bound as pathogens will reside in a wide

variety of different microenvironments and decay rates would be

expected to vary among microenvironments. Decontamination

would only be achieved once even the pathogens in the more

protected microenvironments have decayed. For B. anthracis this

upper bound would be over 82 years. In contrast, a greater than 6

order of magnitude decay of Lassa would occur in less than a day.

These estimates are very sensitive to the assumption of log linear

decay. Deviations from log linear decay are widely reported.

However in many cases a biphasic approach could be adopted in

which a rapid log-linear decay rate is used for the first several days

and a second, lower log-linear decay rate is used subsequently.

While parameters for such biphasic attenuation models are not yet

available for these pathogens, the approach presented here can be

readily adapted to biphasic decay. The relevant equations would

be unchanged, but the mass distribution in each compartment at

the end of the first phase would constitute the initial conditions for

the second phase.

Figure 2. Different types of risks associated with aerosol release of 1 micron Category A pathogens. (Release quantity is 1000
unclumped pathogens. For B. anthracis, the ingestion risk is replaced by cutaneous risk since the fractions of inhalational anthrax and cutaneous
anthrax were the same in the 2001 anthrax letters attacks [6]).
doi:10.1371/journal.pone.0032732.g002
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Table 4 presents the concentrations of pathogens associated

with a 1 in 1000 risk. Concentrations corresponding to different

risk levels can be found by multiplying these values by the desired

risk level/1023, provided that the risk is low enough to be

approximately a linear function of exposure (which is roughly

accurate for risks ,1022). In the retrospective scenarios (the first

two columns), the concentrations become lower (standards would

become more stringent) as the time after the release increases.

Values for B. anthracis presented here are substantially lower than

reported previously [12], as the previous study considered only

inhalation risk, while this study considers dermal risk as well as

inhalation risk for B. anthracis. Even if sampling could be conducted

within 24 hours (which is an extremely optimistic assumption), it

would be difficult to characterize risk at the 1 in 1,000 level for any

of the pathogens, as this would require quantifying pathogens at

levels ranging from 5–7 pathogens/m2 for Variola major to 10–11/

m2 for Lassa.

For the prospective case (columns 3–5), if a pathogen decays

rapidly, most of the risk will attenuate relatively rapidly. In such

cases a much less stringent concentration standard can be set if

access to the building is restricted for a period after the sampling is

conducted. The differences in values for different Category A

pathogens are driven by virulence and environmental persistency,

which are both pathogen dependent. B. anthracis has relatively high

concentrations despite being very persistent, because it has a

relatively low infectivity (proportional to parameter k from dose-

response functions). The strictest concentration values are for F.

tularensis despite its low persistence because of its high infectivity.

The concentrations associated with immediate re-occupancy are

in many cases well below applicable limits of detection. For

example a negative sampling result for Lassa, used to estimate the

prospective risk for immediate occupancy, would not provide

much confidence because the applicable standard of 9 organisms

per m2 is well below feasible detection levels. However, a negative

result coupled with a 24-hour restriction on access would provide

some level of confidence as the standard for this case of 7.366108

organisms per m2 is readily detectable. In this latter case,

demonstrating achievement of a risk target of 1 in a million (a

concentration of 7.366105 organisms per m2 or 73.6 organisms

per cm2) would likely be feasible as well. If one assumes that a

0.09 m2 surface is sampled with a recovery of 0.38 [12,33], and a

detection limit of 10 organisms, then the resulting minimum

Figure 3. Different types of risks associated with surface release of 1 micron Category A pathogens. (Release quantity is 1000
unclumped pathogens. For B. anthracis, the ingestion risk is replaced by cutaneous risk since the fractions of inhalational anthrax and cutaneous
anthrax were the same in the 2001 anthrax letters attacks [6]).
doi:10.1371/journal.pone.0032732.g003
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detectable pathogen concentration is 292 organisms per m2.

Table 5 compares risks associated with this concentration across

different organisms.

