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Abstract

‘‘Hypomyelination and Congenital Cataract’’, HCC (MIM #610532), is an autosomal recessive disorder characterized by
congenital cataract and diffuse cerebral and peripheral hypomyelination. HCC is caused by deficiency of Hyccin, a protein
whose biological role has not been clarified yet. Since the identification of the cell types expressing a protein of unknown
function can contribute to define the physiological context in which the molecule is explicating its function, we analyzed
the pattern of Hyccin expression in the central and peripheral nervous system (CNS and PNS). Using heterozygous mice
expressing the b-galactosidase (LacZ) gene under control of the Hyccin gene regulatory elements, we show that the gene is
primarily expressed in neuronal cells. Indeed, Hyccin-LacZ signal was identified in CA1 hippocampal pyramidal neurons,
olfactory bulb, and cortical pyramidal neurons, while it did not colocalize with oligodendroglial or astrocytic markers. In the
PNS, Hyccin was detectable only in axons isolated from newborn mice. In the brain, Hyccin transcript levels were higher in
early postnatal development (postnatal days 2 and 10) and then declined in adult mice. In a model of active myelinogenesis,
organotypic cultures of rat Schwann cells (SC)/Dorsal Root Ganglion (DRG) sensory neurons, Hyccin was detected along the
neurites, while it was absent from SC. Intriguingly, the abundance of the molecule was upregulated at postnatal days 10 and
15, in the initial steps of myelinogenesis and then declined at 30 days when the process is complete. As Hyccin is primarily
expressed in neurons and its mutation leads to hypomyelination in human patients, we suggest that the protein is involved
in neuron-to-glia signalling to initiate or maintain myelination.
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Introduction

Hypomyelinating leukoencephalopathies of the central nervous

system (CNS) are inherited white matter disorders (WMDs)

characterized by permanent myelin deficiency. The term ‘‘hypo-

myelination’’ also applies to congenital disorders of the peripheral

nervous system (PNS) characterized by hypomyelination in the

presence or absence of signs of active demyelination [1–3].

The myelin sheath is a modified plasma membrane wrapped

with a spiral pattern around axonal segments between the nodes of

Ranvier. This highly specialized membrane is composed of

multiple layers of myelin that have a protein-lipid-protein-lipid-

protein architecture, and are modified extensions of oligodendro-

cytes in the CNS, or SC in the PNS. In both the CNS and PNS,

the deposition and maintenance of myelin is complex and involves

different cells and several axo-glial signalling pathways [4,5] that

have only partly been revealed [6].

Hypomyelination and Congenital Cataract, HCC (MIM

#610532), is an autosomal recessive disorder first identified in

five unrelated families with ten subjects affected by congenital

cataract and diffuse cerebral and peripheral hypomyelination

[7,8]. While bilateral cataract was present at birth or within the

first month of life, developmental delay was noticed at the end of

the first year of life after initially normal psychomotor develop-

ment. The neurological picture was characterized by pyramidal

and cerebellar signs as well as muscle weakness and wasting of the
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lower limbs, indicating also PNS involvement. Indeed peripheral

neuropathy was confirmed by neurophysiological and neuropath-

ological studies. The clinical course was slowly progressive and the

majority of patients became wheelchair-bound at around 8-9 years

of life. Brain magnetic resonance imaging (MRI) showed diffuse

hypomyelination with superimposed areas of abnormal signal

intensity consistent with increased water content [9]. Sural nerve

biopsies were characterized by a slight to severe reduction of

myelinated fiber density with several axons surrounded by a thin

myelin sheath or devoid of myelin. Uncompacted myelin sheaths,

which in some fibers appeared redundant and irregularly folded,

were occasionally seen [7].

HCC patients are affected by mutations in the gene FAM126A

(previously named DRCTNNB1A). FAM126A encodes for a

521aa protein of unknown function, which we named Hyccin.

In the first description of the disease, we identified two mutations

affecting a splice-site, while the third one was a missense. At the

protein level, all three mutants lead to absence or severe reduction

of Hyccin protein [7].

Subsequently, the clinical spectrum of HCC was extended with

the identification of a consanguineous family with a large

intragenic deletion encompassing two exons of the FAM126A

gene [10]. Notably, these patients did not display congenital

cataract . Most recently Biancheri et al. (Archives of Neurology, in

press) reported nine novel HCC patients from seven unrelated

families. Although the latter study found significant clinical

variability in the occurrence and age of onset of cataract as well

as the severity and progression of neurological symptoms, MRI

features of hypomyelination combined with increased periventric-

ular white matter water content are consistently observed,

distinguishing HCC from other forms of hypomyelinating

leukoencephalopathies.

In order to define the cellular origin of HCC pathogenesis, we

investigated Hyccin expression in the nervous system.

We found that Hyccin is predominantly expressed in the CNS,

where it is localized in neurons but not in myelinating cells. In

peripheral neurons, Hyccin is of low abundance and detectable

only at early postnatal ages.

