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Abstract

Relationships we have with our friends, family, or colleagues influence our personal decisions, as well as decisions we make
together with others. As in human beings, despotism and egalitarian societies seem to also exist in animals. While studies
have shown that social networks constrain many phenomena from amoebae to primates, we still do not know how
consensus emerges from the properties of social networks in many biological systems. We created artificial social networks
that represent the continuum from centralized to decentralized organization and used an agent-based model to make
predictions about the patterns of consensus and collective movements we observed according to the social network. These
theoretical results showed that different social networks and especially contrasted ones – star network vs. equal network -
led to totally different patterns. Our model showed that, by moving from a centralized network to a decentralized one, the
central individual seemed to lose its leadership in the collective movement’s decisions. We, therefore, showed a link
between the type of social network and the resulting consensus. By comparing our theoretical data with data on five
groups of primates, we confirmed that this relationship between social network and consensus also appears to exist in
animal societies.
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Introduction

Every day humans make decisions. Any decision made by an

individual is influenced by the relationships he or she has with

people in different circumstances. For example, the head of a firm,

or the parents in a family, may exert greater influence in the

decision-making process than other contributors do. For a

presidential election, people generally decide individually which

candidate they will vote for, even if friends and family may

influence their decision to a certain extent. Broadly speaking, two

systems of decision-making are often described: on the one hand,

one individual, or one sub-group, decides for the rest of the group

(unshared consensus, [1]); on the other hand, each individual can

make independent decisions and take an equal part in the vote

(shared consensus, [1]). This study aimed to understand how the

social network – the structure of social relationships between the

members of a group - may affect the influence of these individuals

on collective decision-making and thus lead to unshared or shared

consensus [1–4].

Consensus decision-making in animal groups has already been

described by several authors (for a review, see [1]). Many animal

species live in groups and have to reach consensus in order to

maintain cohesion [5]. One of the most tractable ways of

understanding how group members attain consensus is to study

collective movements [6–9]. In this context, consensus decision-

making for group movements has been described as a continuum –

from an unshared consensus to an equally shared consensus [1,10].

The influence of ecological constraints has often been used to

explain the type of consensus observed [11,12]. Studies have

reported that specific individuals lead groups with the aim of

gaining better personal access to food (Papio ursinus [9]; Equus

burchellii [13]; Pan troglodytes [14]). In other studies, individuals who

know where to find the best food resources can become the leaders

[15]. These two general cases – leading according to needs or

according to knowledge - can be qualified as unshared or partially

shared consensus. On the other hand, shared consensus allows

information to be pooled and may lead to more appropriate

decisions for all group members [7,16].

Nevertheless, these previous studies did not explore the

influence that social network could have on the decision-making

process. This type of direct link between the properties of social

networks and the kind of consensus has been suggested [1,10,17],

but has never been empirically tested. Moreover, as stated in [18],

‘‘models of collective motion typically do not consider social

network structure’’, despite the fact that an increasing number of

studies illustrate how group social networks are both complex and

crucial for understanding the synchronisation of group activity.

Some authors have modelled the effect of social network on

collective motion in human crowds [19] and in fish shoals [20], but

their results were not compared to empirical data and the social
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networks used in their model were not representative of networks

observed in animal groups. Indeed, they used simple networks,

whereas Erdos-Renyi random networks or scale-free networks

were found in several animal species (see [17,21–24]). These social

networks described in animals may constrain many social

phenomena such as information or disease transmission, cooper-

ation and group fission in species ranging from amoebae to

primates [25–30]. The strength of the social relationships of group

members is not only based on ecological constraints but also on

species-specific and group-specific internal factors [31]. In the

genus Macaca [32] or Cebus [33], different social styles [34] have

been described, ranging from despotic to egalitarian societies [35].

Vehrencamp [36] first described these societies as follows:

‘‘Variation in the balance point between the forces of cooperation

and competition is common from society to society. In egalitarian

societies, benefits are divided roughly equally or in proportion to

the risk or effort taken. In despotic societies, on the other hand,

benefits accrue disproportionately to a few individuals in the group

at the expense of others. Societies can thus be ranked along a

continuum in terms of the degree to which fitnesses of individuals

within social groups are biased’’. This variation among social

networks can be observed through behavioural patterns that co-

vary [32]. In rhesus and Japanese macaques (Macaca mulatta and

M. fuscata), for example, most conflicts are unidirectional, high-

intensity aggression is common, and few conflicts are reconciled.

