
Monitoring of Regulatory T Cell Frequencies and
Expression of CTLA-4 on T Cells, before and after DC
Vaccination, Can Predict Survival in GBM Patients
Brendan Fong1, Richard Jin1, Xiaoyan Wang2, Michael Safaee1, Dominique N. Lisiero1, Isaac Yang1,3,

Gang Li2,3, Linda M. Liau1,3,4, Robert M. Prins1,3,4,5*

1 Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America,

2 Department of Biostatistics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America, 3 Jonsson

Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America, 4 Brain

Research Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America, 5 Institute for

Molecular Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America

Abstract

Purpose: Dendritic cell (DC) vaccines have recently emerged as an innovative therapeutic option for glioblastoma patients.
To identify novel surrogates of anti-tumor immune responsiveness, we studied the dynamic expression of activation and
inhibitory markers on peripheral blood lymphocyte (PBL) subsets in glioblastoma patients treated with DC vaccination at
UCLA.

Experimental Design: Pre-treatment and post-treatment PBL from 24 patients enrolled in two Phase I clinical trials of
dendritic cell immunotherapy were stained and analyzed using flow cytometry. A univariate Cox proportional hazards
model was utilized to investigate the association between continuous immune monitoring variables and survival. Finally,
the immune monitoring variables were dichotomized and a recursive partitioning survival tree was built to obtain cut-off
values predictive of survival.

Results: The change in regulatory T cell (CD3+CD4+CD25+CD127low) frequency in PBL was significantly associated with
survival (p = 0.0228; hazard ratio = 3.623) after DC vaccination. Furthermore, the dynamic expression of the negative co-
stimulatory molecule, CTLA-4, was also significantly associated with survival on CD3+CD4+ T cells (p = 0.0191; hazard
ratio = 2.840) and CD3+CD8+ T cells (p = 0.0273; hazard ratio = 2.690), while that of activation markers (CD25, CD69) was not.
Finally, a recursive partitioning tree algorithm was utilized to dichotomize the post/pre fold change immune monitoring
variables. The resultant cut-off values from these immune monitoring variables could effectively segregate these patients
into groups with significantly different overall survival curves.

Conclusions: Our results suggest that monitoring the change in regulatory T cell frequencies and dynamic expression of the
negative co-stimulatory molecules on peripheral blood T cells, before and after DC vaccination, may predict survival. The
cut-off point generated from these data can be utilized in future prospective immunotherapy trials to further evaluate its
predictive validity.
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Introduction

Glioblastoma is one of the most lethal of human cancers, with

very few long-term survivors and no definitive cures for this

disease. These tumors invade and infiltrate the surrounding brain,

making complete surgical excision impossible. They are also

among the most radiation and chemotherapy resistant cancers,

with a median survival of 12–18 months from initial diagnosis,

even with surgery, radiation and chemotherapy [1,2,3,4,5]. The

glioblastoma patient population has dismal outcomes and

innovative approaches are desperately needed. Thus, glioblastoma

remains a largely unmet medical need, and highlights the need for

novel and effective therapies.

Recently, there has been a growing interest in applying tumor

immunotherapy approaches to primary brain tumors, based on
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the recent FDA approvals for Sipuleucel-T in prostate cancer and

Ipilumimab for metastatic melanoma [6,7,8,9]. Immunotherapy is

theoretically appealing because it offers the potential for a high

degree of tumor-specificity, while sparing normal brain structures

[10]. One such approach uses professional antigen-presenting

cells, known as dendritic cells (DC), co-cultured with autologous

tumor lysate or glioma-associated antigens to target these tumors

immunologically. Initial studies of DC-based vaccine therapy for

malignant gliomas have shown acceptable safety and toxicity

profiles [11,12,13,14,15,16,17,18,19,20,21,22], and multi-center

randomized Phase II and III studies are currently underway.

While DC vaccine strategies have shown great promise

[14,15,16,21,22,23], there are still many barriers and uncertainties

associated with this treatment modality. One of the prominent

barriers of immunotherapy is the absence of biomarkers, imaging

modalities and/or peripheral blood immune monitoring assays

that can convey relevant information about anti-tumor immune

responses elicited by the therapy. Many vaccine-based approaches

consider the expansion of antigen-specific T cells, with functional

activation characteristics, as the most important surrogates of

efficacy. However, the majority of these immune monitoring

strategies have not yielded an association with the clinical effects.