Moreover, we show that in DRG neurons and SC mixed

cocultures, an in vitro model of myelination, the expression of

Hyccin precedes the phases of active formation of the myelin

sheath.

Results

To analyze the cellular expression of the Hyccin molecule, we

took advantage of the promoterless LacZ gene (encoding a

cytoplasmic b-galactosidase) integrated into the Fam126a locus of

heterozygous (Het) Hyccin mice to express LacZ under control of

the regulatory elements of the Fam126a gene. The endogenous

Fam126a locus was targeted for modification by homologous

recombination in embryonic stem (ES) cells using the selectable

marker Neo. Fam126a coding sequence spans from exon 2 to exon

10 of the gene. The mutant allele was designed to replace the first

coding exon (exon #2) (starting from amino acid 3), the intron in

between and exon # 3 with a LacZ-Neo cassette (Fig. 1A–B). This

deletion included the site of the IVS2+1G-A mutation, which was

identified in a subgroup of our HCC patients and which leads to

skipping of exon #2 with the generation of an aberrant Fam126a

transcript and absence of Hyccin protein by immunoblot analysis

[7].

The construct was delineated to drive LacZ under the control of

the Fam126a promoter by removing the LacZ start codon and

fusing it in frame with the first 3 amino acids of the Fam126a

coding sequence. This design allowed us to detect the tissue

location and developmental appearance of endogenous Hyccin by

LacZ staining of Het mice. Hyccin Het mice were indistinguish-

able from wild type (WT) littermates based on body weight, cage

behaviour, spontaneous locomotor activity, and reproductive

performance (data not shown). The mutant allele is also disrupted

regarding the expression of Hyccin and thus presents a functional

null allele. The phenotypic consequences of homozygous deletion

of Hyccin will be reported separately.

Hyccin-LacZ signal was evaluated in brain and sciatic nerves

isolated from Het males at postnatal days P2, P10 and P30.

In the CNS, at P2 (Fig. 2 A, B and C) Hyccin gene activity was

found in the olfactory nuclei and in the prefrontal cortex (A), in the

piriform cortex (B and C arrowheads) and in the cerebral cortex

with marked labeling in layer 5 (B and C arrows) and lower signal

in layer 2. In addition, in the hippocampus LacZ labelling was

detected in the pyramidal neurons of the CA1, CA2 and CA3

fields, while it was almost not detectable in the dentate gyrus. At

P10 (Fig. 2 D,E and F), labeling was found in the same regions as

at P2. However, in the cerebral cortex, expression in layer 2 was

more prominent, with similar intensity than in layer 5 (E, arrows).

In the hippocampus, labeling was more intense at the level of CA1

and CA2 fields compared to CA3 (F, arrow). At P30 (Fig. 2 G,H

and I), the layers 2 and 5 of the cerebral cortex were positive at all

levels along the anteroposterior axis with less intense signal

compared to previous stages (H arrows). Interestingly, in the

hippocampus the signal was confined to CA1 and CA2 fields, with

a sharp boundary between CA2 and CA3 (I, arrow). Labeling was

also present in olfactory nuclei (G), and in ventromedial

hypothalamic nuclei (I, arrowhead).

To further confirm the principally neuronal expression pattern

of the Hyccin gene, coronal sections of previously LacZ stained

brains were probed with antibodies directed against the neuron-

specific nuclear protein NeuN, the oligodendroglial 29,39-Cyclic-

Figure 1. Generation of mice expressing lacZ under control of
the Hyccin gene regulatory elements. Panel A: Schematic
representation of the Fam126a locus and engineering of a Fam126a -
LacZ allele. A segment containing exons 2 and 3 were replaced with a
cassette containing a modified b-galactosidase coding sequence (LacZ)
and a drug resistance minigene comprised of the phosphoglycerate
kinase promoter (PGKp), a bacterial promoter (EM7p) and neomycin
phosphotransferase (Neor), flanked by loxP sequences. The numbers
below the line representing the genomic sequence indicate base pairs.
Panel B: A representative PCR analysis of tail genomic DNA from wild-
type (WT), heterozygous (Het) homozygous LacZ knockin mice and
documenting Fam126a gene deletion.
doi:10.1371/journal.pone.0032180.g001

Hyccin Expression in Neuronal Cells
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nucleotide 39-phosphodiesterase (CNP) or the astrocyte marker

glial fibrillar acidic protein (GFAP) (Fig. 3).

Notably, the LacZ signal was detected in cells immunopositive

for NeuN (Fig. 3A), while it did not associate with CNP (Fig. 3B) or

GFAP (Fig. 3C) markers.

To confirm the results independent of the gene targeting, we

applied in situ hybridization and immunofluorescence to WT mice.

RNA in situ-hybridization was performed on coronal sections

from P30 WT mouse brain via an anti-digoxygenin Hyccin

700 bp antisense oligonucleotide probe [11]. Hyccin signal was

most intense at the level of the cortex and the hippocampus

(Figure 4A and B). In the cerebral cortex, Hyccin labelling was

expressed strongest in layer 5.