The dominant male appears to be very central, managing conflicts

and receiving the most grooming or other affiliative interactions

[21]. In Sulawesi macaques, most conflicts are bidirectional,

aggression is generally of low intensity, conciliatory tendencies are

frequent and grooming is distributed between all individuals rather

than centralized on the dominant male [31]. There is a recursive

feedback loop between the social network and individual

behaviour. Sueur and Petit [10] suggested a similar link between

social networks, - especially centrality - and consensus in their

studies on collective movements in macaques. An equally shared

consensus was found in the egalitarian Tonkean macaques (M.

tonkeana), whereas the more despotic rhesus macaques used a

partially shared consensus when deciding to move. In the same

way, it has previously been reported that species with strict

hierarchies appear to have unshared, or partially shared,

consensus (Canis lupus [37]; Helogale parvula [38]; Equus caballus

[39]; Gorilla gorilla berengei [40]).

Within many such societal organizations – despotic or

egalitarian - it is still not known how consensuses (reaching a

common decision in spite of conflicts of interest) emerge from then

influence properties of the social network. These networks,

despotic and egalitarian can be directly compared to centralized

and decentralized networks respectively [41]. Dominant or central

individuals are classically described as leaders but many factors

may constrain this leadership and we do not know if social

relationships really influence consensus, nor which of these

relationships (aggressive vs. affiliative for instance) influences the

consensus and to what extent it does so. Here, we based our study

on the assumption that the extent of affiliative relationships may

lead to a specific type of consensus, as the distribution of these

relationships seems to drive many other phenomena. However, to

test this assumption, we first need to combine an experimental

approach on several groups with modelling, and then have to

combine social network analysis with models for collective motion.

We first created artificial social networks – representing the

continuum from centralized to decentralized organization – and

then developed a stochastic model to make predictions about the

patterns of collective movements that would emerge from them.

Who leads? And who is more successfully followed, both in terms

of the number of followers and of the time needed for a follower to

join the movement? We predict that the more centralized the

network is, the more differences will appear between individuals,

with the emergence of a leader during collective movements. And

if it has a central position in the network, this leader will increase

both the number of joiners and the joining speed of individuals.

We then compared the relations between social network and

patterns of collective movements to linear and non-linear functions

in order to establish how leadership emerges from the social

network. Indeed, many studies have already shown that the

relation between the information transfer and the probability of

performing a behaviour does not increase linearly but in a non-

linear way due to an amplification process [42–44]. In order to

validate or nullify our assumptions based on simulations, the

theoretical data was therefore compared to observed data collected

from the observation of collective movements in five different

groups of primates living in similar semi free-ranging conditions.

Methods

Ethics Statement
This study involved the observation of animals without animal

handling or invasive experiments carried out on studied subjects.

We declare that our study was carried out in full accordance with

the ethical guidelines of our institution with the approval of the

latter (certificate number: 67-339, French Republic, Bas-Rhin

County Hall, French veterinary services). Our experiments comply

with European animal welfare legislation. The work being carried

out during this study is in accordance with the weatherall report

and all efforts were made to ensure the welfare of the animals and

minimize suffering. Concerning the amelioration of animal

welfare, the study groups were bred under semi free-ranging

conditions at the Strasbourg University Centre of Primatology.

They had complete access to about 0.35 ha (maximal

length = 80 m; maximal width = 60 m) of wooded parkland as

well as indoor housing within the enclosure. The indoor housing

(20 m2) is made of cement and tiling. The enclosure area was

made up of various slopes and uneven ground. The distribution of

vegetation was also heterogeneous, with three layers (grass, trees

and bushes) that were unevenly distributed throughout the

enclosure. For each group, fresh fruit and vegetables were

provided once a week, one hour after the end of the observation

session. Thus, the behaviour of the animals was unlikely to be

affected by this event. Animals were used to human presence in

their enclosure.

Modelling
The model is based on rules of mimetism/cohesion (Markov

chain process) described in several studies on collective phenom-

ena [42–44]. In this model, the probability that an individual will

join the collective movement depends on the number but also the

strength of relationships it has with the individuals already

participating in the movement. The number of individuals,

individual identities and the network of affiliative relationships of

each artificial social network are included in the model. At the

start of a simulation, all agents (N) were in an area called the

resting area and had to move to another area, the foraging area.

We implemented the intrinsic probability li of each agent. This

intrinsic probability is independent of the influence of conspecifics,

and is, for example, a nutrient need. The departure probability of

the initiator (first individual to depart) was the same whatever the

social network and identity of this individual and was constant per

time unit. The departure probability y01 of the initiator was:

From Social Network to Collective Decision
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y01~
XN

i~1

li ð1Þ

The probability yi of an individual i becoming a joiner j was:

yi~lizM
XN

k~1

r(i,k) ð2Þ

where li is the intrinsic probability of each agent (li = 0.00007), M

is the mimetic coefficient (M = 0.002), and r(i,k) is the affiliative

relationships between the resting individual i and the already

moving individual k. If k was not moving, r(i,k) = 0. Values of r(i,k)

are given in the section ‘‘artificial social networks’’. According to

the values of li and M, yi,1.