The complexity of the treatments and patients, as well as the array

of distinct monitoring assays, has not led to any uniform surrogate

for immunotherapy.

Such history prompted us to analyze peripheral blood

lymphocyte (PBL) populations for immunoregulatory factors that

might be associated with predicting prognosis and monitoring

patient progress after dendritic cell vaccination. We focused on the

pattern of regulatory T (Treg) cell frequencies and negative co-

stimulatory molecule expression on PBL, before and after DC

vaccination. Treg cells play an essential role in lymphocyte

development by maintaining tolerance and suppressing lympho-

cyte function [24]. Several groups have provided evidence that

Treg cells accumulate in gliomas and suppress the anti tumor

immune response [25,26,27,28,29,30,31,32]. We also evaluated

the dynamic expression of the negative co-stimulatory molecules

(CTLA-4 and PD-1) on several cell populations. CTLA-4 and PD-

1 both play essential roles in the regulation of peripheral tolerance

by limiting T-cell activation and downstream signaling [33]. When

CTLA-4 is upregulated on the surface of T-cells it can bind B7 co-

stimulatory molecules with a higher affinity than CD28,

preventing the initiation of T-cell activation [33]. In essence,

CTLA-4 and Treg cells both function to down regulate the

lymphocyte immune response. With a larger understanding of

Treg cells and negative co-stimulatory molecules, we focused our

research on examining their frequencies in peripheral lymphocyte

populations. We found that decreased Treg cell populations and

decreased expression of CTLA-4 on peripheral blood T cells, after

DC vaccination, were correlated with longer survival in glioblas-

toma patients.

Materials and Methods

Patient Eligibility
This study focuses on 24 patients diagnosed with glioblastoma at

our institution and treated with either autologous tumor lysate-

pulsed (UCLA IRB #03-04-053, FDA IND #11053, clinical trial

registration # NCT00068515) or glioma-associated antigen

(GAA) peptide-pulsed (UCLA IRB #06-01-052, FDA IND

#12966, clinical trial registration # NCT00612001) DC vacci-

nation between 2003 and 2010. All patients provided written

informed consent for studies approved by the UCLA Medical

Institutional Review Board (IRB) prior to treatment. This

informed consent was approved by the UCLA Medical IRB and

given by patients for their experimental treatment, for a database

that stored clinical data, and for research performed on remnant

patient tissues. Patient inclusion/exclusion criteria have been

published [14,16,34] and can be found at ClinicalTrials.gov for

these studies (http://clinicaltrials.gov/).

Preparation of Autologous Dendritic Cells and Pulsing
with Glioma Antigen

Monocyte-derived DCs were established from adherent periph-

eral blood mononuclear cells (PBMC) obtained via leukapheresis, as

we have recently published [16]. All ex vivo DC preparations were

performed in the UCLA-Jonsson Cancer Center GMP facility under

sterile and monitored conditions. Briefly, dendritic cells were

prepared by culturing adherent PBMC in RPMI-1640 (Gibco) and

supplemented with 10% autologous serum, 500 U/mL GM-CSF

(LeukineH, Amgen, Thousand Oaks, CA) and 500 U/mL of IL-4

(CellGenix). For the GAA peptide trial, DC were additionally

maturedwithaclinical-gradecocktailof10 ng/mlTNF-a, 10 ng/ml

IL-1b, 150 ng/ml IL-6 (all from CellGenix), and 1 mg/ml prosta-

glandin E2 (Sigma) for 24–48 hours [35]. Following culture, DCs

were collected by vigorous rinsing and subsequently washed with

sterile 0.9% NaCl solution. The purity and phenotype of each DC lot

was also determined by flow cytometry (FACScan flow cytometer;

BD Biosciences, San Jose, CA). Cells were stained with FITC-

conjugated CD83, PE-conjugated CD86 and PerCP-conjugated

HLA-DR mAb’s (BD Biosciences). Release criteria were .70%

viable by trypan blue exclusion, and .30% of the large cell gate being

CD86+ and HLA-DR+. DC were pulsed (co-cultured) with either

tumor lysate overnight or the HLA-A0201 restricted peptides

gp100209–217(209M), TRP-2180–188, Survivin96–104, Her-2/neu369–377

(ClinAlfa/Biosynthesis, Inc.) and KLH (biosyn Corporation) for

90 minutes prior to washing and injection. The final product was

tested for sterility by Gram stain, mycoplasma and endotoxin prior to

injection.

