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Abstract

Bipolar disorder (BD) is a debilitating psychiatric condition with a prevalence of 1–2% in the general population that is
characterized by severe episodic shifts in mood ranging from depressive to manic episodes. One of the most common
treatments is lithium (Li), with successful response in 30–60% of patients. Synapsin II (SYN2) is a neuronal phosphoprotein
that we have previously identified as a possible candidate gene for the etiology of BD and/or response to Li treatment in a
genome-wide linkage study focusing on BD patients characterized for excellent response to Li prophylaxis. In the present
study we investigated the role of this gene in BD, particularly as it pertains to Li treatment. We investigated the effect of
lithium treatment on the expression of SYN2 in lymphoblastoid cell lines from patients characterized as excellent Li-
responders, non-responders, as well as non-psychiatric controls. Finally, we sought to determine if Li has a cell-type-specific
effect on gene expression in neuronal-derived cell lines. In both in vitro models, we found SYN2 to be modulated by the
presence of Li. By focusing on Li-responsive BD we have identified a potential mechanism for Li response in some patients.
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Introduction

Bipolar disorder (BD) is a major topic in health research given

its debilitating nature, lifetime prevalence and significantly high

occurrence in the general population (1–2%) [1].This psychiatric

condition is characterized by abnormal shifts in energy, activity

levels, mood, and one’s ability to carry out routine tasks. In

comparison to other psychiatric conditions, BD has been shown to

have relatively high heritability, with estimates ranging from 60 to

85% [1,2]. One of the most common treatments of BD is lithium

(Li), administered as metallic salts, due to its proven efficacy both

as a short term intervention for manic episodes as well as a

prophylactic against episode recurrence. The drug has been highly

prescribed since the 1950s and 1960s when Mogens Schou showed

its efficacy through a series of systematic trials with BD patients

[3], and demonstrated a high success rate with approximately 30–

60% of patients showing full or partial treatment response [4,5].

Synapsin II (SYN2) is a gene that codes for a neuronal

phosphoprotein involved in synaptic plasticity and transmission as

well as synaptogenesis. It maps to chromosome 3p25 and has two

known variants, IIa and IIb, which are highly expressed in nerve

terminals in the majority of the adult brain [6] with demonstrated

homology across numerous vertebrate and invertebrate organisms

[7]. The majority of brain regions co-express synapsin genes at

similar levels, suggesting that they are functionally complementary

[8], and though all synapsins have been primarily studied for their

roles in the brain, the genes’ expression is widespread in the

peripheral nervous system. In non-neuronal cells, synapsins are

mostly found in association with the cytoskeleton, where their

involvement is likely at the level of vesicular trafficking [7]. For

example, Syn2 protein was isolated from rat as well as bovine

chromaffin cells of the adrenal medulla [9,10]. Though limited

work has been done on SYN2 outside of neurons, expression of

other synapsins has been shown in undifferentiated astrocytes [11],

osteoblasts [12], liver endosomes [13], epithelial cells [14], as well

as the cell lines HeLa and NIH/3T3 [15].

Given the multiple roles played by synapsins in neuronal cell

function and maintenance, it may be hypothesized that disruption

of these roles could result in the onset of pathological conditions.

Indeed, knockout experiments have shown the absence of SYN2 to

induce epileptic-like seizures in mice [16,17] and genetic mapping

identified variants in the SYN2 gene as significantly contributing

to epilepsy predisposition [17,18]. Genetic association studies have

also linked SYN2 variants with schizophrenia, as shown in affected

families of different genetic backgrounds [19,20,21]. Data for BD

are more limited, however. The only reported case-control

analysis of SYN2 single nucleotide polymorphisms (SNPs) in

individuals with BD comes from Wang et al. who studied the Han

Chinese population but did not find any significant association

[22]. Additional work has been reported for SYN2 at the protein

or mRNA levels, where several studies showed significant

dysregulation in alcoholism, Huntington’s disease, and schizo-

phrenia [23,24,25]. In BD, Vawter et al. showed differential down-

regulation of SYN2 protein levels in hippocampi of patients

compared to non-psychiatric controls. We have recently published

a linkage study in families ascertained through Li-responsive BD
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probands, where the SYN2 gene was identified as one of the more

interesting candidates [26]. In the same study, at the mRNA

expression level, SYN2 was shown to be up-regulated in the

prefrontal cortex of patients [26]. In the present study, we

hypothesize that the implication of SYN2 in BD is more

prominent in a subset of BD patients. Moreover, we predict that

in such patients SYN2 is more relevant to the response to lithium

treatment.

