
Amplified Genes May Be Overexpressed, Unchanged, or
Downregulated in Cervical Cancer Cell Lines
Oscar Vazquez-Mena1, Ingrid Medina-Martinez1, Eligia Juárez-Torres1, Valeria Barrón1, Ana Espinosa1,
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Abstract

Several copy number-altered regions (CNAs) have been identified in the genome of cervical cancer, notably, amplifications
of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because
genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we
investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression.
On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs)
common to all the cell lines. Whereas 3q had limited common gains (13%), 5p was entirely duplicated recurrently. Genome-
wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this.
Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated.
In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%.
Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors
were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin
factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily
as the number of amplified SNPs increased (p,0.01, Spearman’s correlation). Therefore, partial gene amplification may
function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis,
specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p.
Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin
domains, may influence gene expression within the entirely amplified genome segments.
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Introduction

Cervical cancer (CC) is the second most common cancer in

women worldwide, affecting 500,000 individuals each year, and it

is the main cause of death of women with cancer in developing

countries [1]. The viral oncoproteins E6 and E7 of the high-risk

human papillomaviruses (HPV) play an important role in

carcinogenesis. They inhibit various cellular targets, including

the tumor-suppressor proteins p53 and pRB, disrupt key cellular

processes, such as apoptosis and cell-cycle control, and lead to

genomic instability and neoplastic development [2]. Despite the

damage caused by the oncoviral proteins, CC is a rare

complication of the viral infection because most infections are

transient and do not evolve into neoplastic lesions. On average, it

takes 12–15 years before a persistent HPV infection may, via the

premalignant stages of cervical intraepithelial neoplastic lesions

(CIN), lead to CC [3]. These findings suggest HPV infection alone

does not cause the disease and other factors, such as abnormal host

genes, could be associated with the development of invasive

cancer. Several genomic regions have been identified with changes

in the number of DNA copies (copy number-altered regions,

CNAs) in CC through the analysis of the tumor genome by using

methods such as comparative genomic hybridization (CGH),

fluorescence in situ hybridization (FISH), and microarrays of

SNPs. Gains in 1q, 3q, 5p, 8q, and 20q and deletions in 2q, 3p, 4p,

4q, 5q, 6q, 8p, 11q, 13q, 18q, and Xq have been frequently

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e32667



reported in both CC [4–10] and CC-derived cell lines [9,11–16].

Genomic imbalances can contribute to deregulated expression of

oncogenes and tumor suppressor genes in cancer cells, and the

accumulation of such altered genes has been correlated with tumor

progression [17]. However, the contribution of these alterations to

cervical carcinogenesis is still a matter of debate. Gains of 3q [5–

9,18,19] and 5p [5,13,20–22] are the most frequent chromosomal

alteration in cervical carcinomas, and they have also been

described in other solid tumors [23–25]. The smallest consensus

region of 3q amplification in CC maps into chromosomal

cytobands 3q26–27 [6–9,14,18], suggesting some genes located

in these regions could be involved in cervical carcinogenesis. Some

of them, including TERC [26,27] and PIK3CA [28], are considered

candidate oncogenes for CC. Large regions of 3q, including the

loci where TERC and PIK3CA are located, have been confirmed

amplified by FISH in the interphase nucleus of cervical tumors

and metaphase Chr in cell lines [14,29]. However, a detailed

characterization of these amplified genes has not been performed

and only the gain of PIK3CA has been validated by quantitative

PCR [28]. It has not been demonstrated that TERC is upregulated

in tumor samples or cell lines in which it is amplified, and the

correlation between the amplification and upregulation of the

PIK3CA gene is still controversial. Amplification of PIK3CA is not

associated with increased gene expression in tumor samples

[30,31]. However, it has been associated with an increased

amount of the protein by western blot in cell lines [28] and

increased protein activity in tumors [32] and cell lines [28]. The

extent to which these recurrent chromosomal alterations are

relevant for tumor development is still largely unknown. On the

other hand, the full amplification of 5p is well documented by

FISH in tumor samples and cell lines [13,16,29]. Some amplified

genes harbored by this region and proposed to be involved in CC,

such as SKP2, TERT, TRIO, RNASEN, and PRKAA1, have been

found to be upregulated in tumor samples [22] and cell lines

[13,16]. However, genome-wide, no correlation has been observed

between copy number and gene expression, even in chromosomal

arms completely amplified like 5p or 3q. In cell lines having 5p

amplified, only 22% of the investigated genes were upregulated.

Similarly, invasive tumors or cell lines having amplified 3q showed

even a lower proportion of upregulated genes [16]. The lack of

correlation between copy number (CN) and gene expression

[16,31] suggests that some of the altered regions identified by SNP

or mCGH arrays could be CN-altered discontinuously and not all

genes within the regions are affected. However, the role of copy

number in gene deregulation has not been studied in detail

genome-wide and only particular regions have been investigated

[16,31,33]. In this study, we investigated whether the CN

alterations in cell lines, genome-wide on a gene-by-gene level,

were associated with changes in gene expression. For that purpose,

the CN alterations of the whole genome and the level of expression

of over 20,000 genes were explored in 4 cell lines by using the

100 K SNP and Human Gene 1.0 ST microarrays from

Affymetrix.

Results

Identification of genes potentially altered in copy
number

Each cell line had on average 49,167 copy number-altered

SNPs (CN-AS; 42.6% of all SNPs evaluated), mostly gains (45.5%)

and single deletions (48.5%). Amplifications (5.5%) and, particu-

larly, double deletions (0.5%) were rare events. A total of 1,065

different CNAs was identified in the 4 cell lines investigated, 599

gains and 466 deletions. On average, cell lines had 273632 (range,

240–317) CNAs and the overall CN-altered genome was about

19.2%. When the CNAs of the 4 cell lines were aligned (Figure

S1), 108 minimal recurrent regions (MRRs) were identified (Table

S1). They had a mean size of 787 kb (range, 3.4–16,755 kb) and

the amount of DNA included in the whole set of MRRs

corresponded to 2.4% of the genome. The recurrent SNPs that

constituted the MRRs represented only 5.8% of all evaluated

SNPs. Only 10 chromosomal arms had a greater and statistically

significant rate (labeled with an asterisk in Figure 1). Three of them

had only gained SNPs (1q, 3q, and 5p), 6 had only deleted SNPs

(4p, 13q, 18q, 20p, 21p, and Xq), and 1 (11q) had both gained and

deleted SNPs. It is notable that 94% of the 2,045 evaluated SNPs

in 5p was amplified, suggesting that the whole 5p was duplicated

(Figure 2A). The percentage of altered SNPs in the other arms was

much lower than in 5p, except in 21p, which had 100% altered

SNPs. However, there were only 5 evaluated SNPs in this arm

(Figure 1). On the other hand, 45 out of 297 cytobands had a

significant higher rate of recurrent altered SNPs than the whole

genome, most of them are located in the chromosomes identified

above (Table S2). Cytobands with the higher rates included 9

amplified (1q31, 5p12, 5p13, 5p14, 5p15, 3q24, 3q26, 7p11, 7q32)

and 6 deleted (4p16, 11q23, 11q25, 13q12, 13q14 and 18q11).

Assuming that CNAs and MRRs were continuously altered

regions, to identify genes with CN alterations, they were aligned

with the total human genes according to their position in the

genome (Figure S1). The number of altered genes per cell line

ranged from 6,864 in CaLo to 17,829 in SiHa (average, 11,669

genes; Table 1). Interestingly, 14 MRRs lacked genes and the

number of genes in the remaining MRRs (n = 94) ranged from 1 to

103. A total of 1,264 genes was located in the MRRs, 619 deleted,

626 gained, and 19 deleted in some cells and gained in others

(Table S3).