3.2 Parameter uncertainties
Another objective of this study is to compare risk and

uncertainties across different pathogens. The development of

explicit formulae for exposure, that is Equations 24 and 25a(b),

greatly simplifies uncertainty analysis. Using the input distributions

listed in Table 1 and Table 2 with Equations 24 and 25a(b), a

Monte Carlo analysis was carried out using to propagate

uncertainties in input parameters through to uncertainties in risks

for different pathogens. Results from retrospective and prospective

scenarios are presented in the form of box plots (Figure 8). The

relative risk presented by different pathogens in an air release are

largely determined by their dose-response parameters, because the

exposure duration in air is limited by the particle deposition rate

(which is the same across different pathogens) rather than the

decay rate. However, air decay rate does have an impact, when

decay is rapid enough to occur over the time scale during which

particulates are typically suspended (minutes to hours depending

on the diameter of the particles) which is the case for Y. pestis, F.

tularensis, and Lassa.,The relative risks for different pathogens in a

surface release are affected by both fomite decay rates and dose-

response parameters. In general the risk from releasing the same

amount of pathogens can be ranked as Lassa, F. tularensis, Y. Pestis,

B. anthracis, and Variola major (in decreasing order). This analysis

does not include secondary transmission risks (which may be

particularly important for all but B. anthracis and F. tularensis [34])

and as such does not capture a critical component of risk for

pathogens, such as Variola major, which are subject to secondary

transmission. Instead it addresses the question as to which

pathogens are subject to the greatest uncertainty in setting surface

concentration standards for primary exposure. Uncertainties

presented by Lassa are highest across most of the cases (extending

over roughly an order of magnitude), indicating that this organism

may be a priority for further study (pending consideration of

factors such as its likely use in an attack).

Correlations between the input parameter values and the model

output (risk) are used to assess the importance of uncertainties in

different parameters. These correlations were computed separately

for each pathogen, for ingestion and inhalation risk for both the

retrospective and prospective scenarios for all four particle sizes

considered. Table 6 summarizes the 3 most important uncertain

inputs by exposure pathway and scenario for each pathogen (with

the range of values across the four particle sizes shown in brackets).

Detailed results are included in the Information S4, tables 3–7).

Uncertainties in mass transfer fraction from surface to hand (fsh)

Figure 4. The ratio of accumulative inhalation and ingestion exposure.
doi:10.1371/journal.pone.0032732.g004
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have major impacts on ingestion dose, and uncertainty in the

breathing rate (Inh) plays an important role in determining the

inhalation dose in the retrospective scenario. In the prospective

scenario, the ingestion dose is most closely related to the mass

transfer fraction from surface to hand (fsh), while the inhalation

dose is most closely related to the pathogen resuspension rate (m2).

As noted above this analysis captures only one aspect of

uncertainty, that of uncertainty in primary exposure. This may be

the appropriate framework for pathogens that are not subject to

secondary transmission as well as for decisions where one seeks to

cut off environmental transmission of a pathogen after a

widespread environmental contamination event. Additional risk

and uncertainty would be applicable for decisions where

secondary transmission is a concern.

Discussion

This study presents an integrated fate and transport, dose-

response model to estimate the inhalation and ingestion risks

associated with environmental pathogens. Scenarios to estimate

the past risk and to predict future risk are introduced. A reduced

form model is developed and used to compare risks and

uncertainties for different pathogens. Efforts to develop an

internet-based platform for the dissemination of microbial risk

assessment tools such as this are in progress (http://wiki.camra.

msu.edu/index.php?title = Main_Page).

In addition, this study also identified important parameter

uncertainties in risk assessment models. Specifically, the input-

output correlations presented in Table 6 indicate which parameter

uncertainties have the greatest effect on risk estimates. However,

several other factors must be considered in settling research

priorities. Whether the high correlation is due to variability or

epistemic uncertainty is one such factor. Parameters such as

inhalation rate and air exchange rate will vary considerably from

person to person and from building to building, respectively.

However, they are not subject to great epistemic uncertainty. The

ranges within these parameters vary have already been well

characterized. Additional research would not reduce the inherent

variability in such parameters but only serve to further

characterize an already well-characterized variability distribution.

Another factor to consider is whether a particular parameter is

common across pathogens such that a study of a single surrogate

organism might be helpful in improving risk assessments for

multiple pathogens. Strictly speaking, any parameter can be

Figure 5. Relationship between risks to the exposed people and pathogen concentration identified from the HVAC filter. (A
concentration of 10 organisms/m2 was found at HVAC filter at different time after an aerosol release.).
doi:10.1371/journal.pone.0032732.g005
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considered pathogen specific. However, some distinctions can

perhaps be made between dose-response parameters and envi-

ronmental decay rates, both of which are observed to vary over

orders of magnitude and depend on very complex pathogen-host

and pathogen-environment interactions, and general physical

transfer rates, such as surface-hand and hand-surface transfer

fractions and re-aerosolization rates, which might vary less from

pathogen to pathogen.