Treatment Schema
Newly diagnosed glioblastoma patients underwent surgery and

a standard course of external beam radiotherapy with concurrent

temozolomide chemotherapy prior to DC vaccination [4]. These

patients were given three biweekly DC vaccinations following

standard chemo-radiation and prior to adjuvant temozolomide

treatment. Recurrent glioblastoma patients had previous radiation

therapy and chemotherapy prior to presenting with tumor

recurrence, so they underwent surgical resection of their tumors

followed by DC immunotherapy after they had recovered from

surgery and were tapered off peri-operative steroids.

Vaccine Administration
On the day of each DC vaccination, a 1 ml vaccine dose was

drawn into a sterile tuberculin syringe and administered as an

intradermal (i.d.) injection (using a 25-gauge needle) in the arm

region below the axilla, with the side of administration rotated for

each vaccination. Subjects were monitored for two hours post-

immunization in the UCLA General Clinical Research Center

(GCRC). Eligible patients initially received three (3) intradermal

injections at biweekly intervals. All patients had a baseline brain

MRI scan within one month prior to starting the immunotherapy

and every two months thereafter or when clinically indicated.

Collection of PBMC for Immune Monitoring
Peripheral blood was drawn from patients at various time points

both pre and post DC vaccination. Once drawn, the peripheral

Immune Monitoring after DC Vaccination
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blood was diluted in a 1:1 dilution of HBSS Media and PBMCs

were harvested through subsequent extraction with Ficoll. After a

series of three washes in HBSS media, the cells were placed in a

freezing media of 10% DMSO and 90% serum and stored in

liquid nitrogen.

Antibody Staining of PBMC
Normal donor PBMC and patient PBMC were thawed at 37uC

for five minutes then immediately transferred to 10 ml RPMI

media and subsequently centrifuged at 4uC at 1070 RPM for five

minutes to remove DMSO from the freezing solution. The cell

pellet was resuspended with 5 ml RPMI and counted using a

hemocytometer and a light microscope. After counting, the

samples were centrifuged using the same settings and resuspended

at five million cells/ml PBS.

A normal PBMC negative control (one well), single color

compensation controls (eight wells), and experimental samples

(one well/sample) were then plated at one million cells per well

(200 ml) in a 96-well round bottom plate. In our experiment, two

sets of the experimental samples were plated, as two different

antibody cocktails (an eight-color combination and a seven-color

combination) were necessary to investigate all of the surface

markers of interest due to the spectral limitations of the flow

cytometer. The plate was then centrifuged (same settings),

decanted and resuspended in prepared antibody cocktails and

stained in the dark on ice for 30 min. Antibody cocktails were

prepared according to manufacturer specifications, usually 5 ml

antibody/50 ml FACS buffer for single color compensation

controls. The negative control was resuspended in 50 ml staining

buffer. The eight-color combination antibody cocktail contained

CD3 Texas Red (Invitrogen, Cat. MHCD0317), CD4 Alexa Fluor

700 (BD Biosystems, Cat. 557922), CD8 Pacific Blue (BD

Biosystems, Cat. 558207), CD16 FITC (BD Biosystems, Cat.

555406), CD19 PE (BD Biosystems, Cat. 555413), CD25 APC

Cy7 (BD Biosystems, Cat. 557753), CD127 AF647 (BD Biosys-

tems, Cat. 558598), and CD69 PE-CY5 (BD Biosystems, Cat.

555532) antibodies in the same amount used in the single color

control in 50 ml staining buffer/patient. The seven-color combi-

nation antibody cocktail contained CD3 Texas Red (Invitrogen,

Cat. MHCD0317), CD4 Alexa Fluor 700 (BD Biosystems, Cat.

557922), CD8 Pacific Blue (BD Biosystems, Cat. 558207), CD16

FITC (BD Biosystems, Cat. 555406), CTLA-4 PE (BD Biosystems,

Cat. 555853), PD-1 AF647 (eBioscience, Cat. 51-9969-73), and

CD69 PE-CY5 (BD Biosystems, Cat. 555532) antibodies in the

same amount used in the single color control in 50 ml staining

buffer/patient. The plate was then centrifuged (same settings),

decanted and resuspended with IC-Fixation buffer and stored in

the dark on ice for ten minutes. The plate was then centrifuged

(same settings), decanted and resuspended in 200 ml staining

buffer. Samples were then transferred to labeled flow tubes with an

additional 200 ml staining buffer, capped and stored at 4uC.