Gene expression analysis of 20,741 genes in CC cell lines
The amount of mRNA transcribed from 20,741 genes was

compared between individual cell lines or all 4 cell lines together

and 10 normal cervical epithelial controls. The raw data was

standardized with the robust microchip average (RMA) algorithm

of the FlexArray software, and genes with a different expression

level were identified with the ‘‘Significance Analysis of Micro-

arrays’’ (SAM) method using cut-off values of fold change of $1.5

and a fold discovery rate (FDR) of 0% (see Materials and

Methods). The mean number of genes expressed differentially

between cancer cells and the control group was 3,127 and ranged

from 2,069 (10%) in SiHa to 5,295 (25.5%) in HeLa (see Table 1).

When experiments of the 4 cell lines were taken together as a

group, 3,122 genes (15.1%) were found expressed differently

compared with that of the control group, 1,434 upregulated and

1,688 downregulated (Table S4).

The frequency of deregulated genes was calculated in each

chromosomal arm and cytoband. Only 7 chromosomal arms (4q,

5p, 15q, 16p, 16q, 18q and 19p) showed a greater and statistically

significant (p,0.05, chi-square) percentage of deregulated genes

compared with that of the whole set (15.1%; Figure 1). Arm 5p

had the greatest percentage (33.5%) of deregulated genes followed

by 16q (22.1%), 16p (21.3%), 18q (21%), 15q (20.8%), 19p

(20.4%) and 4q (18.9%). In 5p, 16p,16q and 19p the upregulated

genes predominated, whereas in 4q, 15q and 18q the downreg-

ulated genes predominated (Figure 1). Only 10 out of 297

cytobands had also a greater and statistically significant rate, most

of them located in these chromosomes (Table S2). Cytobands with

the higher rates were 19p12 (61.8%), 15q11 (52.5%) and 5p15

(45.1%). Most of these Chr and cytobands were confirmed with

the PAGE analysis (Figure 1 and Table S2), which consider in the

Amplified Genes May Be over or Downregulated
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calculations, besides the number of deregulated genes, the average

value of fold change (FC; see material and methods). However, 8

Chr and 29 cytobands, not uncovered with the chi square test,

were also detected enriched of deregulated genes with this method

(labeled with a superscript ‘‘c’’ in Figure 1, Table S2), indicating

that unlike the percentage, the mean values of FC were

significantly different compared with the global average.

A high statistically significant positive correlation (p,0.01) was

found between the values of qRT-PCR and micro-arrays in all 23

genes evaluated with both methodologies. The correlation

coefficients ranged from 0.61 to 1.0 and the average was 0.82.

Figure 3 shows the mean intensity of mRNA of 9 genes located at

1q (PARP1), 3q (MCM2, ECT2, NAALDL2, NLGN1, TNFSF10

and RFC4) and 5p (TRIO, CLPTM1L), which were evaluated with

qRT-PCR and microarrays. These experiments suggested that the

whole data set of HG1.0ST microarrays was reliable.

Correlation of copy-number alterations with gene
expression

Analysis of gene expression in the whole set of CNAs and

MRRs. Only 63% of CN-altered genes could be evaluated for

changes in gene expression with the microchip HG1.0ST. On the

other hand, from the 20,741 genes investigated for changes in

expression, on average 35.4% of them were identified with

potential alterations in the copy number in the cell lines (Table 1).

The proportion of deregulated genes was slightly higher in the

group of genes with CN alterations than in the group of genes

without CN alterations (15.6% vs. 14.8%; p.0.05, chi-square). A

higher difference was found in the group of recurrent altered genes

(18.8% vs. 14.9%; p = 0.0035, chi-square). These small differences

could suggest either that most genes identified with potential

alterations in the copy number are not actually deleted or gained

or that they are altered in copy number without changes in gene

expression. In the first case, the CNAs might have been CN-

altered discontinuously. In the second, the CNAs were presumably

CN-altered continuously, but gene expression might have been

modulated by other factors. Interestingly, on average, 69.1% of

potentially CN-altered genes in each cell line did not have altered

SNPs; rather, they were located between 2 altered SNPs within the

CNAs (Figure S1). The rest (30.9%) had from 1 to 282 altered

SNPs (mean, 6610). However, it was expected that genes located

in a fully altered region would be deregulated similarly, regardless

of number of SNPs.

One indirect way to test this hypothesis globally was to

investigate whether the percentage of deregulated genes rises as

the number of SNPs/gene or region increases. In the whole set of

CNAs, the rate of deregulated genes did not increase as the

number of SNPs per CNA increased, rather it remains uniform

around 15.6% (Figure 4A). By contrast, in the MRRs, the trend

increased from 14.5% in genes located in MRRs with 1–100 SNPs

to 36.1% in genes located in MRRs with more than 500 SNPs

(p,0.001, Mantel–Haenszel linear-by-linear association chi-

squared test; Figure 4A). The numbers also increased with the

density of altered SNPs, from 16.5% in genes located in MRRs

with more than 20 kb/SNP to 23.2% in genes located in MRRs

with less than 20 kb/SNP (p = 0.03, Pearson chi-square; data not

shown). This data suggest that MRRs with the higher number of

SNPs are more likely to be completely CN altered. However, the

fact that the percentage of deregulated genes increased linearly as

the number of altered SNPs per gene increased (p,0.01, Mantel–

Haenszel linear-by-linear association chi-squared test; Figure 4B),

suggests that many of those regions were CN-altered discontinu-

ously.

A stratified analysis was performed to clarify the precise

relationship among these variables. In the pool of CNAs, the

percentage trend of deregulated genes increased with the number

of SNPs/gene, either they were located in CNAs having less or

more than 500 SNPs or low or high density of SNPs (data not

shown). This data suggests most CNAs are not CN-altered

continuously. In the set of recurrent altered genes, the trend of

deregulated genes differed if they were located in MRRs with less

or more than 500 SNPs. In the former group, the trend was similar

to that observed in the whole set of CNAs (p,0.001, Mantel–

Haenszel linear-by-linear association chi-squared test; Figure 5A),

suggesting they were also CN-altered discontinuously. It is notable

that in the discontinuous CNAs (data not shown) or MRRs, the

Figure 1. Comparison between copy number changes and gene
expression by chromosomal arms. On the left side, the number of
SNPs located in each chromosomal arm is indicated, which were
explored by the 100 K microarray. On the right side, the number of
genes located in each arm is indicated, which were explored for
changes in gene expression by the ST1.0 expression microarray. Each
bar represents the percentage of recurrent altered SNPs (left) or
deregulated genes (right) common to the 4 cell lines. The chromosomal
arms are indicated in the middle column. Arms labeled with asterisks
had a mean number of CN-altered SNPs higher and statistically
significant (p,0.05, chi-square test) compared with the whole genome
means. Arms with a statistically significant deregulated gene enrich-
ment were labeled with ‘‘a’’ (identified with both chi-square test and
PAGE), ‘‘b’’ (identified only with chi-square test, p,0.05) or ‘‘c’’
(identified only with PAGE).
doi:10.1371/journal.pone.0032667.g001
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Figure 2. Genome amplification and deregulation of gene expression in Chr 5p. Panel A shows the copy number log2 ratio of SNPs
investigated in Chr 5 by the 100 K SNP microarray in HeLa, CaSki, SiHa, and CaLo. Panels B to D show the fold change of gene expression of genes
evaluated by the ST1.0 expression microarray located in MRR 5-1 (n = 64), MRR 5-4 (n = 44), and MRR 5-5 (n = 37) at 5p. The bars represent upregulated
genes, downregulated genes, and genes without change in gene expression. The genes are ordered according to position in the genome. The SAM

Amplified Genes May Be over or Downregulated
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ascendant trend is due to downregulated genes, either they were

deleted (for MRRs, p = ,0.01, Spearman’s correlation; Figure 5B)

or amplified (for MRRs, p,0.01, Spearman’s correlation;

Figure 5C). In the case of the 2 amplified MRRs having more

than 500 SNPs, although the trend of de-regulated genes declined

slightly from 40.8% to 28.6% with the number of SNPs/gene

(Figures 5A), it was not statistically significant (p = 0.333, Mantel–

Haenszel linear-by-linear association chi-squared test). It is notable

that this subset of MRRs showed the greatest percentage of de-

regulated genes (36.1%, 39 out of 108; Figure 5D), with over

89.7% upregulated (35 out of 39; Figure 5D). This data suggest

these MRRs are more likely to be completely CN altered.