A third consideration is the extent to which an uncertainty is

reducible by further research. Dose-response is an example of an

uncertainty that is difficult to reduce through research. In part this

is due to cost, as such research generally requires vertebrate

animals and extensive biosafety precautions. There are other more

fundamental challenges as well. Laboratory experiments 1) must

be conducted at high doses with limited numbers of animals,

leaving great uncertainty as to the effects of lower doses; 2)

generally do not consider the effects of previous exposures, which

might greatly affect the dose response coefficients; and 3) must be

conducted with animal models that may not accurately represent

human dose response. Despite these limitations, further animal

studies would at least reduce the confidence intervals for the dose-

response parameters used here. These dose-response model

parameter uncertainties are the uncertainties reflected in the

correlations summarized in Table 6 (i.e., applicability of the

animal model to humans and validity of extrapolation from high to

low dose were not addressed by this analysis), which means that

further animal dosing studies would effectively reduce the

uncertainty considered here. Thus, dose-response uncertainty is

considered by the authors to be researchable, although the

difficulties and expense of working with vertebrate animals with

extensive biosafety precautious are significant.

As an example of how one might integrate these different factors,

Table 7 summarizes the authors’ view of future research priorities

based on these different factors. In Table 7, The percentages in the

right hand columns indicate the frequency with which the parameter

was one of the top three sources of uncertainty for different

pathogens (the retrospective scenario percentages are based on

inhalation risk, and the prospective scenario percentages are based

on ingestion risk). A low research priority for research is assigned to

all three parameters subject to variability rather than epistemic

uncertainty: breathing rate, density, and air exchange rate. The

remaining 6 parameters all were judged to be subject to epistemic

uncertainty. The degree of ‘‘Generality’’ (divided into 3 categories in

order of priority: common across pathogens, similarities expected,

pathogen specific) was an important factor in distinguishing among

high and medium priority parameters, with both of the medium

Figure 6. Retrospective risks associated with B. anthracis HVAC concentrations after an aerosol release.
doi:10.1371/journal.pone.0032732.g006
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priority parameters (decay on fomites and decay in the air)

considered to be pathogen specific. Three of the high priority

parameters (resuspension rate, hand surface contact rate, and mass

transfer fraction for surface to hand) were ranked highly partly

because similarities across organisms would be expected making

surrogate research more generally relevant and partly because the

input-output correlations indicated they were important parameters.

Dose-response parameters were given high priority for research

despite being judged both pathogen-specific and difficult to research,

because these parameters were relatively frequently among the

parameters responsible for the greatest uncertainty in risk (13% of

retrospective cases and 20% of prospective cases).

Judgments listed in Table 7 are all based on the authors’

understanding and previous experience. The intent is to provide

an example framework for integrating the computational results

provided by the model with broader considerations that influence

the costs and benefits expected from future research. The sources

of input into this ranking process should be broadened by

scientifically collecting opinions from experts in the future [35].

The fate and transport model is based on the assumption that

pathogens are instantly uniformly mixed in a compartment. This

fails to capture the short-term dynamics associated with the

immediate vicinity of a release. For example, surface samples might

not be reflective of the localized high concentrations associated with

opening a letter containing pathogens and might underestimate risk

in this case. A more detailed approach, such as computational fluid

dynamics, would be a useful extension to this study.

The study also considers risk from a release of only one

pathogen. Little information is available on the effects of mixtures

of pathogens. This approach would be most valid at low risk levels

when interactions among pathogens, such as successful coloniza-

tion by more than one pathogen would be unlikely.

Figure 7. Cumulative retrospective risks associated with Y. pestis HVAC concentrations after an aerosol release.
doi:10.1371/journal.pone.0032732.g007

Table 3. Time scale for a 6-log risk reduction due to natural
attenuation.

Pathogen Time (days)

Min Max Best estimate

B. anthracis 1.246104 3.006104 1.716104

Y. pestis 4.6361021 1.446101 1.27

F. tularensis 1.25 5.756101 2.41

Variola major 5.796101 1.056102 8.386101

Lassa 6.2561021 8.4661021 7.5061021

doi:10.1371/journal.pone.0032732.t003
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Another assumption is that pathogen attenuation rate outside

the host is log linear over time. In reality microorganisms often

exhibit ‘‘tailing’’ in which a small, highly resistant subpopulation

attenuates at a very low rate. Thus the assumption of log-linear

decay may not be health protective. Accordingly the values

calculated here are not intended as suggested environmental

standards. These calculations are provided to illustrate the

suggested approach and to allow a comparison of uncertainties

so that future research can be prioritized.