Flow Cytometric Analysis of PBMC
All samples were analyzed using the BD LSR II flow cytometer

and BD FACS diva software. Cytometer settings were set such that

only the eight colors used were present. The negative control was

then acquired and FSC and SSC voltages were adjusted such that

the lymphocyte population was visible. The single color compen-

sation controls were then acquired and voltages were adjusted

such that the stained cells did not exceed 104. A gate was set on

stained controls in comparison to the negative control and then

each sample was recorded and all compensation controls were

applied. Samples were then recorded at 500,000 events per

sample. Data acquired from the flow cytometer was analyzed

using FlowJo software. The lymphocyte population was gated and

then the lymphocyte subsets were gated: CD3+CD4+ Helper T

cells, CD3+CD8+ cytotoxic T cells, CD3-CD16+ classical Natural

Killer (NK) cells, CD3+CD16+ NKT cells, CD3-CD19+ B cells,

CD3+CD25+CD127low Treg cells. The activation status and

expression of negative co-stimulatory molecules on these PBMC

were also evaluated by measuring the frequency of CD25, CD69,

CTLA-4 and PD-1.

Statistical Analysis
The raw data was aggregated and tabulated for analysis and

study using GraphPad software v5.03 (GraphPad Software, La

Jolla, CA). Descriptive statistics such as mean and standard

deviation were used to summarize continuous variables, while

count and percentage were used for categorical variables. Bivariate

comparisons of continuous variables and categorical variables

were performed using unpaired t-tests or Fisher’s exact tests,

respectively. The Kaplan Meier method and log-rank test were

used to summarize and compare the overall survival and time to

progression between trials. A univariate Cox proportional hazards

regression model was used to correlate the individual immune

monitoring variables with overall survival. A recursive partitioning

survival tree was built to obtain the cut-off values utilized to

dichotomize each immune monitoring variable, which could

differentiate the overall survival between the variables. For all

statistical investigations, tests for significance were two tailed, with

a statistically significant p-value threshold of 0.05. Statistical

analyses were performed using SAS 9.2 (SAS institute, Cary, NC).

Results

Patient Characteristics
Twenty-four patients with histologically diagnosed glioblastoma

(WHO Grade IV) were enrolled and treated in two Phase 1

clinical trials at UCLA. There were five women and nineteen men,

with an age range from 27 to 71 years of age (mean age of

48 years). Nineteen patients underwent treatment with autologous

tumor lysate pulsed DC vaccination (ATL DC) while five patients

underwent GAA peptide pulsed DC immunotherapy (GAA DC).

There was no significant age difference in the ATL DC versus the

GAA DC cohorts (48 vs. 43 years, p = 0.52). Figure 1 outlines the

treatment schema used in these two clinical trials.

Overall Survival and Time to Tumor Progression
The median overall survival (OS) in the ATL DC vaccine group

was 33.8 months, while that of the GAA DC group was

14.5 months. Several of the ATL DC patients were long-term

survivors whereas all of the patients undergoing GAA DC therapy

died during the follow up period. The median time to tumor

progression (TTP) in the ATL DC vaccine therapy cohort was

13.9 months, while that of the GAA DC vaccine cohort was

9.6 months. The median OS and TTP for both groups together

was 23.0 and 13.1 months, respectively.

Lymphocyte Activation Markers are not Associated with
Survival after DC Vaccination in Glioblastoma Patients

Using a multi-color panel of fluorescently conjugated antibod-

ies, we were able to differentiate six specific cell populations

(CD3+CD4+ helper T cells, CD3+CD8+ cytotoxic T cells,

CD3-CD16+ NK cells, CD3+CD16+ NKT cells, CD3-CD19+ B

cells, CD3+CD4+CD25+CD127low regulatory T cells) within the

peripheral blood of patients in both the ATL and GAA peptide

DC trials (Figure 2). In each cell subset, we evaluated the

expression of activation (CD25, CD69) and negative costimulatory
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markers (PD-1, CTLA-4). To account for the heterogeneity in

patient PBL populations before, and after DC vaccination,

comparisons were made from pre to post DC vaccination for

each patient, in order to create fold changes. We then examined

these fold changes in each lymphocyte subset and looked for

statistically significant relationships.