Interestingly, these 2 MRRs are located at 5p, the arm already

demonstrated as fully amplified. One (MRR 5-1) is located in

cytoband 5p15 and the other (MRR 5-4) is located in cytoband

5p14 (Table S1).

Gene expression analysis by individual MRR. Another

way to investigate the actual copy-number status of MRRs is by

comparing the percentage of deregulated genes in each MRR with

that of the whole set of MMRs. In principle, it is expected that

where the MRR is actually deleted or gained, most of the genes

located within that MRR should change expression in the same

way as the CN alteration. Only 61.9% (783 of 1264) of genes

located in 85 MRRs was investigated for changes in expression.

The percentage of total deregulated genes was 18.8% (147 of 783)

and only 32 MRRs had a higher than this percentage. However,

only in 4 of them, 2 gained (MRR 3-13 and 5-1; Table S1) and 2

deleted (MRR 4-4 and 13-2; Table S1), the difference against the

whole set (18.8%) was statistically significant. Of particular note is

MRR 5-1, because 43.8% of the investigated genes (28 out of 64)

were deregulated and the p value was very low (4.561026; chi-

square). Of these, 27 genes were upregulated and only 1 (FBXL7)

was downregulated (Figure 2B). As expected, the percentage of

overexpressed genes was similar in the subgroups of genes with

(50%) or without (38.9%) altered SNPs (p.0.05, chi-square; data

method was used for the analysis, using cut-off values of fold change of $1.5 or #0.66 for up- or downregulated genes and fold discovery rate (FDR)
of 0%. Genes previously reported associated with cervical cancer are labeled with asterisks (IPA system) or circles (PubMed).
doi:10.1371/journal.pone.0032667.g002

Table 1. Influence of copy number alterations in gene
deregulation in cervical cancer cell lines.

Frequency of deregulated genesa

CN+ CN2 All

Cell line
Genesb

CN+ n EX+ % n EX+ % EX+ %

CaLo 6,864 4,487 532 11.9 16,254 1,686 10.4 2,218 10.7

CaSki 7,706 4,912 728 14.8 15,829 2,197 13.9 2,925 14.1

HeLa 14,276 8,875 2,207 24.9 11,866 3,088 26 5,295 25.5

SiHa 17,829 11,120 1,125 10.1 9,621 944 9.8 2,069 10

Average 11,669 7,349 1,148 15.6 13,393 1,979 14.8 3,127 15

Recurrent
genese

1,264c 783 147 18.8 19,958 2,975 14.9 3,122d 15.1

a20,741 genes were explored for changes in expression with HG-ST1.0
microarray. On average 7,349 of them were CN-altered (CN+) and 13,393 did not
have copy number alterations (CN2).
bPotentially copy number altered genes according to data obtained with 100 k
microarray. On average only 63% of those genes were explored for changes in
gene expression (numbers in column n of CN+ subset).
cGenes who were copy number altered in the four cell lines.
dGenes who were found deregulated when all four cell lines, by triplicate, were
compared together against the control sample (n = 10).
eIn the genome, included genes that were found in MRRs, and in the
transcriptome, include genes which were found deregulated uniformly in the
four cell lines (described in d).
EX+ = Genes that were up- or down- regulated in cancer cell lines compared
with the control sample.
doi:10.1371/journal.pone.0032667.t001

Figure 3. Comparison of gene expression of PARP1, MCM2, ECT2,
NAALADL2, NLGN1, TNSF10, RFC4, TRIO and CLPTM1L between cell
lines and controls. Panel A shows the experiments of microarrays and
panel B the qRT-PCR experiments. Panels show the mean 6 standard
error of expression intensity of 9 CN-altered genes located at 1q
(PARP1), 3q (MCM2, ECT2, NAALADL2, NLGN1, TNSF10 and RFC4) and 5p
(TRIO and CLPTM1L). For both methods intensities are expressed in
relative units (see Materials and Methods).
doi:10.1371/journal.pone.0032667.g003

Amplified Genes May Be over or Downregulated
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not shown). The high percentage of upregulated genes in both

subgroups of genes strongly suggests that this MRR is fully

duplicated. The other 3 regions (MMRs 3-13, 4-4 and 13-2) had a

higher percentage of deregulated genes (57.1%, 75% and 46.2,

respectively), but they only had limited genes evaluated for

expression and the p values were just below 0.05 (Table S1). It is

important to note that if all genes located in MRRs were explored

and deregulated genes were found in the same proportions, the

difference of these 3 MRRs from the mean would be stronger, and

2 additional MRRs could be identified (MRRs 1-4 and 19-2;

Table S1). Interestingly, the MRR 3-13 is located in 3q26, a

cytoband frequently amplified in CC. The other potentially gained

MRR containing more than 500 SNPs (MRR 5-4), identified in

the analysis showed above, did not have a percentage of

deregulated genes much higher than the mean to be statistically

significant (p.0.05; chi-square test), because only 25% (n = 11) of

the 44 genes investigated for expression were deregulated.

Gene expression analysis by chromosome arms and

cytobands. The correlation of CN and gene expression

analyzed by chromosomal arms and cytobands was very poor.

Only 5p showed a clear correlation between CN and gene

expression (Figure 1), because the high percentage of recurrent

gained SNPs (94%) correlated with a high proportion of

upregulated genes (27.7%). The correlation was specially higher

in 5p15 and 5p12 where the rate of upregulated genes increased

up to 45.1% (Table S2). To a lesser extent, higher percentages of

deleted SNPs were correlated with the enrichment of

downregulated genes in 4p, 13q and 18q (Figure 1). The other 6

arms and 37 of the 43 remaining cytobands, identified with a high

percentage of CN-AS, did not show any gene enrichment

compared with the whole genome, including 3q (13.4%) and

3q26 (15.1%), which had exclusively gained SNPs but

downregulated genes predominated (7.8% in 3q, Figure 1; and

11% in 3q26, Table S2). When 3q was analyzed separately in each

cell line, a high proportion of gained SNPs was found in CaLo

(93.5%) and HeLa (87.2%; Figure 6). However, the proportion of

deregulated genes increased only about 2 fold in HeLa (23.4%) but

not in CaLo (12.7%) compared with that in CaSki (13.9%) and

SiHa (9.4%). On the other hand, 4q, 5q, 6q, 14q, 15q, 16q, 16p,

17q, 19p and 20q, which also showed an enrichment of

deregulated genes, had none or a very low percentage of CN-AS

(Figure 1). This is also the case for 31 of the 39 cytobands that

showed a significant enrichment of deregulated genes. It is

especially notorious in 15q11 and 19p12, which did not have

recurrent altered SNPs, but showed downregulated more than

50% of the explored genes (Table S2).

Analysis of 5p, 3q and 1q. Although the full 5p arm seemed

to be amplified (Figure 2A), it is worth noting that around 2/3 of

genes located in this arm were not deregulated, and from those de-

regulated genes, 9 were found downregulated (Figure 2B–D).

Furthermore, the proportion of deregulated genes was not evenly

distributed along 5p, because it was much higher in MRR 5-1

(5p15; 43.8%; Figure 2B) than in MRR 5-4 (5p14.3-5p13.2; 25%;

Figure 2C) and MRR 5-5 (5p13.1-5p12; 24.3%; Figure 2D).

Downregulated genes were almost absent in MRR 5-1 but

increased in MRRs 5-4 and 5-5. It is notable that 48.8% of

deregulated genes in 5p, especially in MRR 5-1, were distributed

in clusters of 2 or more contiguous deregulated genes (Figure 2B).

This distribution was statistically significant from a random

distribution (p,161028, chi square test), suggesting that besides

the segment amplification, the location of genes within the same

region of chromatin, perhaps at a loop level, may influence gene

expression. Several genes previously reported and supposed to be

involved in cervical carcinogenesis, like BRD9, POLS, SDHA, and

TRIO, were also identified upregulated and located in MRR 5-1

(Figure 2B).