By immunofluorescence, Hyccin fluorescent signal was detected

in the hippocampal segments where the labeling was strikingly

more intense in the CA1 and CA2 regions when compared to the

CA3 or to the dentate gyrus (Fig. 5A), in agreement with the gene

expression pattern found by LacZ staining. Moreover, in

consistency with the LacZ staining analyses, Hyccin colocalized

with the NeuN marker (Fig. 5B). The specificity of the antiserum

directed against Hyccin was determined by comparison of protein

lysates from human healthy controls (n = 3) and HCC patient

fibroblasts (n = 3) (mouse and human hyccin protein sequence are

97% homologous). Western blot analysis indicated that the

antibody recognized a protein of the expected size of 54 kDa in

extracts of control fibroblasts, while no signal was observed in

patients’ fibroblasts (Figure S1-A). These results were confirmed in

HeLa cells, known to express hyccin protein, by peptide

competition, in which the primary antibody directed against

Hyccin was pre-incubated with a 5-fold molar excess of the

immunizing peptide before being exposed to the antigen (Figure

S1-B).

The temporal regulation of Hyccin expression in the CNS was

quantified in total brain lysates isolated from P2, P10, P30, P60

WT animals by real-time PCR. Hyccin transcripts were

significantly more abundant at postnatal days 2 and 10 and then

decreased by approximately 75% in adult animals (Fig. 6).

Figure 2. Analysis of b-galactosidase activity in the CNS from P2 (A,B,C), P10 (D,E,F), P30 (G,H,I) hyccin Het mice (n = 3). In the CNS,
Hyccin is expressed in olfactory nuclei (A,D,G), in distinct layers of the neocortex (arrows in B,C, E,H) and in the hippocampal region with stronger
expression in CA1 and CA2 fields as compared to CA3 (F,I arrows); dentate gyrus is negative. Other sites of expression include the prefrontal cortex,
the piriform cortex (arrowheads B and D) and the ventromedial hypothalamic nuclei (I, arrowhead). Scale bars are 1000 micron (A,–F) and 2000
micron (G–I).
doi:10.1371/journal.pone.0032180.g002

Figure 3. Immmunocolocalization analysis of Hyccin-LacZ
activity and the markers NeuN (A), CNP (B) and GFAP (C) in
the CNS hyccin from P10 Hyccin Het mice (n = 3). Cryostat
sections (40 u thickness) from the CNS of LacZ stained Het mice were
immunostained with primary antibodies raised against the different
markers. Note that the LacZ signal colocalizes only with the NeuN
nuclear neuronal signal. Representative pictures are shown.
doi:10.1371/journal.pone.0032180.g003
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As concerns the PNS, sciatic nerves from P2, P10, P30 and P60

Hyccin Het mice were stained with 5-bromoindolyl-o-galactopyr-

anoside (Bluo-Gal) staining solution for optic and electron

microscopy. After -galactosidic cleavage, Bluo-Gal precipitates in

form of fine birefringent crystals, whereas X-gal gives rise to an

amorphous precipitate. This property of Bluo-Gal results in greatly

enhanced sensitivity of the staining method for LacZ and allows

for optimal morphological resolution in electron microscopy [12].

At all ages examined, Bluo-Gal staining was not detected in

peripheral nerves of Het mice by light or electron microscopy,

indicating that b-galactosidase was not very abundantly expressed

under control of regulatory elements of the Hyccin gene.

Heterozygous Ebf 2 null mice, in which the Ebf2 coding region

was replaced by LacZ, were used as positive controls [13].

Interestingly, Bluo-Gal precipitate was detected in peripheral

nerves of mice homozygously expressing LacZ under control of the

Hyccin gene, though confined to postnatal day 2.

In this cohort of mice, LacZ signal localized to axons

surrounded by myelin-forming SC (arrowhead in Fig. 7A).

Hence, Hyccin protein levels were compared in total brain and

sciatic nerve lysates by immunoblot analysis at the age of postnatal

day P10.

Consistent with the Bluo-Gal staining, Hyccin protein levels

were of very low abundance in sciatic nerves when compared to

total brain lysates (Fig. 7B).

To further define the expression of Hyccin in the PNS, primary

rat SC and DRG sensory neurons were immunostained with the

anti-Hyccin antibody. The specificity of the antibody for

immunocytochemistry was confirmed by colocalization studies in

HeLa cells transiently transfected with a GFP-hyccin expression

vector (Fig. 8A).

Hyccin positivity was observed along the neurites, while no

specific signal was detected in SC. These results were confirmed by

double labelling of Hyccin and respectively phosphorylated

neurofilament and S100 protein. (Fig. 8 B,C). Anyhow, further

experiments are needed to clarify the expression and function of

Hyccin in the PNS.