This study modeled environmental fate and transport using a

small number of homogeneous compartments when in reality

surfaces may vary in characteristics, such as the frequency with

which they are touched, the rate at which pathogens attenuate

(influenced in turn by relative humidity, intensity of ultraviolet

light, etc. [10]), and the ease with which pathogens are re-

aerosolized or transferred to hands from them. Modeling these

heterogeneities may improve our understanding of pathogen fate

and transport in the environment but would require detailed

parameter inputs beyond what are currently available in the

literature. Such heterogeneities might provide protected microen-

vironments that could allow pathogens to persist longer and

present greater health risks than estimated here, which makes this

a priority for future research.

The framework developed here may help inform whether active

decontamination is required after a release. If a pathogen with a

slow environmental attenuation rate is released (i.e., B. anthracis),

then environmental decontamination may be required. In

contrast, if a pathogen with fast environmental attenuation rate

is released (eg., Lassa), the decision maker may opt to restrict

access to the contaminated site until the residual risk declines to a

level judged acceptable for re-occupancy. The choice between

Table 4. Concentrations of pathogens on horizontal surfaces associated with risk of 1023 (Prospective exposure duration = 1 year).

Pathogen Diameter Concentrations (organisms/m2)

Retrospective
sampling 8 hours
after release

Retrospective
sampling 24 hours
after release

Prospective for
immediate
occupancy

Prospective after
24 hours access
restriction

Prospective after
48 hours access
restriction

B. anthracis 1 mM 1.63 1.7361021 2.986101 2.986101 2.986101

3 mM 4.15 4.3861021 6.446102 6.746102 7.096102

5 mM 7.40 7.6561021 1.886103 2.026103 2.206103

10 mM 1.636101 1.42 7.626103 1.236104 2.116104

Y. pestis 1 mM 2.6061023 1.3661026 1.796102 8.996106 4.9161011

3 mM 9.8061023 2.4761026 1.786102 9.276106 5.3461011

5 mM 1.2661022 2.5161026 1.766102 9.466106 5.8761011

10 mM 1.2461022 1.7261026 1.756102 1.816107 2.0361012

F. tularensis 1 mM 2.3961024 2.7061026 1.72 5.086102 1.606105

3 mM 7.6261024 4.2861026 1.72 5.286102 1.736105

5 mM 9.0261024 4.1761026 1.72 5.346102 1.826105

10 mM 8.2361024 2.7561026 1.79 1.096103 7.036105

Variola major 1 mM 3.126101 7.00 1.126103 1.386103 1.626103

3 mM 7.356101 7.69 1.356103 1.766103 2.176103

5 mM 8.016101 7.80 1.606103 2.176103 2.746103

10 mM 7.496101 5.84 4.776103 1.156104 2.596103

Lassa 1 mM 6.6161026 1.94610211 8.93 7.366108 7.3261016

3 mM 2.2861025 4.39610211 8.93 7.936108 8.0561016

5 mM 3.9761025 4.90610211 9.11 8.266108 8.8661016

10 mM 4.0261025 3.25610211 8.45 1.496109 3.0361017

doi:10.1371/journal.pone.0032732.t004

Table 5. Equipment detection limit associated risk*.

Pathogen Diameter Risk (95% confidence interval)

B. anthracis 1 mM 2.3061022 (5.8161024, 4.3361021)

3 mM 6.8061024 (2.2561025, 6.5461023)

5 mM 1.9261024 (1.0061025, 1.1661023)

10 mM 1.1761025 (3.1861026, 2.8461024)

Y. pestis 1 mM 2.8661023 (9.6361025, 1.6361022)

3 mM 2.8561023 (1.0161024, 1.5861022)

5 mM 2.8461023 (1.0461024, 1.5161022)

10 mM 2.6961023 (1.0461024, 1.3761022)

F. tularensis 1 mM 2.5761021 (1.5461022, 9.1761021)

3 mM 2.5561021 (1.5861022, 8.9661021)

5 mM 2.5461021 (1.6061022, 8.6561021)

10 mM 2.3161021 (1.5661022, 8.0661021)