Figure 6 shows the intensity (log2 ratio) of SNPs investigated in

Chr 3 (Figure 6A) and the expression fold change of genes

evaluated at 3q26–29 (Figure 6B–D), where there are genes

frequently identified or associated with CC. Only 3q26 had MRRs

(MRRs 3-11, 3-12, 3-13, and 3-14; Figure 6B). A very low

percentage of deregulated genes per cytoband is shown (,13%),

particularly in 3q28/3q29. However, 31.9% of deregulated genes,

similarly to those investigated in 5p, were located together in

groups of 2 or more genes, intercalated with several genes with no

changes in gene expression. In the case of 3q26 (Figure 6B), there

is one cluster, aligned with MRRs 3-13 and 3-14, including 3

downregulated (TNFSF10, NLGN1, and NAALADL2) and 2

upregulated genes (AADACL1 and ECT2). On the other hand,

there are 1 MRR (3-12) that had genes with no changes in gene

expression. In 3q27, there is a cluster with 5 overexpressed genes

(ALG3, ECE2, CAMK2N2, PSMD2, and EIF4G1). It is noteworthy

that genes like TERC, PIK3CA (3q26), and LAMP3 (3q27) were

neither CN altered recurrently nor upregulated (Figure 6B and C).

Figure 4. Trend of deregulated genes as CN-altered SNPs
increased by gene or region. The figure shows the percentage
trends of deregulated genes as the number of CN-altered SNPs per
region (panel A) or gene (panel B) increased. MRR includes the genes
harbored by the minimal recurrent regions common to the 4 cell lines.
The linear association between the variables in all but one plot (CNAs,
panel A) was statistically significant, p,0.01, Mantel–Haenszel linear-by-
linear association chi-squared test.
doi:10.1371/journal.pone.0032667.g004
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Figure 7 shows the signal intensity (log2 ratio) of SNPs

investigated in Chr 1 (Figure 7A) and MRR 1-15 (Figure 7F),

the expression fold change of genes evaluated at 4 MRRs (1-8, 1-9,

1-14 and 1-15; Figure 7B–E) and the copy number of PARP1 gene

evaluated by qPCR (7G). Similarly to 3q, the percentage of

deregulated genes per cytoband in 1q was very low (mean = 13%)

and only 1q21 had a higher rate than the whole genome (22.2%,

Table S2). Even in the MRRs, only an average of 17% of genes

was de-regulated (calculated from Table S1) and the small

difference (2.5%), compared with the whole 1q (14.5%; Figure 1),

was not statistically significant. In figures 7B–E are shown the

MRRs (1-8, 1-9, 1-14 and 1-15) which had the greater number of

genes explored for changes in expression (Table S1). In MRR 1-9

(Figure 7C), it is notorious that none of the 27 genes explored were

upregulated, instead two of them were downregulated (MNDA

and DARC). In contrast, in MRR 1-15 (Figure 7E), 7 out of 33

(21.2%) explored genes were upregulated, including PARP1.

Similarly to 5p and 3q, the deregulated genes were often (37.9%)

located together in groups of 2 or more genes intercalated with

several genes with no changes in gene expression. This is clearly

seen in MRRs 1-8 (Figure 7B), 1-14 (Figure 7D) and 1-15

(Figure 7E). The amplification of PARP1 gene was validated in the

four cell lines by qPCR with a TaqMan assay (Figures 7G).

Interestingly, the number of copies correlated with the mean

intensity (log2 ratio) of the 110 SNPs located in the MRR 1-15

explored with the 100 K microarray (Figure 7F). Whereas CaLo,

CaSki and HeLa had about 4 copies of PARP1 gene and a log2

ratio around 0.2, SiHa had 10 copies and a log2 ratio of 0.4.

Fluorescent in situ hybridization (FISH)
The copy number of the 5p15 region, where MRR 5-1 is

located, was investigated in 3 cell lines (CaSki, SiHa, and HeLa)

with FISH using a sub-telomeric probe at 5p15.33 and a locus-

specific probe at 5p15.2 (green signals in Figure 8; see Materials

and Methods). The copy number was estimated by comparing the

signal of the target probes with that of internal control probes

located at 5q35.3 and 5q31 (red signals in Figure 8). The 2 probes

showed amplification at the 5p15 region but the signal ratio of the

probe located at 5p15.33 was higher (Figure 8). The signal ratio

was 2.3 (range, 2.3–2.4) at 5p15.33 and 2 (range, 1.8–2.2) at

5p15.2. The difference in the fold change between the 2 probes

was noteworthy in CaSki (2.4 vs. 1.8) but in full concordance with

the microarray data, because 5p15.3 was found highly amplified,

whereas the rest of 5p15 was found less amplified (Figure 2A). The

Chr spreads showed recognized genomic instability in all cell lines,

complex aberrations of Chr 5 including 5p isochromosomes and

5p centric and acentric fragments, and double minutes (Figure 8).

In agreement with the microarray data, 3q26.2 was confirmed

amplified in CaSki and HeLa but not in SiHa (Figure 8). However,

the signal ratios in HeLa (1.2) and CaSki (1.7) were lower than

those observed in 5p15.

Figure 5. Trend of down- and upregulated genes as CN-altered SNPs/gene increased in deleted and amplified MRRs. In panel A, the
percentage trend of deregulated genes is compared among the genes located in MRRs having 1–100, 101–500, and .500 SNPs. The trends of up-
and downregulated genes are shown in panels B (47 deleted MRRs, ,500 SNPs), C (51 amplified MRRs, ,500 SNPs), and D (2 amplified MRRs, .500
SNPs). The total number of genes studied for expression and included in the analysis of panels B, C, and D was 390, 267, and 108, respectively. The
numbers above the bars indicate the number of deregulated genes.
doi:10.1371/journal.pone.0032667.g005
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Classification of genes that expressed differentially or
had potential alterations in copy number

The DAVID functional annotation tool (http://david.abcc.

ncifcrf.gov) was used to identify the biological processes where the

3,122 genes differentially expressed, the CN-altered genes found in

each cell line and the 147 deregulated and recurrent CN-altered

genes are involved. Compared with the human genome database,

the 3 physiological processes more enriched in the former set of

genes and with the lowest p values were the cell cycle (169 genes,

fold change [FC] = 1.9, p = 6610218), cell adhesion (178 genes,

FC = 1.6, p = 2610211) and DNA metabolic processes (121 genes,

FC = 1.5, p = 1.261026). For the set of recurrent CN-altered genes

with deregulated expression (147), the 3 most enriched physiolog-

ical processes were phosphorus metabolic process (20 genes,

FC = 2.7, p = 961025), positive regulation of signal transduction

(10 genes, FC = 4.5, p = 3.561024), and the regulation of cell

communication (19genes, FC = 2.4, p = 661024). Interestingly, in

the subset of upregulated genes (n = 28), belonging to the

duplicated MRR 5-1, apoptosis was the only enriched process

(FC = 5.2; p = 0.03). This was accounted for by 5 genes involved in

the apoptotic process including CLPTM1-like (CLPTM1L), aryl-

hydrocarbon receptor repressor (AHRR), programmed cell death 6

(PDCD6), death-associated protein (DAP) and triple functional

domain (TRIO) genes. On the other hand, the analysis of the set of

genes located in the potential CNAs did not show an enrichment

of cancer-related process (data not shown). These data also

support the hypothesis that most potentially CN-altered genes are

not actually altered in the number of copies or deregulated.

The data were also analyzed with the IPA Ingenuity system and

the findings were very similar to those obtained with DAVID, at

least for the larger groups. In agreement with the DAVID analysis,

the top canonical pathways are from the cell cycle, followed by

pathways of the immune system, in the group of 3,122 genes

(Figure 9A) and from cell signaling and cell cycle in the group of

147 genes (Figure 9B).