Finally, to correlate the temporal evolution of Hyccin expression

with active myelinogenesis, we established a 30 days organotypic

DRG culture. The transcripts of myelin protein zero (MPZ) were

quantified to control the correctness of the process of myelination.

Interestingly, Hyccin mRNA levels increased during the first 10–

15 days of the culture, when myelin forming cells are

differentiating, and then decreased of about the 40% at 30 days

when SC fully expressed the myelin markers MPZ and myelin

basic protein (MBP) and when myelin sheath were formed (Fig. 9,

ABC).

In conclusion, in the CNS, Hyccin is expressed in a subset of the

neurons, and its transcripts are significantly more abundant in

young mice at early stages of postnatal development correlating

with the onset of myelination. The abundance of Hyccin is lower

Figure 4. RNA in situ hybridization on brain sections from P30 WT mice reveals an expression pattern in agreement with principal
neuronal expression. Coronal brain sections were hybridized with a Hyccin antisense 700 bp probe. Panel A: High-magnification image of
hippocampus shows the strongest labeling of Hyccin in the CA1, 2 region compared to the CA3 region and dentate gyrus (DG). Scale bar is 200 m.
Panel B: High-magnification image of the cerebral cortex revealed a stronger labeling of Hyccin in deep cortical layers (V/VI) compared to superficial
layers (II–III). Scale bar is 200 m.
doi:10.1371/journal.pone.0032180.g004

Figure 5. Immunofluorescence analysis of Hyccin on brain
sections from P30 WT mice. Panel A: Coronal brain sections were
probed with anti-hyccin polyclonal antibody. High-magnification image
of hippocampus shows the most intense labeling of Hyccin in the CA1,
2 regions compared to the CA3 and dentate gyrus (DG). Scale bar is
200 m. Panel B: Coronal brain sections were probed with anti-Hyccin
polyclonal antibody or with anti-NeuN antibody. Hyccin and NeuN
immunoreactivity were detected by respectively Alexa 499 and 546
conjugated secondary antibodies. High magnification image of CA1
region of the hippocampus. Note the colocalization between hyccin
and the neuronal marker in the merge. Scale bars are 80 m.
doi:10.1371/journal.pone.0032180.g005
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in the mature PNS, where the protein was detected only in null

Hyccin mice carrying two copies of the LacZ allele.

Finally, in an in vitro model of myelinogenesis, i.e. a mixed

population of SC and sensory neurons, Hyccin is up-regulated in

the steps of active myelination thus supporting the hypothesis of its

active involvement in the formation of the myelin sheath.

Discussion

Our study aimed to establish the cellular expression in the

nervous system of a novel protein, Hyccin, responsible for the

etiology of the autosomal recessive hypomyelinating disorder

HCC.

In the past few years our understanding of the nosology and

physiopathology of inherited white matter diseases has greatly

improved, though a significant number of patients with cerebral

white matter involvement still remain without diagnosis despite

extensive investigations. Hypomyelination is the single largest

category among undiagnosed cases [3,14–17]. The prototype of

defined hypomyelinating leukoencephalopathies is Pelizaeus-

Merzbacher Disease (PMD) caused by a primary defect of myelin

proteolipid protein (PLP) expressed in oligodendrocytes; however,

other hypomyelinating disorders are related to primary neuronal

or astrocytic dysfunctions, including Salla disease caused by

SLC17A5 gene mutations, Pelizaeus Merzbacher-Like Disease

due to GJA12 mutations, or Alexander disease caused by

mutations affecting the astrocytic GFAP [18–24]

The discovery that the hereditary leukoencephalopathy HCC is

caused by mutations affecting the gene FAM126A, which encodes

for Hyccin, a protein of unknown function, raised the question

how this molecule may function, and why functional loss may lead

to hypomyelination.

Hyccin is expressed at low levels in a variety of adult tissue, and

its transcripts are most abundant in the heart, spleen, and cerebral

cortex (data not shown).

Phylogenetic and multiple alignment analysis of human

FAM126A identify a homolog called FAM126B, whose function

and pattern of expression are unknown. Phylogenetic analysis and

software-based prediction tools do not allow any classification of

Hyccin into any specific protein family, and do not suggest any

previously defined functional domain.

Figure 6. Real-time PCR analysis of Hyccin transcripts in total brain lysates from P2 (n = 12), P10 (n = 12), P30 (n = 6) and P60 (n = 6)
WT mice. Results are expressed as mRNA fold increase relative to calibrator (p2) normalized to housekeeping genes (b-actin and GAPDH).
Quantitative data were reported as median values with first and third quartiles (1st-3rd q) and minimum and maximum value (Min-max). * = p,0.01.
doi:10.1371/journal.pone.0032180.g006