We implemented the model and each artificial social network in

Netlogo 3.1.4 [45,46]. At each time step (corresponding to

1 second in the real system), a number between 0 and 1 was

randomly attributed to each resting agent (i.e. in the resting area);

when this number was lower than the theoretical departure

probability of each agent, the individual left the resting area for the

foraging area; if this number was higher than the theoretical

departure probability, the agent did not move. To be consistent

with observed data [3,8,47–51], we stopped a simulation when no

agent joined within 300 s of the departure of the initiator or the

last joiner. We set the number of simulations at 10,000 for each

social network.

Artificial social networks
A group can be defined as a network in which each dyad of

individuals is characterized by one or several types of social bonds

such as hierarchical, kin or affiliative ones [52,53]. In this study, in

order to gain insight into the generic properties of how social

relationships result in consensus decision-making, we designed a

deliberately simplified social structure, and thus only investigated

affiliative relationships related to movement decisions. We created

artificial networks consisting of 10 individuals (N = 10), this group

size being close to that of the five observed primate groups. Links,

i.e. affiliative relationships, can be calculated by scoring proxim-

ities, contacts, or grooming duration between individuals [25,54].

Each individual i has a fixed quantity of social interactions

(Sr(i,k) = 1) that it can divide between its conspecifics. Indeed,

several studies have showed that social interactions are time-

constrained and seemed to be maintained at a certain value,

whatever the group size or the environmental pressures [26,55].

Each individual k will receive an amount of social interactions r(i,k)

from the individual i. As the main topic of our study is based on

the impact of the central individual (i.e. the strength of centrality)

on collective decision-making, we studied how the relationships

between all non central individuals c and the central individual C

influenced the patterns of decision-making during collective

movements, i.e., who is the most successful individual in terms

of number of followers and how rapidly followers join the

movement. For each social network included in this study, the

central individual will be considered the individual having

the most numerous and strongest relationships (based on the

eigenvector coefficient). This study aimed to observe different

patterns of collective decision-making according to the distribution

of relationships within the group. Each individual has one social

relationship r(i,k) with each of the N21 other group members. We

defined (1) r(i,k) = r(c,C), the relationship that a non central

individual c had with the central individual C; (2) r(i,k) = r(c,c), the

relationship that a non central individual c had with any other non

central individual c (for each network, all r(c,c) are equal); and (3)

r(i,k) = r(C,c), the relationship that the central individual C had with

any non central individual c. We created different social networks,

from extremely centralized to extremely decentralized, by varying

the relationship that an individual i had with a congener k and

especially the relationships that non central individuals c had with

the central individual C. For instance, we attributed to r(c,C) a

value equal to 1 for the extremely centralized system (called the star

network) and equal to 1/(N21) for the extremely decentralized

system (called the equal network) ([41,54]). Whatever the network,

however, r(C,c), the value of interaction attributed by the central

individual C to each non central individual c, equalled 1/(N21).

We eventually created six different social networks where r(c,C)

and then r(c,c) differed (see Table 1 for detailed values of each

network and Fig. 1A–C for network representations). As all

r(i,k) = 1 and then Sr(i,k) = 9 for each network, we can compare all

networks together in analyses. We also built a random network

(Erdos-Renyi graph), which was obtained using Ucinet 6.0 [56]

and a chain network. Random network is found in several primate

species [23,57] but the chain network is a hierarchical network

only found in human beings and more specifically in military

departments or in firms [41,53]. Graphs of these networks are

given in supplementary material (Fig. S1), and their indices can be

found in Table S1.

According to equation 2 of our model, the more a resting agent

had strongly affiliated moving agents, the greater its probability of

joining was. Thus, the more a moving agent had strongly affiliated

resting agents, the greater its probability of being joined was. This

means that in the equal network, the probability of joining the

movement would only depend on the number of agents already

moving, whatever their identities. Conversely, in the star network, as

r(c,C).r(C,c), the central individual C would have more probability

of being joined than any non central individual c.

Empirical data
In order to validate our theoretical results, we compared them

to observed data. We used affiliative relationships (based on body

contacts or proximities between individuals) in relation to

movements and collective decision-making patterns during the

collective movements of five different groups of primates living in

similar semi free-ranging conditions. Data were obtained from two

groups of Tonkean macaques [3,8,17,50,51], one group of rhesus

macaques [3,8,17,50,51], one group of brown lemurs (Lemur

macaco, [47,58]) and one group of white-faced capuchin monkeys

(Cebus capucinus, [33,48,49]). All authors used similar data scoring

and similar definitions for collective movements and affiliative

relationships, minimizing the risk of methodological bias in the

comparisons.

As the distribution of the first departure latencies (time between

the end of the previous collective movement and the departure of

the initiator of the new collective movement [3,47,49]) corre-

sponded to an exponential distribution in the observed groups

[3,47,49], we used the mean log gradient of this exponential

distribution, that is, the inverse of the mean departure latency of

the initiator [3,43,43,47,49], to calculate the departure probability

y01 of the initiator. y01 = 0.0007 for any initiator of any social

network.