Discussion

In this study, we found a poor correlation between CN

alterations and changes in gene expression. Only a small

percentage of genes located in CNAs was de-regulated (15.6%),

which was a minor difference (0.8%) from that of the subset of

genes with non-CN alterations (14.8%). In the subset of CN-

altered and deregulated genes, the way of deregulation was not

necessarily the same as the CN alteration, i.e., amplified genes

were not always upregulated, instead they were often downreg-

ulated, and some deleted genes were found to be upregulated. This

analysis was essentially based on the comparison of copy-number

alterations and global gene expression investigated through

genomic technologies and the characterization of certain regions

by FISH and qPCR. The healthy normal epithelium of the cervix

might not be the best control to measure the level of gene

expression in cell lines. However, it is difficult to select an

appropriate control, because these cell lines have been maintained

in culture for many years. Although they do not fully represent the

complexity of a tumor, they usually retain their genetic properties

[34–36]. The use of primary cultures of normal cervical epithelium

may be a better control, but there are not any available

commercially. On the other hand, similar global results have

been observed between cervical carcinomas and the cell lines

reported in this study, when the same set of healthy normal

controls were used (data not shown).

The results of this paper suggest that most of the CNAs in the

evaluated cell lines, identified formerly with the 100 K micro-

array as succession of altered SNPs, are not continuously altered

regions that include the full DNA segment defined by the altered

SNPs. Rather, they appear to be composed of small or partial

deletions or gains, where the altered SNPs are located, alternating

with long stretches of normal DNA. On the other hand, the

MRRs are more likely to be completely CN altered, because the

proportion of deregulated genes was increased up to 3 fold,

particularly in those having a high density or more than 500

SNPs. In those MRRs, the proportion of deregulated genes did

not change with the number of SNPs per gene, further supporting

they are entirely CN altered. In fact, the 2 MRRs having more

than 500 SNPs (5-1 and 5-4), located at 5p, were confirmed as

being completely amplified by FISH. In contrast, the finding that

in MRRs composed of less than 500 SNPs, the percentage of

deregulated genes increased with the number of SNPs/gene,

strongly suggests those regions are CN affected in a discontinuous

manner. However, it cannot be ruled out that some MRRs

having less than 500 SNPs are completely CN altered, such as

MRR 5-5 located at 5p, which had 346 SNPs and was confirmed

fully amplified by FISH.

In previous studies, Chr 5p has often been found to be amplified

in CC and cell lines derived from them, and many genes located in

the region have been involved in the tumorigenic process

[16,20,22,30,37]. Nevertheless, a rather poor correlation has been

found between amplification and gene expression in this region,

both in cell lines (22%) [16] and invasive tumors (18.9%) [22].

Although in the present study, a higher percentage of genes was

deregulated (33.5%), a large proportion of the investigated genes

was not deregulated. Furthermore, not all the deregulated genes

were upregulated, 9 of them were downregulated. Because the

entire 5p arm was demonstrated to be amplified by FISH

(Figure 8), it is clear that not all amplified genes are upregulated,

instead, some of them might be repressed, possibly by epigenetic

mechanisms. The clustering of deregulated genes suggests that,

besides the amplification of the segment, the location of genes

within the same region of chromatin, perhaps at a loop level, may

influence gene expression [38,39].

The upregulated genes at MRR 5-1 may have a role in the

carcinogenic process. They include BRD9 and POLS, which

participate in DNA repair and cell-cycle regulation, SDHA

involved in mitochondrial oxidative phosphorylation [22], and

TRIO, which promotes the exchange of GDP by GTP and could

play a role in coordinating cell-matrix and cytoskeletal rearrange-

ments necessary for cell migration and cell growth. In fact, TRIO

has been associated with progression of bladder cancer [40] and

soft tissue sarcomas. In the latter, a clear correlation has been

demonstrated between amplification and gene upregulation [24].

Another upregulated gene located in this region was CEP72, which

regulates the localization of key centrosome proteins involved in

spindle formation [41]. This gene has been found frequently

amplified in non-small-cell lung cancers [42]. TERT, which

encodes the catalytic subunit of the telomerase complex hTERT

Figure 6. Genome amplification and deregulation of gene expression in 3q. Panel A shows the copy number log2 ratio of SNPs investigated
in Chr 3 by the 100 K SNP microarray in HeLa, CaSki, SiHa, and CaLo. Panels B to D show the fold change of gene expression of genes evaluated by
the ST1.0 expression microarray located at 3q26 (n = 73), 3q27 (n = 63), and 3q28–29 (n = 66). The genes are ordered according to the position in the
genome. See the legend of Figure 2 for further information.
doi:10.1371/journal.pone.0032667.g006
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and have been found to be amplified or upregulated in more than

90% of squamous cell cervical carcinomas and 40% of CIN III

lesions [43], had a fold change of 1.45, just below the selected cut-

off (Figure 2). The concordance between the upregulated genes

found at 5p, in this and previous reports, was close to 60% [16,22].

Most of the remaining genes that were shown to be upregulated in

other studies had a fold change higher than 1.5 in this study but

did not pass the delta score (Figure 2B–D; see Materials and

Methods). However, additional genes linked to cancer processes

were found deregulated in this study including AHRR, C7,

CLPTM1L, and MRPS30 involved in apoptosis, CDH6 in cell

adhesion and CEP72 in the cell cycle.

Figure 7. Genome amplification and deregulation of gene expression in Chr 1q. Panel A shows the copy number log2 ratio of SNPs
investigated in Chr 1 by the 100 K SNP microarray in HeLa, CaSki, SiHa, and CaLo. Panels B to D show the fold change of gene expression of genes
evaluated by the ST1.0 expression microarray located at MRRs 1-8, 1-9, 1-14 and 1-15. The genes are ordered according to position in the genome. For
panel F, the mean 6 S.D. of the log2 ratio signal of 110 SNPs located in the MRR-15 was plotted. In panel G is shown the copy number of PARP1 gene
calculated by qPCR in triplicate experiments. See the legend of Figure 2 for further information.
doi:10.1371/journal.pone.0032667.g007
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In contrast with Chr 5, which shows clearly amplified 5p and

unaltered 5q, the overall profile of Chr 3 shows that 3p is generally

deleted and 3q amplified in some cell lines. They look like the

inverse of one another. Furthermore, the phenomenon of

amplification in 3q appears to be quite different from that in 5p.

For instance, the level of gain or amplification was lower than in

5p and it did not include the entire 3q arm in all the cell lines;

instead, only certain sparse regions were found altered recurrently.

In fact, the average log2 ratio of MRRs at 5p was almost 2 fold

times higher than those located at 3q (p,0.001, t-test; calculated

from Table S1). The full arm (CaLo and HeLa) or several regions

(CaSki and SiHa) of 3q were found to be amplified (Figure 6),

similarly to the findings in previous reports [5,7,9,19]. This could

explain the lower proportion (13.4%) of deregulated genes found

in 3q compared with that in 5p (33.5%). However, even in those

cell lines where most of 3q was gained, the proportion of

deregulated genes did not rise (CaLo) or increased modestly

(HeLa). In addition, in 3q, the proportion of downregulated genes

was higher than the proportion of upregulated genes, particularly

in 3q26, where 8 of 11 deregulated genes were downregulated,

even some of them were recurrently gained. Furthermore,

similarly to 5p, deregulated genes seemed to be grouped in

clusters in 3q26–29. These findings indicate that an increase in the

copy number does not necessarily mean that genes located in those

regions will be upregulated. It suggests that, in those entirely

amplified regions, epigenetic mechanisms could be involved in

gene repression. On the other hand, the increased frequency of

downregulated genes with the number of amplified SNPs in the

subset of genes located in MRRs, which seems to be not entirely

amplified (having less than 500 SNPs; Figure 5C), supports that

Figure 8. Copy number analysis of cytobands 5p15 and 3q26 with fluorescence in situ hybridization (FISH). Representative
experiments of FISH analysis of cytobands 5p15.33, 5p15.2, and 3q26 in 3 cell lines (CaLo, CaSki, and HeLa) are shown. Two sets of probes were used
for the analysis of 5p15 and one for the analysis of 3q26 (see Materials and Methods). The sets for 5p15 included a target probe (green signals) and a
control probe (red signals) located at 5q. The set for 3q26 included a target probe (green signals) and a control probe located at the centromere.
Nuclei in interphase (first, third, and fourth rows) and Chr in metaphase (second row) were counterstained with DAPI.
doi:10.1371/journal.pone.0032667.g008
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partial gene amplification may be a mechanism of gene silencing.