Figure 7. Analysis of Hyccin expression in the PNS. Panel A:
Semithin sections of sciatic nerves isolated from Hyccin KO mice (n = 3)
were stained with Bluo-Gal and analyzed by electron microscopy.
Arrows point to Hyccin-LacZ signal. Panel B. Immunoblot analysis of
hyccin protein in sciatic nerve lysates isolated from P10 WT mice as
compared to total brain lysates. Note that Hyccin protein levels is very
low in the mature sciatic nerve sample. GAPDH was utilized as a sample
loading control.
doi:10.1371/journal.pone.0032180.g007
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Therefore, as a step towards understanding the pathogenesis of

HCC, we established the specific expression pattern of Hyccin in

the CNS and PNS. For this purpose, we generated a new mouse

model expressing LacZ under control of the regulatory elements of

the Hyccin gene and thus allow monitoring Hyccin gene activity

by b-galactosidase staining. LacZ activity was evaluated in early

postnatal mice (P2 and P10) and adult animals. Notably, the

protein is differentially expressed in neuronal cells in distinct layers

of the cerebral cortex and in the hippocampal region. Importantly

Hyccin was not detected in cells which immunostained positive for

the oligodendroglial marker, CNP, or the astrocyte molecule

GFAP.

Since LacZ signal reflects activity of the modified allele but is

only an indication for the expression of Hyccin (as post-

transcriptional effects may have an influence as well), these results

were confirmed independently by RNA in situ-hybridization and

immunofluorescence analysis. Confocal microscopy of Hyccin

signal allowed also a quantitative comparison of its labeling in the

different regions of the hippocampus.

The detection of strong expression of a gene involved in

myelination in the CA1 and CA2 regions of the hippocampus,

when compared to CA3 or the dentate gyrus is not surprising.

Indeed, these regions are characterized by densely packed

pyramidal somata which result immunopositive for Hyccin and

NeuN signal and which are characterized by fully myelinated

long-projecting axons. In the CA3 region the pyramidal neurons

display a minor density, while in the dentate gyrus the neuronal

population is composed of interneurons and granule cells, which

only project to CA3 through non-myelinated mossy fibres.

Myelination is a strictly regulated process. In the mouse, it starts

approximately at birth in the spinal cord, and in the brain is

largely accomplished in almost all regions by around 45–60

postnatal days. When tested by real-time PCR on total brain

lysates, Hyccin expression is highest in newborn mice and at early

stages of postnatal development and then decades in adult animals,

thus indicating an up-regulation of the molecule expression

correlating with an early phase of myelinogenesis.

In the PNS, Hyccin-LacZ signal was not detected in Het

animals at any age examined, and was identified only by electron

microscopy at postnatal day 2 in homozygous mice in which both

alleles are expressing LacZ.

When tested in vitro, in primary cultures of SC or DRG neurons,

Hyccin was visualized on the neurites, while it was absent in SC.

Notably, temporal analysis of Hyccin expression in organotypic

Figure 8. Immunofluorescence analysis of hyccin expression in DRG neurons and Schwann cell cultures. Panel A: Immunocolocalization
of GFP-Hyccin transiently transfected in Hela cells and the anti-hyccin polyclonal antibody. Representative images of Hela cells transfected with GFP-
Hyccin and immunostained with anti-hyccin polyclonal antibody 24 hr after transfection. Hyccin immunoreactivity was detected by Alexa546
conjugated secondary antibodies. The arrows in the merge panel show colocalization of the two signals in the cytosol. Final magnification 636. Scale
bars represent 100 m. Panel B: DRG neurons cultures were immunostained with an anti-hyccin antibody and an anti-phosphorylated neurofilament.
Hyccin and Neurofilament immunoreactivities were detected respectively by Alexa488 and Alexa546 conjugated secondary antibodies. The merge
panel shows positivity of the two signals in the neurites. Final magnification 406. Panel C: Schwann cells cultures were immunostained with an anti-
hyccin polyclonal antibody and an anti-S100 monoclonal antibody. Hyccin and S100 immunoreactivities were detected respectively by Alexa488 and
Alexa546 conjugated secondary antibodies. Final magnification 1006.
doi:10.1371/journal.pone.0032180.g008

Hyccin Expression in Neuronal Cells
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cultures of DRG neurons and SC highlighted its possible role in

myelination. This in vitro system has been extensively used to study

development and regeneration of peripheral nerves, and diseases

including hereditary sensory and motor neuropathies, and it

constitutes a valuable model to analyze particularly the early steps

of myelination [25–30]. In this model, Hyccin was up-regulated at

days 10 and 15, a step of the culture which precedes myelin

formation and the expression of classical myelin markers. This result

seems to be consistent with the hypothesis of Hyccin as an axonal

signal instructing myelination and stimulating SC to synthesize

myelin proteins and lipids, and to extend myelin sheaths.

Previous reports from the literature showed Hyccin transcripts

in neurons as well as in cells of the oligodendrocytic and astrocytic

lineage [31,32]. It is well possible that indeed a minimal amount of

Hyccin mRNA may be expressed also in cells other that neurons

but that the protein is not detectable or not present.