Then in our model, given that y01 = 0.0007 per s and

n = N = 10, the probability per individual of departing first is

li = 0.00007 per s. In our case, the probabilities were identical

with l1 = … =ln = l, meaning that all individuals had the same

intrinsic probability.

From Social Network to Collective Decision
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Since the distribution of the inverse of joiner departure latencies

(time between the departure of the previous joiner j21 and the

departure of the joiner j) of each observed group fitted a parabolic

curve [3,43,43,47,49], we could implement a mimetic process (i.e.

M) in our model, representing an amplification of the probability

of joining a movement with the number of individuals already

participating in this movement. The calculation of the mean

mimetic coefficient M was based on that found in five primate

groups and this coefficient equals 0.002.

Data scoring and calculation
Indices of social networks. Affiliative relationships among

observed groups were determined using proximities/contacts

between individuals [3,17,33,47–50,58]. We determined the

eigenvector centrality coefficient for each individual in each artificial

social network and each observed group (i.e. real group). This

index takes into account the number and the strength of

relationships between an individual and its conspecifics, as well

as the relationships its associated individuals have with other group

members. On the contrary, indices such as the clustering

coefficient or the betweenness coefficient do not take into

account the strength of relationships but only their number [52].

For the equal network, all eigenvector centrality coefficients were

equal whatever the individual identities (see Table 1 for details). In

the star network and the three different centralized networks, the

coefficients of non central individuals c are equal to one another

but smaller than that of the central individual C. We then

calculated the difference between the eigenvector centrality

coefficient of the central individual C and the mean eigenvector

centrality coefficient of all non central individuals c. This index,

which we called the centrality index, allowed us to quantify the

degree of centrality or centralization [59] of a social network – the

group – and to compare the artificial social networks with the

observed groups [32]. Indeed, this index allows us to quantify the

difference of centralities between the central individual and the

other individuals in the group. This index ranged from 0 – in a

decentralized network where all individuals have the same

relationships – to 1 in a centralized network where group

members only have social relationships with the central

individuals. In this study, the centrality index varied from 0 for the

equal network to 0.85 for the star network (see Table 1 for details).

Data about collective movements. The number of joiners

was scored for each collective movement. We also scored the

identity and the departure latency of the initiator (DT01) and of

every joiner (DTj21,j). We calculated the rank of each agent during

the joining process, regardless of its identity. The rank of the

initiator was rank 1, the rank of the first joiner was rank 2, and the

rank of the jth joiner was rank j+1. Departure latency of the

initiator DT01 was calculated by scoring the time elapsed between

the start of the simulation and the departure of this individual. We

then scored the departure latency of each joiner, that is, the

departure latency of the joiner j, DTj21,j, corresponding to the time

elapsed between the departure of the joiner j21 (i.e. the previous

departing individual, including the initiator) and the departure of

the joiner j. Finally, we scored the duration of joining DT1,10 as the

time elapsed between the departure of the initiator and the

departure of the last joiner only when all individuals (N = 10)

joined the movement.

For (1) the number of joiners n, (2) the departure latency of the

first joiner DT1,2, and (3) the duration of joining DT1,10, we

calculated the average xC,c1{c9
for all individuals, the average xC

for the central individual C, and the average xc1{c9
for the non

central individuals c, when these individuals initiated movements.

These were the main three variables for our analysis. For each of

Figure 1. Graph representation of social networks. (a) Star network (extremely centralized), (b) centralized networks (highly, intermediately,
and low), and (c) equal network (extremely decentralized). Squares represent individuals. C is the central individual, c1–9 are non central individuals.
Lines are relationships between individuals: the thicker the line, the stronger the relationship. The size of square represents the eigenvector centrality:
the bigger the square, the higher the centrality.
doi:10.1371/journal.pone.0032566.g001

Table 1. Relationships, eigenvector centrality for the central individual C and the non central individuals c, and centrality index for
each social network.

Network r(c, C) r(c, c) r(C, c) Eigenvector of C Eigenvector of c Centrality index

Star 1 0 1/(n–1) 0.95 0.1 0.85

Highly centralized 0.75 0.25/(n–2) 1/(n–1) 0.91 0.14 0.77

Intermediately
centralized

0.50 0.50/(n–2) 1/(n–1) 0.83 0.18 0.65

Low centralized 0.25 0.75/(n–2) 1/(n–1) 0.6 0.27 0.33

Very low centralized 0.125 0.875/(n-2) 1/(n-1) 0.36 0.31 0.05

Equal 1/(n–1) 1/(n–1) 1/(n–1) 0.32 0.32 0

doi:10.1371/journal.pone.0032566.t001
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these three variables, we then calculated the absolute difference

between the central individual C and the non central individuals c,

xC{xc1{c9
. We also assessed whether or not the number of

joiners was different when the central individual C was the first

joiner.