This idea has been proposed theoretically [44].

The 3q26 region has been previously identified as gained or

amplified in biopsies or cell lines derived from CC by using CGH

or FISH [4,6,7,45]. Recognized tumor genes, such as EVI1 and

MDS1 [46], and genes associated previously with CC (TERC,

TNFSF10, and PIK3CA) are located in this region. However, it has

not been demonstrated that these genes were upregulated

[5,7,9,19], particularly in the same samples where the CN

alterations were found. In this study, EVI1, TERC, PIK3CA, and

LAMP3 were neither found CN altered recurrently nor upregu-

lated in all the cell lines studied. TERC was found gained in CaLo,

CaSki, and HeLa but upregulated only in HeLa (data not shown).

However, conclusions with these negative results from the

microarrays may be too risky without the validation with different

methodologies, like qPCR and qRT-PCR. Interestingly, the gene

encoding for tumor necrosis factor (ligand) superfamily member 10

(TNFSF10), a protein that induces apoptosis in transformed and

tumor cells, was found to be downregulated in the 4 cell lines, even

though the gene was recurrently gained (MRR 3-13; Figure 6B).

This gene is located in the same region as 2 other downregulated

(NLGN1 and NAALADL2) and 2 upregulated (AADACL1 and

ECT2) genes, which have not been previously associated with CC.

However, the protein encoded by ECT2 (epithelial cell transform-

ing sequence two oncogene) is a transforming protein that is a

nuclear guanine nucleotide exchange factor (GEF) and regulates

RhoB-mediated cell death after DNA damage in cervical cell lines

[47]. The expression of this gene is elevated with the onset of DNA

synthesis and remains elevated during the G2 and M phases [48].

Increase in gene dosage by DNA amplification is a common

mechanism to achieve overexpression of genes in tumors [49].

ECT2 showed the highest fold change of the upregulated genes

found at 3q; therefore, it is a good candidate for the amplified

driven oncogene in 3q26 for CC.

In 1q the correlation between CN and gene expression was also

very poor and similar to the figures seen in 3q. However 3 genes,

IQGAP3, CENPF and PARP1, were upregulated more than 3

fold times compared with controls. The protein codify by PARP1

(Poly ADP-ribose polymerase-1) is a DNA binding protein that

detects specifically DNA strand breaks generated by different

genotoxic agents. Whereas activation of PARP-1 by genotoxic

stimuli facilitates DNA repair and cell survival, severe DNA

damage triggers different pathways of cell death, including PARP-

mediated cell death [50]. Cells with BRCA1 loss of function are

deficient in DNA double strand break repair thus activating

PARPs whose catalytic activity is immediately stimulated by DNA

strand-breaks [51]. Although in these cell lines the expression of

BRCA1 and BRCA2 genes did not change (data not show),

PARP1 could help these genes in that DNA reparation pathway.

Conclusions
The overall correlation between the CN alterations and changes

in gene expression was about 15% in CC cell lines. This low

correlation could be related to several factors. First, most genes

located in the CNAs, identified formerly in the cell lines with the

100 K microarray, were not altered in the number of copies.

Second, in the genomic segments confirmed entirely amplified,

like 5p, the percentage of deregulated genes was over 33%, but not

all of them were upregulated. Therefore, it is clear that not all

amplified genes are upregulated; instead, some of them may be

repressed, possibly by epigenetic mechanisms. Third, deregulated

genes were found in clusters, suggesting that, besides the segment

amplification, the location in the same chromatin region may

influence gene expression. Fourth, the steady rise of downregu-

lated genes with the increase of amplified SNPs in regions CN

altered discontinuously suggests that partial gene amplification

could be a mechanism of silencing gene expression. Additional

genes were identified up- or downregulated at 5p, 3q and 1q that

could be involved in cervical carcinogenesis, particularly in

apoptosis, including CLPTM1L, AHRR, PDCD6, and DAP in 5p,

TNFSF10 and ECT2 in 3q and PARP1 in 1q.

Materials and Methods

Ethics Statement
The study protocol was approved by the Ethics and Scientific

Committees of the Hospital General de Mexico with the approval

number DIC/03/311/04/051 and was performed in accordance

with the ethical standards laid down in the 1964 Declaration of

Helsinki. All participants signed informed written consent forms

prior to their inclusion in the study.

Cell lines
Human cervical cancer cell lines HeLa, SiHa and CaSki were

provided by Dr. Nicolás Villegas-Sepulveda [52] from the

Departamento de Biomedicina Molecular, CINVESTAV-IPN,

Mexico city, who purchased the cell lines in ATCC, Rockville,

MD. CaLo cell line was a kind gift of Dr. Alberto Monroy-Garcı́a

from the Unidad de Investigación Médica en Enfermedades

Oncológicas, CMNS-XXI IMSS, Mexico city, who isolated the

cells [53]. All of them were maintained in RPMI 1640 medium

(Life Technologies, Grand Island, NY) supplemented with 10%

fetal calf serum, streptomycin, and penicillin at 37uC in a humid

atmosphere containing 5% CO2.

Control samples
DNA obtained from blood samples collected from 38 healthy

women was used as controls for 100 K microarray analysis. Ten

samples of normal cervical epithelium were used as controls for the

analysis of gene expression. These samples were obtained from

cervical specimens of patients undergoing hysterectomy due to

myomatosis at the Gynecology Service in the Hospital General de

Mexico. Patients were previously diagnosed with a normal cervix

by colposcopy and cytology. Immediately after receiving a cervix

fragment from the operating room, the exocervical epithelium was

dissected with the aid of a stereoscopic microscope to avoid

stromal cells. Then it was snap frozen in liquid nitrogen and stored

at 280uC until use.

DNA and RNA isolation
DNA was obtained with the PureLink genomic DNA kit

(Invitrogen, Carlsbad, CA) and maintained at 220uC until

analysis. Total RNA was extracted using the TRIzol reagent

(Invitrogen, Carlsbad, CA) according to the manufacturer’s

Figure 9. Canonical pathways where deregulated genes are involved. Top 25 canonical pathways identified in the set of 3,122 genes
deregulated in the four cell lines (A) and in the subset of 147 deregulated and recurrent CN-altered genes (B). The canonical pathways were identified
with the Ingenuity Pathway Analysis (IPA) system. The 2log (p-value), gray bars, and the ratio, black dots, were calculated comparing the number of
genes of the pathways present in the datasets versus the human database. The p-value was calculated with the chi square or Fisher exact tests as
appropriate and the values of 2log (p-value).1.3 (dash line) correspond to p,0.05.
doi:10.1371/journal.pone.0032667.g009
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instructions. The quality of RNA was confirmed by the presence of

intact ribosomal RNA (28 s and 18 s bands) by using agarose-gel

electrophoresis.

GeneChip Mapping 100 K
The SNP arrays of 100 K analyze 116,204 SNPs with a mean

inter-marker distance of 23.6 kb. Array experiments were

performed according to the Affymetrix GeneChip Mapping

100 K standard protocols (Affymetrix Inc., Santa Clara, CA,

USA). Briefly, 250 ng of DNA were digested with the appropriate

restriction enzyme (XbaI or HindIII), PCR amplified, fragmented,

and labeled. Microarrays were hybridized, washed, and scanned

using the GeneChip 3000 scanner and Affymetrix GeneChip

Command Console software. Cell intensity files (.CEL) were

generated, saved, and transported to a workstation that contained

Affymetrix Genotyping Console (GTC) 4.0 software.