To explore these hypotheses, we conducted a series of studies

investigating the expression of SYN2 in BD, particularly as it

pertains to lithium treatment. Because this candidate gene was

originally identified through a linkage study of lithium-responsive

BD families, we investigated what effect lithium treatment would

have on the expression of SYN2. We performed in vitro long-term

treatment studies in Epstein-Barr-virus transformed lymphoblas-

toid cell lines (LCLs) from BD patients characterized for excellent

Li-response (as described previously) [27,28,29] in order to identify

the effect of this drug in a model replicating the genetic

background of response. In addition, we performed the same

experiments with human neuroblastoma and glioblastoma cells to

model the biological context.

Materials and Methods

I. Ethics statement
Ethics approval for the use of human samples in this study

was obtained from the Capital District Health Authority

(CDHA) in Halifax, Nova Scotia. All subjects gave written

informed consent to their participation in the study in regards to

sample collection and the generation of lymphoblastoid cell

lines; no subjects had reduced capacity to consent. Sample

collection and cell lines generation has been described

previously [29,30].

II. BD Li-response lymphoblastoid samples
Subjects were diagnosed with BD I and BD II according to both

Research Diagnostic Criteria (RDC) and DSM-IV criteria, and

followed prospectively at specialized clinics in Hamilton, Ottawa

and Halifax [27]. Their clinical course was characterized by a

high number of manic and depressive episodes before Li

treatment. The responders (n = 11) showed full stability on long-

term Li monotherapy. The non-responders (n = 12) continued

experiencing illness episodes in spite of good compliance

documented by therapeutic blood levels. These are the same

criteria as outlined previously [27,28]. Unaffected controls

(n = 13) were matched for ethnic background and excluded if

they had a history of BD, schizophrenia, or major depression.

Peripheral blood samples were obtained from patients and

controls following standard procedures and Epstein-Barr

virus-transformed b-lymphoblastoid cell lines were generated as

described previously [29,30].

III. Cell culture
To determine patient-specific effects of Li on target genes, in vitro

assays were performed in LCLs from excellent Li-responders, non-

responders, and healthy controls. Aliquots of frozen cell lines were

stored in liquid nitrogen after Epstein-Barr virus transformation for

each sample according to ‘‘LCL frozen storage’’ time until all

samples were randomized, thawed for experiments, grown and

processed in a sequential fashion as described below. This effectively

ensures no difference in passage number between LCL samples and

no batch effect. Cells were cultured in Iscove’s Modified Dulbecco’s

Medium (IMEM) supplemented with 15% FBS, 1% Fungizone and

1% penicillin/streptomycin/glutamine (Invitrogen) in a 5% CO2

humidified incubator at 37uC, in the continuous presence of

1.0 mM LiCl or vehicle (NaCl) for 7 days [29] after which cell

pellets were collected and frozen at 280uC. Experiments were

performed in triplicate. Clinical and demographic characteristics of

patient and control LCLs are listed in Table 1.

To determine cell-type-specific modulation of candidate genes

in the brain, in vitro assays were performed in three cell lines:

HEK293 (human embryonic kidney, ATCC CRL1573) as a non-

brain control, SK-N-AS (human neuroblastoma, ATCC

CRL2137), and U-118 MG (human glioblastoma; astrocytoma,

ATCC HTB15). Cells were cultured at 37uC in Dulbecco’s

Modified Eagle Medium (DMEM) supplemented with 10% FBS,

100 U/ml penicillin and 100 mg/ml streptomycin (Invitrogen) in a

5% CO2 humidified incubator at 37uC. For Li treatments, cells

were grown in the continuous presence of 0.5 mM, 1.0 mM, or

2.0 mM LiCl or vehicle (NaCl) for 7 days after which cell pellets

were collected and frozen at 280uC. Experiments were performed

in triplicate.