Statistical analyses
Data on random network and chain network were only included

in Global analyses in order to avoid any interference with our main

aim, which was to understand the relationship between social

networks and collective decision-making by studying the role of the

central individual.

Global analyses: We first analysed the possible link between the

centrality index and the average xC,c1{c9
of the three main variables:

the mean number of joiners nC,c1{c9
, the mean departure latency

of the first joiner DT1,2C,c1{c9
, and the mean duration of joining

DT1,10C,c1{c9
, using curve estimation tests. The curve estimation

test determined the best relation [60,61] between two variables

(linear, exponential and logarithmic) to understand if the

leadership emerges in a linear or non-linear way from the

properties of the social networks. We assessed whether differences

exist between each artificial social network using a Kruskal-Wallis

test followed by a Dunn’s multiple comparisons test. We also

compared the departure latency distribution of each social

network using Spearman rank correlation tests. The initiator’s

latencies were not included in this test because, as explained

above, the departure probability of this individual was identical

whatever the social network.

Differences between the central and non central individuals: We first

analysed how the difference xC{xc1{c9
varied according to the

social network for the three variables (i.e. nC{nc1{c9
;

DT1,2C{DT1,2c1{c9
; DT1,10C{DT1,10c1{c9

) using curve estima-

tion tests. Next we assessed whether the three variables

(n,DT1,2,DT1,10) were different between the central individual C

and the non central individuals c using Mann-Whitney tests

(number of data equals 10,000 for each condition). We then

determined whether or not a difference in the number of joiners

existed when the central individual C was the first joiner for each

social network (using a Mann-Whitney test). Finally, departure

latency distribution of the central individual C was compared with

those of the non central individuals c in each social network using a

Spearman rank correlation test.

Comparisons of theoretical and observed data. The

values obtained for the three main variables in the simulations

were compared with those observed in the five primate groups.

Using a linear curve estimation test, we assessed for similar centrality

indices whether we obtained a correlation between the simulated

data and the observed data for the differences nC{nc1{c9
,

DT1,2C{DT1,2c1{c9
, and DT1,10C{DT1,10c1{c9

.

We carried out the statistical tests in SPSS 10.0; a= 0.05.

Means are 6 SE (standard error).

Results

1) Global analyses
These global analyses will highlight differences in decision-

making between the different social networks tested.

Mean number of joiners. We investigated the relation

between the mean number of joiners nC,c1{c9
and social network

type (from centralized to decentralized). The test revealed that the

curve best followed an exponential inverse law (R2 = 0.81,

F1,4 = 17.02, p = 0.015; y = 0.0263e4.6039(x-9)) and Figure 2A

suggested a sudden decrease for high decentralized indices. The

mean numbers of joiners of the star and highly decentralized networks

Figure 2. Relation between the centrality index and variables
of collective decisions (movements). (a) Mean number of joiners,
(b) mean departure latency of the first joiner, and (c) mean duration of
joining whatever the initiator’s identity. The relation between the
centrality index and the mean duration of joiners follows an exponential
law. The relation between the centrality index and the mean departure
latency of the first joiner does not follow any tested law. The relation
between the centrality index and the mean duration of joining follows
an exponential law. Parameters of functions are given in the global
analyses section of Results. For each network, error bars are indicated
and represent the standard error. R indicates the result for random
network and C indicates the result for chain networks.
doi:10.1371/journal.pone.0032566.g002
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were lower than those of the other networks (K-W: H = 1789,

df = 7, p = 0.0001; Dunn’s test: p,0.0001, see Table S2 in the

supplementary material for details). However, the number of

joiners in the chain network was higher than that observed in other

networks.

Mean departure latency of the first joiner. The mean

departure latency of the first joiner DT1,2C,c1{c9
increased with the

centrality index in an exponential way (R2 = 0.82, F1,4 = 18.09,

p = 0.013, y = 48.37e0.81x; Fig. 2B). Indeed, this departure latency

was higher for the star and the highly centralized networks than for all

other networks (K-W: H = 239.6, df = 7, p = 0.0001; Dunn’s

multiple comparisons test: p,0.0001).

Mean duration of joining. The mean duration of joining

DT1,10C,c1{c9
did not varied according to the type of social

network (R2,0.14, F1,4 = 0.64, p.0.466, Fig. 2C). However, the

mean duration of joining was higher for the chain and highly

centralized networks than for the other networks (K-W: H = 234.2,

df = 7, p = 0.0001; Dunn’s multiple comparisons test: p,0.01).