SNP calling
SNP calls were generated by the Bayesian Robust Linear Model

with the Mahalanobis distance classifier algorithm. This algorithm

performs a multiple-chip analysis that facilitates the estimation of

probe effects and allele signals simultaneously and, if necessary,

borrows the information of other SNPs to better predict the

properties of the clusters formed by the genotypes. To maximize

the accuracy of calling, the analysis was performed in a single run

including the 38 controls.

Copy number analysis
DNA copy number (CN) was calculated based on the

hybridization intensity of each SNP probe and was estimated

from raw signal data by the GTC 4.0. The software compares the

cell lines to a reference set of normal samples. For this analysis, the

protocol of unpaired samples was followed. Briefly, the parameters

were set as follows: quantile normalization was performed at the

perfect match probe level, followed by summarization of the signal

intensity for each allele of each SNP. Genomic smoothing was set

to 0.5 Mb and a 5-state hidden Markov model was applied for

smoothing and segmenting CN data. The different states were

defined as follows: 0 = homozygous deletion, 1 = heterozygous

deletion, 2 = normal diploid, 3 = single copy gain, and 4 = ampli-

fication. Each SNP was fitted to one of the possible CN states with

transition decay of 10 Mb and a threshold for SNP outlier of

1000 bp. The software output the CNCHP files that contained the

estimation of CN altered SNPs in the cell lines, according to the

parameters previously described. Finally, the CN altered regions

(CNAs) were defined by a copy number segment reporting tool.

The CNAs are the segments of DNA where a continuous

succession of 2 or more CN-altered SNPs is located (see Figure

S1). When the CN-altered SNPs were isolated, surrounded by non

altered SNPs, they were considered CNAs of one SNP. In

addition, the CN alterations were analyzed with the SVS ver 7.1

software of Golden Helix. The .CEL intensity files from the four

cell lines and 38 controls were imported into the copy number

analysis module of SVS. The raw intensity data from the XbaI and

HindIII arrays of each sample were quantile normalized. After the

normalization was performed, the log2 ratio was calculated using

the normalized probes intensities with controls as reference. The

calculated log2 ratio of chromosomes 1, 3 and 5 from the cell lines

CaSki, HeLa, SiHa and CaLo were plotted and smoothed with the

median using a window radius value of 99. Figure S2 shows that

the log2 ratio profiles of chromosomes 1, 3 and 5 obtained with

both softwares are almost identical.

Gene expression profiling and data analysis
Gene expression profile was explored by triplicate experiments

in CaLo, CaSki, HeLa, and SiHa cell lines and 10 cervical

epithelium controls by using the Human Gene 1.0 ST oligonu-

cleotide microarray (Affymetrix, Santa Clara, CA). This array

contains 33,297 probe sets that correspond to approximately

20,741 genes of the human gene reference database according to

UCSC Genome Browser Assembly Mar. 2006 NCBI 36/hg18,

available at http://genome.ucsc.edu/. A total of 300 ng of RNA

of each cell line or control sample was used for the synthesis of

cDNA. This was done with SuperScript II reverse transcriptase

and oligo(dT) primer, containing a T7 RNA polymerase

promoter, by using the GeneChip WT cDNA synthesis kit

(Affymetrix). Then in vitro transcription amplification was per-

formed overnight using the GeneChip amplification kit (Affyme-

trix). The cRNA was random primed to include dUTP, and single-

stranded DNA was fragmented with uracil DNA glycosylase

followed by exonuclease 1. Fragmented DNA was then labeled

using terminal deoxy-nucleotidyl transferase (TdT) and biotiny-

lated nucleotides (GeneChip Terminal Labeling Kit; Affymetrix).

A hybridization cocktail was prepared that included the labeled

target DNA and control probes for hybridization. The microarrays

were hybridized for 16 hours at 45uC and 60 rpm, then washed

and stained with streptavidin phycoerythrin conjugate in a

GeneChip Fluidics Station 450. Finally, the chips were scanned

using a GeneChip Scanner 3000. Array hybridization, scanning,

and image analysis were done according to the manufacturer’s

protocols (Affymetrix GeneChip Expression Assay manual). To

assess the quality of the experiments, the following parameters

were used: the expression of the exogenous polyA controls, the

presence of the oligo B2 used to make grid alignments, and the

values of the area under the curve (AUC) above 0.8. Only those

microarrays with optimal quality controls were then analyzed.

Microarrays were normalized using the RMA algorithm (robust

multichip average) in the Affymetrix expression console. The

values of the normalized intensity were referred to as units of

intensity (UI). The identification of genes expressed differently

between cell lines and controls was performed with the algorithm

‘‘Significance Analysis of Microarrays’’ (SAM Version 3.0, http://

www.stat.stanford.edu/,tibs/SAM) by using cut-off values of fold

change of $1.5, a general fold discovery rate (FDR) of 0%, and a

local FDR of ,10% [54]. The 3 experiments of each cell line or all

cell-lines experiments together (n = 12) were compared with the set

of controls (n = 10).

Validation of global gene expression by real-time
quantitative retro transcription PCR (qRT-PCR)

Reverse transcription of total RNA was performed using the High-

Capacity cDNA Archive kit (Applied Biosystems, CA) in a total

volume of 20 mL. The mix included 2 mg of RNA, 2 mL 106RT

buffer, 0.8 mL dNTPs 100 mM, 2 mL 106 RT Random Primers,

1 mL MultiScribeTM reverse transcriptase (5 U/mL), and 1 mL

RNase inhibitor (2 U/mL). Reactions were incubated at 37uC for

120 min and then stored at 220uC. A set of 23 genes was used to

validate gene expression in the 4 cell lines and 10 healthy cervical

epithelium controls with qPCRs. The following TaqMan gene

expression assays (Applied Biosystems) were used: CCNB2

(Hs00270424_m1), CDC2 (Hs00364293_m1), CDC20 (Hs004158-

51_g1), CDKN2A (Hs00233365_m1), CDKN3 (Hs00193192_m1),

CKS2 (Hs00854958_g1), MCM2 (Hs00170472_m1), MKI67 (Hs00-

606991_m1), NUSAP1 (Hs00251213_m1), PRC1 (Hs01597831_m1),

RFC4 (Hs00427469_m1), TOP2A (Hs01032127_g1), TYMS (Hs00-

426591_m1), ZWINT (Hs00199952_m1), PARP1 (Hs00242302_m1),

NAALADL2 (Hs00822484_m1), POLD1 (Hs00172491_m1), CLP-
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TM1L (Hs00363947_m1), TRIO (Hs00179276_m1), TNFSF10

(Hs00921974_m1), NLGN1 (Hs00208784_m1), ECT2 (Hs00216-

455_m1) and RFC5 (Hs00738859_m1). GAPDH (Hs02758991_g1)

and BETA ACTIN (Hs01064292_g1) were used as controls. Genes

located in 1q (PARP1), 3q (MCM2, TNFSF10, ECT2, NLGN1,

NAALADL2, RFC4) and 5p (TRIO, CLPTM1L) were selected

according to the specific Chr analyzed in this study. The rest of genes

are located in other chromosomes and were selected to validate gene

expression because most of them ranked throughout the first 100

places of de-regulated genes in cell lines (Table S4). The experiments

were run in duplicate in a final volume of 20 mL including 200 ng of

cDNA template, 10 mL of 26TaqMan Universal PCR Master Mix

(Applied Biosystems, CA), 1 mL of 206TaqMan Gene Expression

Assay, and 7 mL of RNase-free water. The cycling program was run

in a Rotor-Gene (Corbett Research, Sydney, Australia) and set as

follows: PCR initial activation step at 50uC for 2 min followed by

95uC for 10 min, then 40 cycles of melting at 95uC for 15 s and

annealing/extension at 60uC for 1 min. Measurement of gene

expression was based on a relative standard curve constructed from a

10-fold serially diluted pool of the 4 cell-line cDNAs ranging from 500

to 0.05 ng/mL. The expression of target genes was normalized in

each cell line and control sample to the median intensity of the

internal references by using a method previously described in detail

[55]. The values of the normalized intensity were measured in ng/mL.