IV. Real-time PCR
Total RNA was extracted from frozen cell pellets using the

RNeasy Mini Kit (QIAGEN). For synthesis of cDNA, M-MLV

reverse transcriptase (Gibco, Burlington, Ontario) and oligo(dT)16

primers (Invitrogen) were used. Real-time PCR reactions were run

in quadruplicate using an ABI PRISM 7900HT Sequence

Detection System (Applied Biosystems) and the Power SYBRH
Green PCR Master Mix (Applied Biosystems). Relative expression

was calculated using the relative quantitation method (DDCt) in

the RQ Manager 1.2 software (Applied Biosystems) with GAPDH

as an endogenous control.

V. Data analysis
Test coefficients and probability distributions were calculated

using statistical software GraphPad Prism 5 and SPSS.

Table 1. Lymphoblastoid cell line sample group demographics.

Controls (C) Responders (R) Non-Responders (N) Group differences (p#0.05)

Subjects (M/F) 13 (3/10) 11 (5/6) 12 (3/9) Not Significant

Age at DNA sampling (yr) 3164.7 53.564.3 47.963.8 C vs. R and C vs. N

LCL frozen storage (yr) 3.760.3 7.861.0 6.860.5 C vs. R and C vs. N

Age at onset (yr) n/a 32.663.5 29.863.5 Not Significant

Data are presented as mean6SEM for non-psychiatric controls, bipolar disorder patients who are excellent lithium responders (‘‘Responders’’) and bipolar disorder
patients who do not respond to lithium treatment (‘‘Non-Responders’’). ‘‘Age at sampling’’ refers to the subject’s age at the time blood was drawn. ‘‘LCL frozen storage’’
refers to the length of time of liquid nitrogen storage after Epstein-Barr-Virus transformation. ‘‘Age at onset’’ refers to the age at which patients were diagnosed with BD.
doi:10.1371/journal.pone.0032680.t001
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Results

Lithium affects gene expression in transformed
lymphoblastoid cell lines (LCLs) distinctly in lithium
responders compared to both non-responder BD
patients and controls

To determine patient-specific effects of Li on the target genes, in

vitro assays were performed in Human Epstein-Barr virus–

transformed LCLs from excellent Li-responders (R), non-respond-

ers (N) and controls without psychiatric history (C) [30]. For long-

term treatment, cells were cultured in the continuous presence of

1.0 mM treatment (LiCl) or vehicle (NaCl) for 7 days [29]. Data in

Figure 1 are presented as fold change between Li treatment and

vehicle treatment values. We performed a ANCOVA analyses

with ‘‘Age at Sampling’’ and ‘‘LCL frozen storage’’ as covariates,

followed by Tukey’s multiple comparison post-tests for group

comparisons, but found no significant mean differences between

the three groups: C vs. R, C vs. N, and R vs. N for either Synapsin

II variant (SYN2a p = 0.613, SYN2b p = 0.691), as shown in

Table 2.

Interestingly, there was a significant difference in the distribu-

tion of expression fold-change in the responder patient group as

compared to the non-responders and the controls. LCLs from

non-responder BD patients displayed the same distribution pattern

as the controls whereas the Li-responder patient LCLs had a

broader spectrum of expression than the other two groups. The

same pattern was observed with the SYN2a variant shown in

Figure 1.A (F-test P = 0.001 for both C vs. R and N vs. R) as with

the SYN2b variant shown in Figure 1.B (F-test P,0.001 for both

C vs. R and N vs. R). Furthermore, the expression pattern was

consistent across the two variants, with subjects showing

consistently low or high expression in both the SYN2a and

SYN2b variant. This was illustrated through the color-coding in

Figure 1.

Environmental factors do not explain the variant effect of
lithium in Responders

Given the fact that in some patient LCLs both SYN2a and

SYN2b were up-regulated by lithium treatment while in others the

two variants were down-regulated, we attempted to elucidate the

stratifying factors responsible for this behavior. Ethnic background

did not differ across subjects as all were Caucasian of European

descent, so this variable was not included in the analyses. We

investigated a number of other factors including age of onset,

initial Li prescription, and time on Li prior to DNA collection

(Table 3). Furthermore, we investigated factors relating to

psychiatric medication such as Li dosage and use of other

medications, as well as family history of other psychiatric

disorders. We determined normality of each dataset using a

Shapiro-Wilk normality test and computed Pearson’s correlations

for normally distributed and Spearman’s correlations for non-

normally distributed datasets. None of the 15 potential environ-

mental covariates showed significant correlations with either

SYN2a or SYN2b expression values, demonstrating that the

reported variance difference cannot be explained by these possible

covariates (Table 3).