No significant changes were observed in any lymphocyte subset

frequency before and after DC vaccination (Table 1). In a recent

DC vaccination study, Ardon, et al., could not find any positive

correlation between immune reactivity and clinical outcome in

patients vaccinated with autologous tumor lysate-pulsed DC

vaccination [23]. Similarly, we also did not find any statistically

significant relationship between the activation status of any

lymphocyte subsets and survival (data not shown). These results

suggest that a complex interplay may be involved in the

immunoregulatory aspects of the overall anti-tumor immune

response.

Changes in Regulatory T cell Populations are Associated
with Extended Survival in Glioblastoma Patients after DC
Vaccination

Pre-clinical models of glioma have suggested that regulatory T

(Treg) cell populations can impact anti-tumor immune respon-

siveness [25,28,29,31,36,37] and pilot clinical studies suggest that

depletion of Treg cells in glioblastoma patients may be associated

with enhanced vaccine efficacy [38]. However, no published

literature has examined whether Treg cell populations are altered

in glioblastoma patients after DC vaccination, and whether any

differences have clinical ramifications. We used a cell surface

staining protocol to identify Treg cell populations in human PBL

[39,40] so that we could track this cell population before and

after DC vaccination in malignant glioma patients (Figure 3).

We then evaluated whether the fold change of Treg cell

frequency was associated with survival in these patients. Using

a univariate Cox proportional hazards model, we discovered a

highly significant relationship between Treg cell frequency

changes and survival (hazard ratio = 3.623; 95% C.I. (1.196,

10.976); Table 2). Based on this statistical assessment, every

single unit increase in the Treg cell ratio is associated with an

increased risk of death by 2.623 times (3.623-1). This increase is

statistically significant (p = 0.0228). These findings suggest that

Figure 1. Treatment and PBMC sampling schema of newly diagnosed and recurrent GBM patients. *Surgery, external beam radiotherapy
(XRT) and concurrent temozolomide chemotherapy was given per standard of care prior to DC vaccination in newly diagnosed glioblastoma patients.
Recurrent patients were treated with surgical resection and then enrolled immediately to the DC trial. Such patients did not receive concurrent XRT
and temozolomide. Leukapheresis was performed two weeks prior to vaccination followed by preparation of the DC vaccine one week prior to
vaccination. Three doses were administered intradermally (i.d.) at biweekly intervals. A follow up MRI was then performed two months after the start
of immunotherapy or when clinically indicated. PBMC sampling was performed by peripheral blood draw prior to each vaccination and again at day
42.
doi:10.1371/journal.pone.0032614.g001

Figure 2. FACS-based immune monitoring strategy in DC
vaccine patients. PBMC were isolated by ficoll separation prior to,
and after three bi-weekly DC vaccinations, frozen, and subsequently
thawed for staining simultaneously. Using a multi-color mAb cocktail,
six distinct lymphocyte populations were identified. In each population,
the expression of activation markers (CD69, CD25) and negative co-
stimulatory factors (PD-1, CTLA-4) were also evaluated.
doi:10.1371/journal.pone.0032614.g002

Table 1. Lymphocyte Subset Changes (Pre-Post) DC
Vaccination.

Lymphocyte Subset* Pre-Tx (Avg %) Post-Tx (Avg %)

CD3+CD4+ Helper T cells 38.8 37.6

CD3+CD8+ CTL 25.9 24.4

CD3+CD16+ NK T cells 5.4 4.7

CD32CD16+ NK cells 11.5 14.1

CD32CD19+ 9.5 9.9

CD3+CD4+CD25+CD127low Treg 19.1 18.2

*Percent of cells stained from ficoll-isolated PBMC at each time point.
doi:10.1371/journal.pone.0032614.t001
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extended survival is observed in patients whose Treg cell

frequency decreases after DC vaccination.

Dynamic Changes in the Expression of CTLA-4 are
Associated with Survival in Glioblastoma Patients Treated
with DC Vaccination

The inhibitory costimulatory molecules, CTLA-4 and PD-1, are

known to impact anti-tumor immune responsiveness in murine

tumor models (reviewed in [33]), including gliomas [41]. In fact,

the use of a blocking antibody to CTLA-4 (Ipilumimab) in

metastatic melanoma patients demonstrated clinical efficacy [7]

and was recently given approval by the FDA [9]. To test whether

the expression of negative co-stimulatory molecules was altered in

glioblastoma patients receiving DC vaccination, we stained pre

and post vaccination PBL. The expression of PD-1 on any PBL

subset was not significantly altered after DC vaccination and did

not correlate with survival in these patients (data not shown).