In our paper we analyzed mainly Hyccin protein pattern of

expression and to support the data we followed an integrated

approach based on in vivo b-galactosidase gene activity data plus

immune-based experiments.

Moreover, Hyccin main neuronal expression here shown is in

accordance with brain and spinal cord data reported on the Allen

Brain Atlas website, a database of genes expression pattern of the

mouse brain completed by RNA in situ hybridization (http://

www.brain-map.org).

In this work, we have shown that Hyccin is neuronally

expressed. Considering the hypomyelination in patients with

mutations affecting the Hyccin gene, we suggest that this protein is

part of the signals that regulate neuron-to-glia cross-talk at the

onset of myelination, or regarding myelin maintenance. Indeed,

neurons utilize a battery of signals to control the differentiation of

associated myelinating glial cells. In the PNS, axonal molecules

involved in the induction or maintenance of myelin include

Neuregulin-1 [33,34] the shedding enzymes BACE and TACE

[35,36], BDNF signaling to the neurotrophin receptor p75 [37],

and axonal prion protein [38], while axonal signalling to

myelinating glia has been less well understood in the CNS [6].

Hyccin might be a co-factor or regulator of neuronal molecules

already known to mediate the neuron-glia interplay; however its

relevance for CNS myelin indicates that the protein may be an

important part of an independent, yet to be identified signalling

mechanism.

Materials and Methods

Antibodies
The antibodies and dilutions used in the study include the

following: polyclonal antibody against Hyccin (D-15) (Santa Cruz;

Biotechnology) (1:50 for tissue immunofluorescence [IF], 1:500 for

Western blot [WB]); polyclonaly anti-hyccin antibody (Novus

Figure 9. Hyccin expression levels in organotypic DRG cultures. Panel A: Cells were maintained in culture for the times indicated and analysis
of MPZ mRNA was utilized as a reference for myelination in the culture. Results are expressed as mRNA fold increase relative to calibrator (10 days)
normalized to housekeeping genes (b-actin and GAPDH) For each sample data are represented as means 6SEM (n = 3) and .p values were ,0.05
compared to control. Panel B: Total cellular lysates were isolated at the times indicated and subjected to immunoblot analysis for the myelin markers
MPZ and MBP. An antibody against GAPDH was used as an internal control. Panel C: At 30 days cell cultures were fixed, stained with 1% Sudan Black
in 70% ethanol and analyzed by optic microscopy. Bright-field micrographs confirm the presence of myelin sheaths with Ranvier nodes (white arrows)
surrounding th axons.
doi:10.1371/journal.pone.0032180.g009
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Biologicals) (1:100 for immunocytochemistry); monoclonal antibody

against phosphorylated (SMI31) neurofilaments (NF) (Sternberger

Monoclonals Inc.) (1:250 for IF); monoclonal anti-Glial Fibrillary

Acidic Protein (GFAP), clone GA5 (Millipore) (1:400 for immuno-

histochemistry [IHC]; monoclonal anti-neuronal Nuclei (NeuN),

clone A60 (Millipore), (1:1000 for IHC and 1:150 in IF); monoclonal

anti- 29,39-cyclic nucleotide 39 phosphodiesterase (CNP), clone 11-

5B (Millipore), (1:50 for IHC); Fab fragments anti-Digoxigenin-

Alkaline phosphatase (AP), (1:2000 for in situ-hybridization), (Roche);

monoclonal anti-myelin basic protein (MBP) clone MAB382,

(Chemicon) (1:3000 in WB); monoclonal anti myelin protein zero

() (1:1000 in WB); polyclonal anti-glyceraldeyde 3 phosphate

deydrogenase (I-19) (Santa Cruz, Biotechnology), a monoclonal

anti-S100 antibody (Abcam), a monoclonal anti-myelin protein zero

(MPZ), P07 extracellular domain, Astexx Ltd. & Co. KEG, Graz,

Austria. Rabbit anti-goat IgG horseradish peroxidase-conjugated

(1:4000 for WB) was from ZYMED (Invitrogen), while the anti-

mouse Dako EnVision+ System-HRP Labelled Polymer was from

Dako Group. Hyccin fluorescent signal was detected following

tyramide signal amplification according to manufacturer’s instruc-

tions (PerkinElmer Life Sciences).

In confocal microscopy, secondary antibody reaction was

carried out using donkey anti mouse Alexa Fluor 488, donkey

anti goat Alexa Fluor 633, rabbit anti mouse Alexa Fluor 633,

chicken anti rabbit Alexa Fluor 657 antibodies (1:600) (all from

Molecular Probes Inc.).

Generation and genotyping of Hyccin knock-out mice
The mouse Fam126a locus spans 130 kilobases (kb), and exons 2

to 11 encode the protein. VelociGene technology was used to

replace a segment of Fam126a including exons 2 and 3

corresponding to an 11-kb genomic region (base pairs [bp] 2378

to 2473 of exon 2, 2473 to 13230 of intron 2 and 13231 to 13324 of

exon 4 [Ensemble Accession Number: ENSMUSG00000028995;

GenBank Accession number: NM_053090] with a b-galactosidase

(LacZ)/neomycin (Neor) cassette [39]. The replacement cassette

was formed by the LacZ reporter gene and by a phosphoglycerate

kinase promoter-Neor selection cassette flanked by LoxP sequences.