Latency distributions. We assessed whether the joining of

each individual to the movement differs according to the social

network. We studied latency distribution according to rank of

joining and then compared the distributions of each network. The

latency distribution in the star network was not correlated with the

distributions found in the other networks (star network vs. other

networks: rs ,0.28, N = 9, p.0.058) whilst all other networks

were correlated with each other (other networks between them: rs

.0.83, N = 9, p,0.005; see Fig. S2 in the supplementary material

information).

2) Differences between the central individual and the
non central ones

These analyses assessed how the probabilities of joining the

movement, and thus the speed of decision-making and the number

of joiners, are affected by the identity of the initiator.

Mean number of joiners. We first checked how the

differencenC{nc1{c9
varied according to social network. The

curve considered followed an exponential law (R2 = 0.77,

F1,4 = 10.41, p = 0.03, y = 0.003e7.75x). The higher the centrality

index of the initiator was, the higher the difference in the number of

joiners between the central individual C and the non central

individuals c was. This result was confirmed by Mann-Whitney

tests which showed that the difference in the mean number of

joiners between the central individual C and the non central

individuals c was only significant for the star (Z = 227.17,

p,0.0001, nC = 9.99, nc1{c9
= 5.1), high centralized (Z = 211.22,

p,0.0001, nC = 9.99, nc1{c9
= 8.89), and intermediately centralized

(Z = 23.7, p = 0.0002, nC = 9.99, nc1{c9
= 9.79) networks. The

number of joiners decreased with the centrality index when non

central individuals were initiators (Fig. 3A).

In the same way, when the central individual C was the first

joiner, this increased the number of individuals joining a

movement for the star (Z = 27.3, p,0.0001, nC = 9.99,

nc1{c9
= 8.15) and highly centralized (Z = 22.2, p = 0.028, nC = 10,

nc1{c9
= 9.8) networks. There was no such increase for the

remaining networks because movements initiated by non central

individuals c already had approximately 10 joiners, even if the first

joiner was not the central individual C.

Mean departure latency of the first joiner. The curve

estimation test showed that the difference DT1,2C{DT1,2c1{c9

varied according to a linear law with the centrality index (R2 = 0.93,

F1,4 = 51.11, p = 0.002, y = 19.293x+0.6889). This difference was

significant for the star (Z = 232.9, p,0.0001, DT1,2C = 6.75,

DT1,2c1{c9
= 137.22), highly centralized (Z = 229.3, p,0.0001,

DT1,2C = 7.35, DT1,2c1{c9
= 99.4), intermediately centralized

(Z = 229.7, p,0.0001, DT1,2C = 11.6, DT1,2c1{c9
= 75.5), low

centralized (Z = 217, p,0.0001, DT1,2C = 22.9, DT1,2c1{c9
57.3)

and very low centralized (Z = 27.5, p,0.0001, DT1,2C = 40.5,

DT1,2c1{c9
= 54.24) networks. The departure latency of the first

joiner decreased with the centrality index when the central individual

C initiated the movement, whilst it increased when a non central

individual c initiated it (Fig. 3B).
Mean duration of joining. The difference DT1,10C{

DT1,10c1{c9
increased with the centrality index according to a

linear curve (R2 = 0.92, F1,4 = 46.14, p = 0.002). This difference

was statistically significant for non-equal networks (Z,214.7,

p,0.0001 for all networks; star: DT1,10C = 154.4, DT1,10c1{c9
=

290.5; highly centralized: DT1,10C = 152.2, DT1,10c1{c9
= 322.4;

intermediately centralized: DT1,10C = 174.7, DT1,10c1{c9
300.9, low

centralized: DT1,10C = 203.3, DT1,10c1{c9
261.6, very low centralized:

DT1,10C = 228.5, DT1,10c1{c9
= 261.3). The mean duration of

joining greatly decreased with the centrality index when the central

individual C initiated movements (Fig. 3C).
Latency distributions. For each social network, we assessed

whether latency distribution differed according to whether

movements were initiated by the central individual C or the non

central individuals c. On the one hand, the two latency

distributions were correlated for the low centralized (rs = 0.73,

N = 9, p = 0.02), very low centralized (rs = 0.95, N = 9, p,0.0001) and

equal (rs = 0.99, N = 9, p,0.0001) networks (Fig. S3); the response

and the probability of joiners were similar for these three networks,

whatever the initiator’s identity. On the other hand, they were not

correlated for the star (rs = 0.3, N = 9, p = 0.432), highly centralized

(rs = 20.31, N = 9, p = 0.406), or intermediately centralized

(rs = 20.13, N = 9, p = 0.732) networks (Fig. S3).