However, a significant association with survival was discovered for

the expression of CTLA-4 by CD3+CD4+ T cells (Hazard Ratio

for death = 2.84; p = 0.0191) and CD3+CD8+ T cells (Hazard

Ratio for death = 2.174; p = 0.0460) in these patients (Figure 4,

Table 2). These findings suggest that extended survival is

observed in patients whose expression of CTLA-4 decreases in

helper and cytotoxic T cells after DC vaccination.

Estimated Post/pre Treatment Ratios for Treg Cell
Frequencies and CTLA-4 Expression Significantly
Dichotomize the Survival of Glioblastoma Patients
Receiving DC Vaccination

To develop a predictive immune monitoring tool for patients

treated with DC vaccination, we utilized a recursive partitioning

survival tree to dichotomize the immune monitoring ratio

Figure 3. Decreased frequencies of Treg cells after DC vaccination are associated with extended survival. PBMC from pre and post-DC
vaccination time points were stained with an antibody cocktail that identifies Treg cell populations (CD3+CD4+CD25+CD127low). The ratio of post
vaccination/pre-vaccination Treg cell frequencies from each patient was calculated and linked with the overall survival of each patient. (A) Flow
cytometric analysis of Treg cell populations from a normal volunteer. (B) Representative FACS plots of Treg cell frequencies from two glioblastoma
patients (7–799, 32–204) before and after DC vaccination.
doi:10.1371/journal.pone.0032614.g003

Table 2. Univariate Cox proportional hazards model for overall survival with each immune monitoring ratio.

Variable Cut-off point P-value for log-rank test (OS)

Treg cells (dichotomized) 0.8865 0.0074 (See Fig. 5a)

CD4+ T cells w/CTLA-4 (dichotomized) 1.047 0.0034 (See Fig. 5b)

CD8+ T cells w/CTLA-4 (dichotomized) 0.8065 0.0105 (See Fig. 5c)

Activated CD8+ T cells (dichotomized) 0.703 0.0926

doi:10.1371/journal.pone.0032614.t002
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variables. Then, we compared the survival of patients above and

below the calculated cut-off. As shown in Table 3 and Figure 5,

significant differences in survival were found when DC vaccine

patients were stratified by these estimated cut-off values for Treg

cell fractions and CTLA-4. These data suggest that DC-vaccinated

glioblastoma patients, whose Treg cell frequency or ratio of

CTLA-4 expression (post-Tx:Pre-Tx) is below the cut-off value,

will have extended survival.

Discussion

In the present study, we analyzed the relationship between

several immune monitoring variables and the survival of two

cohorts of glioblastoma patients treated with dendritic cell

vaccination. This study is one of the largest studies reported to

date comparing the outcomes of different DC vaccine patient

cohorts from a uniform population. Our results strongly suggest

that the balance of regulatory T cell frequencies and expression of

negative co-stimulatory molecules on peripheral blood T cells can

influence relevant anti-tumor immune responses in this patient

population. In addition, the development of an estimated post-

treatment/pre-treatment cut-off point ratio for each immune

monitoring variable may provide a segue to the design of

prospectively designed trials where we can test its clinical

relevance. As such, these tools can be incorporated and used to

evaluate and compare different monitoring strategies.

Our results also suggest that the dendritic cell vaccine platform

could be augmented by other biological therapies that influence

Treg cell populations and negative costimulatory molecules.

Increased post vaccination frequencies of Treg cell populations

were associated with shorter survival in our glioblastoma patients

who received the DC vaccination (Table 2). These findings are

consistent with the current understanding that Treg cells play a

significant role in down regulating the anti-tumor immune

response. Therefore, it follows that patients with lower levels of

Treg cells post vaccination should have stronger immune

responses and consequently longer survival. In support of this,

Mitchell, et al, recently demonstrated that immune responses were

dramatically enhanced after dendritic cell vaccination in glioblas-

toma patients that received IL-2Ra mAb blockade (daclizumab,

Roche Pharmaceuticals) and temozolomide chemotherapy [38].