Briefly, a bacterial artificial chromosome (BAC) containing Fam126a

coding region and 800 bp of total flanking sequences (clone X from

release II of a 129/SvJ BAC library obtained from Incyte

Genomics; Wilmington, DE) was modified to generate a BAC-

based targeting vector, which was linearized and used to replace

Fam126a gene in F1H4 (C57BL/6:129 hybrid) mouse embryonic

stem (ES) cells. Correctly targeted ES cells were identified by using

the loss of native allele (LONA) assay, as described [11]. Two

independently correctly targeted ES cell lines were used to generate

chimeric male mice that were complete transmitters of ES-derived

sperm. Chimeras were bred to C57BL/6 females to generate F1

heterozygous mice, which were genotyped by LONA assays and

identified by LacZ histochemical assays. F1 mice were crossed with

C57BL/6 mice and the F2 offspring was used to maintain the line in

a mixed 129/C57BL/6 genetic background. For each experiment,

Hyccin heterozygous (Het) male mice derived from F2 heterozygous

intercrosses were used.

Genotyping was completed by PCR on genomic DNA isolated

from tail samples.

The sequences of primers used for the LacZ and for Fam126a

genes are the following:

LAC Z allele (360 bp): Forward: 59 AAA GAC GCA GTT

CTG CAT GG 39, Reverse: 59 TCA TTC TCA GTA TTG TTT

TGC C 39 FAM126a WT allele (280 bp): Forward:59 GTA CCA

AAC ACC AGC ATG GA 39, Reverse: 59 TCA CTC TGT GGC

TCC TGG AT 39.

All the Animal experiments were approved by the Animal Care

and Use Committee of Istituto di Fisiologia Clinica, CNR, Pisa,

Italy (Project # 187).

Cell cultures
HeLa cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM), supplemented with 10% fetal calf serum (FCS),

penicillin and streptomycin in a humified 5% CO2 atmosphere at

37uC. All cell culture products were purchased from Gibco/

Invitrogen (Merelbeke, Belgium).

The GFP-tagged ORF clone of FAM126A (GFP-hyccin)

purchased from Origene was transiently transfected in Hela cells

using the Turbofect TM in vitro Transfection Reagent (Fermentas)

according to manufacturer’s instructions (1 ug DNA complexed

with 1,5 u/well of transfection reagent). Hyccin expression was

evaluated by immunofluorescence or western blot analysis 24 h

after transfection.

Organotypic dorsal root ganglia (DRG) cultures were estab-

lished from 15-day-old embryos using previously established

methods [12]. After extracting them using a sterile technique, 30

to 35 DRG were removed from each embryo, pre-treated with

trypsin (Hanks’solution 0.25%), and triturated to provide a

suspension of DRG cells in a medium supplemented with 15%

bovine calf serum, and nerve growth factor 5 ng/mL final

dilution. This suspension was plated on a collagen substrate in

flexible molded plastic Aclar dishes, and 156104 cells were placed

in each dish. As for each embryo we established 4 cultures, we

obtained enough material to perform a time-course (30 days)

analysis of hyccin expression and myelination features by both

molecular biology and light microscopy evaluations.

For myelination staining, DRG cultures were washed in PBS,

fixed in Trump’s fixative at 4uC overnight, post-fixed the following

day in 2% osmium tetroxide and stained with 1% Sudan Black in

70% ethanol. Each culture was assessed for the presence or

absence of myelin and for the morphological appearance of all

observed fibres.

Establishment of primary SC and DRG neurons cultures has

been described previously [29,30].

Neuronal cultures were established from 15 day-old wild-type

rat embryos. After extracting them using a sterile technique, 35 to

40 DRG were removed from each embryo, pre-treated with

trypsin (Hanks’solution 0.25%), and triturated to provide a

suspension of DRG cells in a medium supplemented with 15%

newborn calf serum (NCS), ascorbic acid (100 ug/mL final

dilution) and nerve growth factor (NGF) (5 ng/mL final dilution).

This suspension was plated on collagen-coated ACLAR dishes at a

density of 156104 cells/dish. After 48 hr, the cells were treated

with Fudr medium (neurobasal medium, 15% NCS, NGF,

ascorbic acid and 1025 M 5-fluoro-29-deoxyuridine and uridine)

(Invitrogen, Srl, Italy) for two 48-hr cycles to eliminate fibroblasts

growth. Cultures were used for molecular and immunocytochem-

istry evaluations.