The fold-change expression was calculated by dividing the

normalized intensity of each cell line by the average normalized

intensity of the control samples. The statistical difference between

each cell line and the set of controls was measured with a Mann–

Whitney non-parametric test. The level of correlation between the

microarray results and qRT-PCR data was measured with the

Pearson’s correlation coefficient.

Fluorescent in situ hybridization (FISH)
Interphase and metaphase preparations of CaSki, HeLa, and

SiHa were obtained according to standard procedures [56].

Double-color FISH experiments were performed to determinate

the copy numbers of 3 regions, i.e., 5p15.3, 5p15.2, and 3q26. For

5p, 2 cocktails of probes were used (Abbott Laboratories. Abbott

Park, Illinois, USA). One included a target probe located at 5p15.3

(C84c11/T3, labeled with SpectrumGreen) and a control probe

(D5S2907, labeled with SpectrumOrange) located at 5q35.3, and

the other included a target probe located at 5p15.2 (LSI D5S23,

D5S721, labeled with SpectrumGreen) and a control probe (LSI

EGR1, labeled with SpectrumOrange) located at 5q31.1–31.3. For

3q, 1 cocktail of probes (KBI-10110; Kreatech Diagnostics,

Amsterdam) was used, which included a target probe (hTERC

locus) located at 3q26.2, labeled with PlatinumBright 550 (red),

and a centromeric 3q11 probe, labeled with PlatinumBright 595

(green), as the control. Slide preparation, DNA hybridization, and

post-hybridization washes were carried out using standard

methods described in the manual. At least 20 cells were analyzed

using direct microscopic visualization and digital-imaging analysis

to verify number of signals and probe location. The copy number

changes were measured by calculating the ratio between the

average number of signals of target and control probes.

Validation of PARP1 copy number by real-time
quantitative PCR (qPCR)

The number of copies of PARP1 gene was calculated in the

four cell lines using 10 samples of lymphocytes DNA as reference

control. Experiments were run by triplicates and performed on a

Rotor-Gene 6000 Corbett detection system (Corbett Life

Science), using the TaqManH Assays. The copy number of

PARP1 and RNase P genes was determined together in a single

tube. We used 6.4 ng genomic DNA in 20 mL of reaction mixture

consisting of TaqManH Genotyping Master Mix (Applied

Biosystems), TaqManH Copy Number Reference Assay RNaseP

(4401631) and TaqManH Copy Number Assay PARP1 (Hs

05725717_cn). The cycling conditions consisted of an initial hold

of 95uC for 10 minutes, followed by 40 cycles of 95uC for

15 seconds, and 60uC for 60 seconds. Quantification was

performed using both the relative standard curve method and

the comparative CT method. The values of PARP1 were

normalized in all samples with the values of RNase P. The copy

number was calculated by dividing the normalized values of

PARP1 of each cell line between the median values of the control

samples and then multiplied by 2.

Gene ontology classification analysis
The Database for Annotation, Visualization, and Integrated

Discovery (DAVID) functional annotation tool (http://david.abcc.

ncifcrf.gov) [57,58] and the Ingenuity Pathway Analysis (IPA;

IngenuityH Systems, www.ingenuity.com) were used to classify the

gene list obtained from high-throughput platforms. Genes were

classified using functional annotation clustering with consideration

of the gene ontology biological processes. Classification stringency

was set at the maximum level.

Gene annotation and data integration
The physical position of SNPs, DNA segments, and genes was

mapped according to UCSC Genome Browser Assembly Mar.

2006 NCBI 36/hg18, available at http://genome.ucsc.edu/. The

CNAs of cell lines were aligned according to the position in the

genome, and minimal recurrent regions (MRRs) common to all 4

cell lines were identified (Figure S1). The analysis of SNPs, CNAs,

MRRs, and genes and the alignments of all of them, according to

the position in the genome, were performed with Access 2010

(Microsoft Inc.). To identify the arms, cytobands or MRRs with

the higher alterations, an enrichment analysis, based on a chi

squared test, was performed. The frequencies of the CN-altered

SNPs, CN-altered genes or deregulated genes in each of those

regions were compared with the frequencies found in the whole

genome of cell lines. A chi square or Fisher exact test, as

appropriate, were used to evaluate the statistical significance of the

differences. In addition, a Parametric Gene Set Enrichment

Analysis (PAGE) procedure was performed to evaluate the

enrichment of deregulated genes in chromosomal arms and

cytobands [59]. This procedure is based on the calculation of the Z

score, which takes into account the number of deregulated genes

and the fold change (FC).

The mean (m) and standard deviation (d) of fold change of total

deregulated genes (3,122) and the mean fold change (Sm) of

deregulated genes (m) located in a given arm or cytobands were

calculated. Then, the Z score was calculated as Z = (Sm2m)*m1/2/

d. Microsoft Excel was used to calculate p-values from Z scores.

Gene sets with less than 10 genes were discarded. Two tails p-

values,0.05 were considered statistically significant [59]. For 1q,

3q and 5p the genes were ordered according to its position in the

chromosome and the fold change graphed. The identification of

clusters of 2 or more contiguous deregulated genes were identified

by simple inspection and to test whether this distribution was

statistically significant from a random distribution, a chi square test

was used. The raw microarray data of both SNPs and expression is

MIAME compliant and has been deposited in a MIAME

compliant database (GEO, http://www.ncbi.nih.gov/geo/) under

the accession number GSE29245. Sigma Stat and SSPS softwares

were used for statistical comparisons among the groups.
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Supporting Information

Figure S1 Construction of CNAs and MRRs. An amplified

CNA (red bar) is shown in panel A and included the segment of

DNA where the continuous succession of 10 amplified SNPs (red

triangles) are located .CNAs of the four cell lines are aligned

according to the position in the genome, and a minimal recurrent

regions (MRR) common to all 4 cell lines is identified (panel B).

Genes are aligned according to the position in the genome. Genes

in red are those located into the CNAs or MRR. The triangles and

genes in white, surrounding the amplified CNA, are SNPs and

genes with CN = 2. Notice that genes inside the CNA can be

located in sub regions with or without SNPs (panel A).

(TIF)

Figure S2 Log2 ratio profiles of Chr 1q, 3q and 5p. The

figure shows that the log2 ratio profiles of chromosomes 1, 3 and 5

obtained with both softwares, the Command Console of

Affymetrix and the SVS of Golden Helix.

(TIF)

Table S1 Minimal recurrent regions. a. Combined = de-

leted in some cell lines and gained in others. b. The value is the

average Log2 ratio of all the SNPs including in the minimal

recurrent region of the four cell lines. c. The value is the average of

all the SNPs of the minimal recurrent region. Values.1.3

correspond to p,0.05 and indicate that the difference in the

signal intensity between the cell lines and the control group is

statistically significant (t-test). d. The percent was calculated in

relation to the number of genes per MRR (eleventh column).

(XLSX)

Table S2 Comparison between copy number and genes
expression by cytoband. a. Chi square test. b. Z test. c.

Include cytobands with more than 5.8% of altered SNPs and p-

value,0.05 (chi square) compared with the whole genome. The

cytobands shadowed in blue were those with more than 30% of

CN altered SNPs. d. Include cytobands with more than 15.1% of

deregulated genes and p-value,0.05 (chi square) compared with

the whole genome or Z score .1.96 or ,21.96. Z score was

calculated as part of the Parametric Gene Set Enrichment

Analysis.

(XLSX)

Table S3 Genes identified in the minimal recurrent
regions. a. Combined = genes deleted in some cell lines and

gained in others. b. NE = not explored, UN = unchanged,

UP = upregulated, DOWN = downregulated.

(XLSX)

Table S4 Genes expressed differently in cell lines
compared with normal cervical epitheliuma. a. This list

of genes was obtained when the 4 cell lines, each by triplicate, were

compared together against the control sample (n = 10) using the

SAM method. b. Fold Change was obtained dividing the

normalized signals of cell lines/healthy cervical controls.

(XLSX)
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