Synapsin II shows cell-type specific response to lithium
treatment in neuroblastoma cells

Since our previously reported brain expression results [26] were

from homogenate tissue brain extracts, we set out to investigate a

possible cell-type-specific effect of lithium treatment. As such, we

used three cell lines representing neurons (SK-N-AS), glial cells (U-

118 MG) and embryonic kidney cells as a non-central nervous

system cell control (HEK293). In order to detect concentration-

specific effects, three different concentrations of treatment (LiCl) or

vehicle (NaCl) were used: 0.5 mM, 1.0 mM, and 2.0 mM – the

values represent lower and higher ends of the therapeutic

concentrations of lithium used clinically. SYN2a demonstrated a

Figure 1. Lymphoblastoid cell line expression. Relative Quantification (RQ) values from qRT-PCR relative to GAPDH as an endogenous control.
The groups compared are non-psychiatric controls, bipolar disorder patients without positive response to lithium (Non-Resp) and bipolar disorder
patients with excellent response to lithium. The expression analyses were performed with separate primer sets for SYN2a (left) and SYN2b (right). The
asterisks refer to F-test p-values depicting the differences in distribution between the individual expression changes in each group (** p-value#0.001;
*** value#0.0001). There were no significant mean group differences, as indicated in Table 2.
doi:10.1371/journal.pone.0032680.g001
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significant 33% increase in expression when treated with LiCl

compared to vehicle at both of the two higher treatment

concentrations: 1.0 mM and 2.0 mM (P = 0.001 and 0.035,

respectively) in the neuronal cell line (Figure 2). A similar data

set was collected for the SYN2b variant, but this had no significant

change in expression in any of the conditions tested (Figure 3),

suggesting that our findings are specific to SYN2a.

Discussion

Synapsin II is a candidate gene that was originally identified

through a linkage study of Li-responsive BD families. This gene

was also shown to be dysregulated in the post-mortem brains of

patients with BD as compared to psychiatrically healthy controls in

the same study [26]. Thus, we were interested to investigate the

effect of Li treatment on the expression of this gene. We did so in

the genetic context of the disorder by treating with Li

monotherapy Epstein-Barr virus-transformed lymphoblastoid cell

lines from BD patients characterized as excellent Li-responders or

non-responders, as well as healthy controls with no history of

psychiatric disorders. We found that the pattern of expression was

significantly different in Li-responders compared to both non-

responder BD patients as well as controls. However, the direction

of change of expression was not uniform across subjects (Figure 1),

resulting in no overall mean differences between groups. These

data suggest that Li modulates SYN2 expression in a way that is

specific to Li-responders, possibly reflecting significant genetic

heterogeneity.

The relevance of SYN2 expression in peripheral cells compared

to the central nervous system in BD patients is not clear from our

findings, particularly since we saw no mean differences between

Li-responders, non-responders, and controls. It is however clear

from the literature that the gene is expressed, though at more basal

levels, in lymphoblasts as well as many other cell types. Despite

their peripheral origin, studying transformed LCLs offers the

benefit of performing in vitro assays on cells from patients and

studying putative factors in their endogenous expression context.

However, results from these experiments should be considered

Table 2. Lithium response in lymphoblastoid cell line samples.

SYN2a SYN2b

Control/Non-
Responder

Control/
Responder

Non-Responder/
Responder

Control/Non-
Responder

Control/
Responder

Non-Responder/
Responder

ANCOVA p-value 0.867 0.916

Tukey’s Test 0.231 1.315 1.112 0.108 0.993 1.123

F-test 0.897 0.001** 0.001** 0.839 0.0009*** 0.0008***

ANCOVA analysis was performed to compare the three groups (Controls, Responders, and Non-responders to lithium treatment) separately for Syn2a and Syn2b
expression. The variables ‘‘Age at sampling’’ and ‘‘LCL frozen storage’’ were used as covariates.
doi:10.1371/journal.pone.0032680.t002

Table 3. Correlations of covariates with RQ expression values in excellent lithium responders.