3) Comparisons between the artificial and observed
social networks

These comparisons with observed decision-making in natural

primate groups were conducted in order to validate our theoretical

results.
Mean number of joiners. We determined whether for

similar centrality indices we obtained a correlation between the

simulated data and the observed ones for the difference

nC{nc1{c9
. The two variables were correlated (R2 = 0.83,

F1,3 = 57.6, p = 0.03). We obtained the same relation between

the number of joiners and the centrality index for theoretical and

observed data. The difference between the central individual C

and the non central individuals c was, however, about 100-fold

higher in the observed data compared to theoretical data.
Mean departure latency of the first joiner. Contrary to

results above, there was no correlation between observed and

theoretical data for the difference DT1,2C{DT1,2c1{c9
(R2 = 0.04,

F1,3 = 0.124, p = 0.747)
Mean duration of joining. The results showed a correlation

for the difference DT1,10C{DT1,10c1{c9
(R2 = 0.95, F1,3 = 15.3,

p = 0.003). We obtained the same relation between the mean

duration of joining and the centrality index in theoretical and

observed data.

Discussion

For a long time, scientists have tried to understand the origins of

leadership in non-human primates and humans [1,4,7,62]. In this

study, we assessed how social networks from centralized to

decentralized can affect collective decisions and specifically the

emergence of this leadership. By analysing patterns of collective

decision-making such as joining speed, we aimed to determine

whether animals gain an advantage - in terms of saving time or
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information transfer - by adopting one social network or another.

Our results showed that different social networks, and especially

opposite ones – star vs. equal network - led to very different

patterns. From a star network to an equal one, the central

individual lost its leadership; it had less impact on the joining and

then on the decision-making process. This theoretical result was

Figure 3. Comparison between the central individual and the non central individuals. (a) Mean number of joiners, (b) mean departure
latency of the first joiner, and (c) mean joining duration for each social network. Central individual is represented by the black bars, non central
individuals are represented by the white bars.
doi:10.1371/journal.pone.0032566.g003
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obtained by only taking into account contacts between individuals,

and did not include other relationships, such as aggressive and

submissive behaviours. This means that a unique leader may

emerge without the use of dominance and/or coercion of the

dominant individual on subordinate ones. A simple rule based on

social network properties allowed us to explain leadership and

organizations of group members during movements. We therefore

showed a non-linear link between the type of social network and

the resulting consensus. The decision-making system switched

from an unshared consensus to a shared consensus when the social

network switched from a centralized to a decentralized one. By

comparing our theoretical data with observed ones, we confirmed

that this relationship also seems to exist in groups of primates. The

question may appear trivial but this link between social structure

and consensus had never been directly demonstrated before this

study. Several studies have already attempted to explain the

relation between social network and collective decision-making,

but tested this link either theoretically or empirically in only one

species or genus [3,47,45]. This study is the first to combine

different approaches and to confirm an influence of social network

on collective decision-making in a wide range of primate species.

These results illustrate that social networks have a great influence

on the emergence of leadership and that ecological factors alone

cannot explain all the patterns of collective decision-making. This

study provides new elements that could help to disentangle

contradictory results found on these two hot topics in previous

studies [1,3,12,63,64]. The centrality index is also a new index that

can be useful to qualify the level of centralization of a group [32].

The relative importance of affiliative interactions (grooming,

contacts) and spatial associations (proximities) is difficult to

disentangle, reflecting the fact they are highly correlated in

primate societies. In this study, we may wonder whether the

emergence of leadership and the type of consensus depend directly

on the network or depend more on the spatial distribution of

individuals, the decision resulting from a spatial diffusion.

However, in the model used in this study, we did not implement

the spatial distribution of individuals (they all started from the

same point). Moreover, in a study where both spatial and

grooming interactions influence the organization and order of

group members at departures of collective movements, authors

suggested that the influence of grooming was not an artifact of its

relationship to spatial association but that individuals do follow

‘friends’ (according to the affiliative relationship), but preferentially

those friends that are in closest proximity (according to the spatial

distribution depending on the affiliative relationships) [45].

The influence of social networks on collective phenomena has

already been described for information or disease transmission

[65,66]. Such authors such as Watts [67,68] or Fowler [69]

already studied the effect of connectivity of networks on the

‘cascade’ propagation on behaviours such as innovations or

decisions. Voelkl and Noë [54] used several artificial networks

implemented in a multi-agent system to test the influence of social

structure on the propagation of social information. They then

compared their results with data based on one primate group. In

these studies on information transmission, the central individual

was then a key element for a higher or lower transmission.

Likewise, Sueur and Petit [10,17] highlighted the fact that the

social styles of macaque species influenced how they decided

collectively but without directly testing the effect of social network

for the different groups. In rhesus macaques, known as a despotic

species [31], dominant individuals who are more central increased

the probability of other group members joining a movement,

whereas in the tolerant Tonkean macaques, each group member

had the same weight in the decision-making process [3,10,17].