Variola major 1 mM 2.7961024 (9.7261026, 6.1061024)

3 mM 2.4361024 (7.8461026, 5.0661024)

5 mM 2.1461024 (5.9361026, 4.0661024)

10 mM 7.3561025 (3.4261026, 3.3261024)

Lassa 1 mM 5.4361022 (1.0461022, 7.0061021)

3 mM 5.4361022 (1.0961022, 7.0061021)

5 mM 5.4261022 (1.1261022, 6.9961021)

10 mM 5.2661022 (1.1261022, 6.9561021)

*It is assumed that the detection limit is 10 organisms which comes from
sampling a 0.09 m2 surface with the pathogen concentration 292 organisms
per m2 and the recovery rate is 0.38 [12].
doi:10.1371/journal.pone.0032732.t005
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Table 6. Parameter uncertainties with most influence on risk.

Pathogen Retrospective scenario Prospective scenario

Ingestion risk Inhalation risk Ingestion risk Inhalation risk

B. anthracis Dose-response coefficient (r) (0.66–
0.76)

Air change rate (ACH) (0.31–0.72) Dose-response coefficient (r) (0.63–
0.87)

Air change rate (ACH) (0.44–0.75)

Mass transfer fraction from
surface to hand (fsh) (0.21–0.36)

Breathing rate (Inh) (0.27–0.65) Mass transfer fraction from surface
to hand (fsh) (0.16–0.32)

Breathing rate (Inh) (0.14–0.53)

Air change rate (ACH) (0.081–0.21) Density of the particle (rp) (0.052–0.61) Resuspension rate (m2) (0.047, 0.29) Resuspension rate (m2) (0.022–0.32)

Y. pestis Decay rate on fomite (cf) (0.56–0.61) Breathing rate (Inh) (0.73–0.78) Decay rate on fomite (cf) (0.53–0.56) Decay rate on fomite (cf) (0.51–0.63)

Mass transfer fraction from surface
to hand (fsh) (0.47–0.51)

Air change rate (ACH) (0.28–0.52) Mass transfer fraction from surface
to hand (fsh) (0.34–0.38)

Resuspension rate (m2) (0.21–0.35)

Density of the particle (rp) (0.12–0.24) Density of the particle (rp)
(0.026–0.54)

Hand-surface contacting rate (rhs)
(0.071–0.079)

Breathing rate (Inh) (0.15–0.18)

F. tularensis Mass transfer fraction from surface
to hand (fsh) (0.44–0.67)

Decay rate in the air (cair)
(0.46–0.75)

Decay rate on fomite (cf) (0.64–0.65) Decay rate on fomite (cf) (0.42–0.59)

Decay rate in the air (cair) (0.23–0.43) Breathing rate (Inh) (0.35–0.69) Mass transfer fraction from surface
to hand (fsh) (0.41–0.47)

Resuspension rate (m2) (0.18–0.33)

Decay rate on fomite (cf) (0.33–0.49) Decay rate on fomite (cf)
(0.18–0.42)

Hand-surface contacting rate (rhs)
(0.12–0.13)

Decay rate in the air (cair) (0.14–0.26)

Variola major Mass transfer fraction from surface
to hand (fsh) (0.45–0.67)

Dose-response coefficient (r) (0.44–
0.73)

Mass transfer fraction from surface
to hand (fsh) (0.60–0.67)

Dose-response coefficient (r) (0.30–
0.61)

Dose-response coefficient (r) (0.38–
0.54)

Air change rate (ACH) (0.19–0.54) Dose-response coefficient (r)
(0.51–0.57)

Air change rate (ACH) (0.25–0.45)

Air change rate (ACH) (0.11–0.37) Breathing rate (Inh) (0.25–0.40) Resuspension rate (m2) (0.15–0.46) Resuspension rate (m2) (0.25–0.39)

Lassa Dose-response coefficient (r) (0.60–
0.70)

Dose-response coefficient (r) (0.69–
0.87)

Dose-response coefficient (r) (0.72) Dose-response coefficient (r) (0.61–
0.80)

Mass transfer fraction from surface
to hand (fsh) (0.40–0.47)

Breathing rate (Inh) (0.26–0.28) Mass transfer fraction from surface
to hand (fsh) (0.51)

Breathing rate (Inh) (0.17–0.23)

Decay rate in the air (cair) (0.057–0.21) Decay rate in the air (cair) (0.082–0.31) Resuspension rate (m2) (0.26–0.40) Decay rate in the air (cair) (0.089–0.24)

Correlation coefficients between selected parameters and risks. Correlations were computed separately for each of four modeled particle sizes (1, 3, 5, and 10 mM diameter
particles), and the smallest and the largest coefficients across the four modeled particle sizes are listed in the brackets. (Raw data are included in Information S4).
doi:10.1371/journal.pone.0032732.t006

Table 7. Properties of parameters uncertainty.