Such data is consistent with recent reports that natural Treg cells

predominate inside gliomas, suggesting that the peripheral

Figure 4. Decreased expression of CTLA-4 on CD3+CD4+ and CD3+CD8+ T cells after DC vaccination is associated with extended
survival. PBMC from pre and post-DC vaccination time points were stained with an antibody cocktail that identifies CD4 and CD8 T cell populations
(CD3+CD4+or CD3+CD8+) and evaluated for the expression of CTLA-4. The ratio of post vaccination/pre-vaccination expression of CTLA-4 from each
patient was calculated and linked with the overall survival of each patient. (A) Flow cytometric analysis of CD3+CD4+ T cell expression of CTLA-4 from
a normal volunteer. (B) Representative FACS plots of CTLA-4 expression from CD3+CD4+ T cells in two glioblastoma patients (4–908, 21–828) before
and after DC vaccination.
doi:10.1371/journal.pone.0032614.g004

Table 3. Dichotomization of overall survival with each
immune monitoring ratio.

Variable Estimated HR P-value 95% CI

Treg cells 3.623 0.0228 (1.196, 10.976)

CD4+ T cells w/CTLA-4 2.840 0.0191 (1.186, 6.798)

CD8+ T cells w/CTLA-4 2.690 0.0273 (1.117, 6.474)

Actiated CD8+ T cells 1.027 0.9316 (0.561, 1.878)

doi:10.1371/journal.pone.0032614.t003

Immune Monitoring after DC Vaccination
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Figure 5. Estimated post/pre treatment ratios for Treg cell frequencies and CTLA-4 expression significantly dichotomize the
survival of malignant glioma patients receiving DC vaccination. A recursive partitioning survival tree algorithm was utilized to dichotomize
the immune monitoring variables. The overall survival was then compared between patients above and below the cut-off point. (A) Kaplan-Meier
survival curve for the overall survival of patients stratified above and below a cut-off value of 0.8865 for Treg populations. **p = 0.0074 by log-rank
test. (B) Kaplan-Meier survival curve for the overall survival of patients stratified above and below a cut-off value of 1.047 for the expression of CTLA-4
on CD3+CD4+ T cells. **p = 0.0034 by log-rank test. (C) Kaplan-Meier survival curve for the overall survival of patients stratified above and below a cut-
off value of 0.8065 for the expression of CTLA-4 on CD3+CD8+ T cells. *p = 0.0105 by log-rank test.
doi:10.1371/journal.pone.0032614.g005
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depletion of Treg cells may be important for vaccine-elicited anti-

tumor immune responsiveness [32]. Similarly, the blockade of

CTLA-4 or PD-1 may enhance vaccine-elicited immune responses

and anti-tumor activity [42,43,44]. Such recent findings lend

further credence to the idea that the relative balance between

inhibitory immune signals and activation may dictate the overall

anti-tumor immune response [24,45,46].

Our findings also have clinical applications to other immune

therapeutic approaches for glioblastoma. Given the increasingly

important role that immunoregulatory factors may play for

effective anti-tumor immunity, the dynamic monitoring of Treg

cell populations and/or negative co-stimulatory molecule expres-

sion on PBL populations before and after therapy may allow

groups to monitor treatment efficacy and predict survival. Such an

immune monitoring strategy can be generally applicable to various

immunotherapeutic strategies [30], as it is non-antigen specific and

may give important information regarding the balance of

inhibitory and activation signals critical for the anti-tumor

immune response.

In conclusion, a statistically significant relationship was found

between the fraction of Treg cells or dynamic expression of

CTLA-4 in peripheral blood T cells with survival in glioblastoma

patients treated with dendritic cell vaccination. These data suggest

that decreased ratios of Treg cells or CTLA-4 after DC

vaccination may be associated with good prognosis in this patient

population. In contrast, there was no significant relationship found

between lymphocyte activation markers and survival, suggesting

that inhibitory immune checkpoints may dominantly regulate anti-

tumor immune responses on peripheral blood lymphocytes after

DC vaccination. In future studies, blood drawn from patients

before and after treatment and can be used as a means of

predicting their response to various treatment modalities.

Adjuvant therapies targeting regulatory T cells may potentially

be used in conjunction with DC vaccine immunotherapy to

augment the immune response to such therapies.
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