Shapir- Wilk Normality SYN2a RQ SYN2b RQ

p-value
Normal
distribution

Pearson
coefficient

Spearman
coefficient p-value

Pearson
coefficient

Spearman
coefficient p-value

LCL frozen storage (yr) 0.2207 Yes 0.211 0.533 0.237 0.482

Age at DNA sampling (yr) 0.8805 Yes 20.070 0.838 20.065 0.849

Age at Onset (yr) 0.6388 Yes 0.217 0.521 0.158 0.644

Age at first treatment Li (yr) 0.3542 Yes 20.404 0.320 20.449 0.264

Time between onset and DNA collection 0.2446 Yes 20.291 0.385 20.227 0.502

Li Treatment response Score 0.2172 Yes 20.129 0.705 20.185 0.585

Episodes before Li 0.0114 No 20.527 0.145 20.527 0.145

Time on Li treatment (yr) 0.0456 No 0.477 0.194 0.477 0.194

Li dose at DNA sampling 0.5553 Yes 20.437 0.239 20.432 0.246

Number of other psych drugs 0.169 Yes 0.277 0.470 0.345 0.364

Family History Depression 0.0012 No 0.015 0.965 0.015 0.965

Family History Bipolar Disorder 0.0085 No 20.193 0.569 20.193 0.569

Family History Schizophrenia

Family History Anxiety ,0.0001 No 0.100 0.770 0.100 0.770

Family History Alcoholism 0.0004 No 0.438 0.178 0.438 0.178

To try and explain the distribution abnormal of Syn2 expression in Li-responders we computed correlations between RQ values and 15 potential covariates relating to
age at sampling, onset, treatment start, etc., lithium treatment, as well as family history of other psychiatric disorders. (No samples had any family history of
schizophrenia.) Normality of distribution was determined using the Shapiro-Wilk normality test and correlations were determined using Pearson’s or Spearman’s tests
accordingly. No significant correlations were found with any of these variables.
doi:10.1371/journal.pone.0032680.t003
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with a level of scepticism, as the relevance of SYN2 expression in

this cell type is unclear.

Environmental factors could be involved in Li’s regulatory role,

which might account for the observed patient-specific effects in Li-

responders. To investigate this possibility we computed correla-

tions with a number of environmental factors relating to age of

patients, Li therapy, and family history of other psychiatric

disorders (for a complete list, refer to Table 3). However, none of

the potential covariates correlated with SYN2a or SYN2b

expression values, suggesting that the source of variation may be

related to genetic or possibly epigenetic differences between

patients. For example, variants in CREB genes [31] or GSK3B

[32], have been shown to associate with Li-treatment response.

Similarly, it is possible that epigenetic factors may increase SYN2

expression variance among patients. Though this is of interest, to

our knowledge, no studies have investigated the role of Li

treatment on epigenetic modifications in the human brain.

However, valproate, another widely used mood stabilizer, is well

known for its inhibitory effect on histone deacetylases (HDACs)

[33,34] and therefore, it is possible that at least part of Li’s action

may be related to epigenetic regulation. Another epigenetic

regulatory level where lithium’s effect could be confounded is

microRNA-mediated regulation. Studies in LCLs [35] and animal

models [36] have shown the drug’s global effect on this class of

molecules. For a variety of biological reasons, each patient’s LCLs

could be enriched in a combination of regulatory factors which

could then impact the response to Li treatment.

Since our LCL results do not automatically represent what is

occurring in the brain, we sought to determine if Li would have a

cell-type-specific effect on SYN2 expression in model cell lines

representative of the brain, and showed a significant change in the

neuronal cell line SK-N-AS only (Figures 2 and 3). There was an

effect at 1.0 and 2.0 mM Li, but not at 0.5 mM, suggesting that

this concentration was not high enough to elicit a response.

Interestingly, the effect was specific to the SYN2a variant

(Figure 2), as the SYN2b variant remained unchanged between

conditions (Figure 3). Originally, SYN2 had been believed to

display neuron-specific expression in the brain; however, further

studies demonstrated the gene’s expression in other cell types,

though at considerably lower concentrations [37,38]. SYN2 is

expressed at basal levels in various cell types and thus lithium likely

modulates its expression to a certain degree in these cells but

perhaps not in a functionally-relevant manner. This is consistent

with the fact that synapsins are evolutionarily conserved from

humans to very primitive organisms and likely their expression has

become more specialized in higher organisms through a loss of the

ability to regulate other cellular functions but not necessarily

through a complete loss of expression [7].