Our theoretical study showed similar results but also that contacts

or grooming between individuals can suffice to explain leadership

distribution, without any need to take the dominance rank of

individuals, their level of aggression or other individual charac-

teristics into account. In a centralized network, the central

individual had more joiners and shorter joining latencies than

non central individuals did. This result seem to confirm some

studies reporting that the dominance individuals, who are often

the central ones, were leaders (Canis lupus [37]; Helogale parvula [38];

Equus caballu [39]; Gorilla gorilla berengei [40]). On the contrary, in a

decentralized, but also in centralized networks with links between

non central individuals, there was no difference in patterns (speed

of joining and number of joiners) whatever the centrality of the

initiator. In this study, we tested the effect of centrality, especially

the eigenvector coefficient, on the consensus type. This eigenvec-

tor coefficient was also the most common coefficient used to test

how information or disease spreads in a group. However, Kitsak

et al. [70] theoretically showed that the most efficient individuals

allowing the diffusion of information were not always those who

were the most connected or had the highest eigenvector centrality

coefficient. They found that the most efficient ‘spreaders’ were

those located within the core of the network, that is to say the

individuals with the highest betweenness coefficient [52,71]. It

should therefore be interesting to study this kind of networks to

assess how sub-grouping patterns and betweenness centrality could

affect collective decision-making as we did here with the

eigenvector centrality.

Recent studies have suggested the existence of unshared

consensus in animal groups [72,73]. This consensus would allow

the dominant individual to have better access to food or to satisfy

its own needs [11]. In other species, individuals who have the best

information for foraging or another activity would also lead the

group, whatever their social status. We also showed in this study

that an unshared consensus, through the social position of

individuals in the network, led to a quicker decision. Nevertheless,

Conradt and Roper [1] stipulated that an unshared consensus

could lead to high costs for group members because they cannot

satisfy their own needs, unlike the leader. This dissatisfaction may

drive the group to split, removing all interest for the leader to

continue leading the group. We might oppose this to shared

consensus, through which all individuals decide to move and can

then meet their individual needs. The shared distribution of

initiations between all group members also leads to a decrease in

the probability of making a mistake regarding the chosen location.

Indeed, in the case of a shared decision, information is shared and

pooled, which is not the case in unshared consensus [16,62]. Thus,

both kinds of consensus seem to have advantages: speed for an

unshared decision versus accuracy for a shared decision. This

speed-accuracy trade-off paradigm is well known [74], but to the

best of our knowledge, no study has yet attempted to assess

whether the social network of a group can affect this trade-off, and

therefore also affect the efficiency of a collective decision [2,29].

Interestingly, we showed that the link between social network

and consensus was, however, not linear. Indeed, the relations

between the centrality index and the dependent variables follow

non-linear functions. The functions we found showed that there

was a threshold (about 0.8) where the decision-making system

switched from an unshared to a shared consensus. As soon as non

central individuals interacted with each other, the consensus

turned into a shared consensus. Indeed, the affiliative relationships

between all group members seem to play an important role in the

decision-making process. The decision-making system appears to

be highly non-linear, evolving more rapidly into a mimetic, and

especially allelomimetic process (decentralized) than a leadership
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(i.e. centralized) process [41,43]. For a long time, scientists

believed that group members decided to join a movement due

to the leader’s departure. However, current results show that

animals decide to join a movement according to the number and

the identities of all already moving agents, and not only according

to the initiator [75].

The present study showed that individuals only took their

affiliative relationships into account for moving, and gave

particular importance to the strongest relationships. Our model

suggested that group members might solely consider local

interactions. The central individual had an important role in the

decision-making process, but based on simple rules dependant on

the network, and especially in this study, on affiliative relation-

ships. Other social interactions, positive or negative, requiring

more or less cognitive abilities, did not need to be implemented in

our model to understand the emergence of leadership. Authors

have suggested that the complexity of collective movement

observed in primates – with specific order and associations of

individuals – could only emerge thanks to developed cognitive

abilities which enable primates to use intentions, manipulations,

and insights [12,14,76]. Complex phenomena can, however,

emerge from simple and local interactions [75]. Hemelrijk [77,78]

showed that the complex spatial positions and associations of

macaques – with dominant individuals at the middle of the group

and subordinate ones at the periphery – could emerge from simple

rules based on how individuals behave after conflicts (staying in the

same place or moving away from the winner). Hemelrijk’s model,

like ours, did not take into account the intentions or cognitive

abilities of primates, but successfully reproduced the patterns of the

collective phenomena in question.

Our study is a starting point for the investigation of how social

networks and consensus are interrelated. Theoretical results were

confirmed by observed data in several groups of primates. The five

study groups living in semi free-ranging conditions highlighted the

importance of the social network rather than the equally important

question of ecological pressures. It would be interesting as a second

step to recreate the natural environment of animals in order to

assess how ecology and social network interact together to

constrain consensus decisions. How social network influences

decisions is a crucial question and answering this question may

have direct applications as management and conservation of

animal populations [79,80] or in firm management and Econom-

ics [81].
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Figure S1 Graph representation of social networks. (a)
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