Authors’
priority Parameter Symbol

Uncertainty
vs. Variability Generality Researchable

Percentage in the top 3
uncertainty parameters
among retrospective
scenario (%)+

Percentage in the top 3
uncertainty parameters
among prospective
scenario (%)+

High Mass transfer fraction
from surface to hand

fsh Both Similarities expected Yes 0 33

High Dose-response
coefficients

k Both Pathogen specific Difficult 13 20

High Resuspension rate m2 Both Similarities expected Yes 0 20

High Hand-surface
contacting rate

rhs Both Similarities expected Yes 0 13

Moderate Decay rate on fomite cf Both Pathogen specific Yes 7 13

Moderate Decay rate in the air cair Both Pathogen specific Yes 13 0

Low Breathing rate Inh Variability Common across
pathogen

Yes 33 0

Low Air change rate ACH Variability Common across
pathogen

Yes 20 0

Low Density of the particle rp Variability Common across
pathogen

Yes* 13 0

*Density can readily be measured but it is not clear that laboratory values could reflect density in an actual release.
+The percentages in the retrospective scenario are based on inhalation risk in the retrospective scenario, while the percentages in the prospective scenario are based on
ingestion risk in the prospective scenario of Table 6.
doi:10.1371/journal.pone.0032732.t007
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active decontamination and passive attenuation involves compar-

ing the costs of remediation and opportunity costs of restricting

access to the building. While previous research has addressed

policy options for bioterrorism, this research has not considered

the opportunity costs of removing buildings from service [36,37].

Thus, further study is needed to inform the choice between active

remediation and passive attenuation.

This analysis considered viable organisms. However, the

environmental concentrations which would be used as inputs to

the risk models developed here would likely be measured by

quantitative PCR (qPCR), which has been proven effective in

quantifying biological warfare agents (i.e., B. antracis, and Y. pestis)

due to its rapid, early, and accurate results [38]. Despite the

advantages of qPCR analysis, several knowledge gaps need to be

addressed The first is that the qPCR does not distinguish between

living or dead pathogens. While researchers have identified assays

to discriminate between viable and dead fecal bacteroidales bacteria,

similar methods have not been applied to Category A pathogens

[39,40]. Second there is little information on the decay of the

qPCR signal over time, which would be an essential parameter for

the retrospective assessment of risk after a release. Thus, studies

are needed to quantify parameters such as, the efficiency of DNA

extraction, the degradation of nucleic acids overtime, and the

reactivity of primer and probe [33,41,42].

Supporting Information

Figure S1 Pathogen flow for estimating the inhalation
dose in the prospective scenario.
(TIF)

Figure S2 Pathogen flow for estimating the ingestion
dose in the prospective scenario.
(TIF)

Figure S3 Cumulative retrospective risks associated with
F. tularensis HVAC concentrations after an aerosol release.
(TIF)

Figure S4 Cumulative retrospective risks associated
with Variola major HVAC concentrations after an
aerosol release.
(TIF)

Figure S5 Cumulative retrospective risks associated
with Lassa HVAC concentrations after an aerosol release.
(TIF)

Figure 8. Risk and uncertainty for different pathogens associated with an aerosol release over 8 hours (retrospective scenario) and
with a surface release over an infinite time (prospective scenario). Medians shown in red, 1st and 3rd quartiles in blue. For input uncertainty
distributions see Tables 1–2 of the main text and Information S2, table 2. (1. B. anthracis, 2. Y. pestis, 3. F. tularensis, 4. Variola major, and 5. Lassa).
doi:10.1371/journal.pone.0032732.g008
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Information S1 The simplification of risk assessment
model.
(DOC)

Information S2 Model Inputs.
(DOC)

Information S3 Cumulative retrospective risks associ-
ated with pathogens (F. tularensis, Variola major and
Lassa) HVAC concentrations after an aerosol release.
(DOC)

Information S4 Correlation coefficients between input
parameters and different pathogens.

(DOC)
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