According to our results, in neurons, Li treatment significantly

increases SYN2 expression perhaps by also recruiting other

Figure 2. Cell lines expression for SYN2a. Expression in (A) HEK293 embryonic kidney cells, (B) SK-N-AS neuroblastoma cells, and (C) and U-118
MG glioblastoma/astrocytoma cells for the Synapsin IIa variant compared to GAPDH. P-values depicting the mean differences between 3
independent experiments for each cell line at each of the 3 treatment concentration of either lithium or vehicle (0.5 mM, 1.0 mM, and 2.0 mM).
doi:10.1371/journal.pone.0032680.g002

Figure 3. Cell lines expression for SYN2b. Expression in (A) HEK293 embryonic kidney cells, (B) SK-N-AS neuroblastoma cells, and (C) and U-118
MG glioblastoma/astrocytoma cells for the Synapsin IIb variant compared to GAPDH. P-values depicting the mean differences between 3
independent experiments for each cell line at each of the 3 treatment concentration of either lithium or vehicle (0.5 mM, 1.0 mM, and 2.0 mM).
doi:10.1371/journal.pone.0032680.g003
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neuron-specific transcription factors that bind to the gene’s

promoter such as EGR1 (early growth response 1), which has

been suggested to regulate the gene [39], or AP-2alpha, which has

been shown to be regulated by lithium [40]. Our results from

LCLs are seemingly contradictory, as Li has an up-regulating

effect on SYN2 in some patients, and a down-regulating effect in

others. To interpret these results, one needs to consider that

lithium acts as a mood stabilizer in patients who present both

manic and depressive episodes. These clinical episodes are

characterized by symptoms that are on opposite sides of the

mood spectrum. Accordingly, manic patients present mood and

neurovegetative activation, while depressed patients are charac-

terized by a decreased mood levels and neurovegetative inhibition.

Therefore, in order to be an effective mood stabilizer, Li needs to

act by normalizing variance.

One interesting addition to this study would have been direct

evidence for the effect of Li on SYN2 expression in the central

nervous system of BD patients. An ideal study would investigate

the expression of SYN2 variants in the post-mortem brains of BD

patients who had been excellent responders to prophylactic Li for

an extended period of time, so as to match the criteria used for our

LCL samples. However, post-mortem brain donors with a history

of BD are most often suicide completers. The literature provides

extensive evidence for the anti-suicidal effects of Li prophylaxis

through observational studies [41,42], randomized controlled

studies [43,44] and meta-analyses [45,46]. Thus, such a study

would be logistically quite challenging.

Another limitation of our study is the lack of protein-level

evidence to support our mRNA-level findings. Such validation

would be interesting in the pursuit of qualifying SYN2 as a factor

of potential pharmacological significance. However, the results

presented here mainly point to SYN2 as a new mediator of Li

action. Perhaps by further investigating how SYN2 is regulated we

will also elucidate lithium’s mode of action. There are likely several

regulatory levels at play and clarifying them will be instrumental

for our understanding of lithium response in BD, but as it stands

the pharmacological application of this work is preliminary.

In conclusion, this is, to our knowledge, the first study

attempting to determine the effect of Li treatment on mRNA-

level expression of SYN2. We found a responder-specific effect of

Li in LCLs from BD patients, suggesting that even though the

gene is important for BD in general, there are genetic or epigenetic

differences in Li responders that make them more susceptible to

modulation of SYN2. Additionally, we showed that the effect of

long-term treatment with Li is likely cell-type specific. As far as

brain expression, our data suggest that the effect of lithium

treatment is only significant in neuronal cells and not in astrocytic

or glial cells. Support from additional cell types would be

important to strengthen the validity of these conclusions. Our

distinct findings for the two SYN2 variants as well as the reported

homology in sequence and function of the family of synapsin genes

opens up the question of whether the other synapsins have a

neuron-specific effect, as well as a patient-specific effect. Our study

points to a very interesting player in response to Li prophylaxis,

but more studies are required to decipher the full pathway of Li

action that leads to its stabilizing effect in a large fraction of BD

patients.
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