SC cultures were established from 3 day-old rat pups. Sciatic

nerves of the newborn rats were dissected and dissociated [15]. SC

were grown in DMEM/F12 medium (Invitrogen) supplemented

with 10% fetal calf serum (FCS), penicillin and streptomycin for

48 hr. Cytosine arabinoside (Ara-C) 1025 M was added after

48 hr and the treatment prolonged for further 48 hr resulting in

SC cultures that were 99% pure and were used for molecular and

immunocytochemistry evaluations.

Primary fibroblasts were isolated from cutaneous biopsies of

HCC patients (n = 3) and healthy controls (n = 3). Written

informed consent was received from all participants.
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Quantitative PCR
Quantitative real-time PCR experiments (qRT-PCR) were

carried out on total brain lysates from C57/BL6J WT mice (P2,

P10, P30, P60), different organs from C57/BL6J WT mice (P30)

and from rat Dorsal Root Ganglion (DRG)-Schwann cocultures

(10 days, 15 days, 30 days of culture).

For DRG, and Schwann cells total RNA was extracted using

the RNeasy Micro Kit (Qiagen) according to the manufacturer’s

protocol including DNase treatment; for mouse tissues total RNA

was extracted using the RNeasy Lipid Kit (Qiagen). Quality and

quantity of RNA were analyzed using a NanoDrop spectropho-

tometer. The cDNA was synthesized from 100 ng of total RNA

with the iScript cDNA Synthesis Kit (Bio-Rad Laboratories). Each

RNA sample was controlled for genomic DNA contamination

without reverse transcriptase addition into cDNA synthesis

mixture. qRT-PCR was performed in triplicate with the 26
Power Sybr Green PCR Master Mix (Applied Biosystem) in

CFX96 Real-time PCR detection system (Bio-rad). The 15 ml

PCR mixture contained diluted cDNA corresponding to 3 ng of

total RNA and 0.2 mM of each primer. Relative expression levels

were normalized to calibrator sample by using the comparative Ct

(DDCt) method and the geometric average of a set of two

housekeeping genes [40–42]. (GAPDH, b-Actin) by the Bio-Rad

CFX manager software. For each specific primers set, the

efficiency was .95% and a single product was seen on the

melting curve analysis. Specific primers for FAM126a (NM_

001191969 rattus norvegicus, NM_053090 mus musculus), beta-

actin (ACTB, NM_031144 rattus norvegicus, NM_007393 mus

musculus), Glyceraldehyde-3-phosphate dehydrogenise (GAPDH,

NM_017008 rattus norvegicus, NM_008084 mus musculus) and

Myelin Protein Zero (MPZ, NM_017027) were designed through

Beacon Designer 2.0 Software and are listed in Methods S1.

RNA In situ-hybridization of mouse brain
In-situ hybridization was performed on brains isolated from P30

C57/BL6J wild-type (WT) mice. The mice were anaesthetized

with isofluorane (Isofluorane-vet, Merial) and decapitated. Upon

sacrifice, brains were incubated in PAF 4% in PBS ON at 4uC,

cryo-protected with sequential incubations with 15% sucrose/PBS

O.N. at 4uC and 30% sucrose/PBS until submerged.

Then brains were embedded in OCT and immediately frozen

in cold isopentane. Sections (10 um) were cut by a cryostat and

mounted on glass slides (VWR International).

Sections were delimitated with DakoPen (Dako Group) washed

in PBS permeabilized with RIPA buffer two times for 10 min and

fixed in PAF 4% in PBS for 10 min at RT.

After three washes in PBS, sections were treated with an

acetylation step with 0.25% thrietanolamine and acetic anhydride.

The pre-hybridization reaction was performed for 1 h at 70uC
using the hybridization buffer containing 50% formamide/26
NaCl 150 mM, Na3Citrate 15 mM (SSC), 56Denhardt Solution,

Herring sperm DNA 500 mg/ml (Invitrogen), Yeast RNA 250 ug/

ml (Ambion).

We used a set of digoxigenin-labeled riboprobes that span

700 bp of FAM 126a transcript.

Probes were obtained from PCR amplification (primers probe 1:

mDRC sense 1: T7 TAATACGACTCACTATAGGAGATACA-

GAATTAACAGGTC; mDRC antisense1: SP6 ATTTAGGT-

GACACTATAGATGCAGACAGAGTGACGCT; probes 2:

mDRC sense 2: T7 TAATACGACTCACTATAGGGAAAGA-

CAAGAGTTCTTTAG; mDRC antisense 2: SP6 ATTTAGGT-

GACACTATAGAAATGTCAATACTTCAAACCT).

PCR products (20 mg) were purified with QIAquick PCR

Purification Kit (QIAGEN) and used to generate the sense and

antisense riboprobes (Riboprobe Combination system-SP6/T7,

Promega Corporation, DIG RNA Labeling Mix, Roche Diagnos-

tic). Probes were purified by RNA Cleanup and Concentration Kit

(QIAGEN) and measured with NanoDrop spectrophotometer.

Each riboprobe was transcribed as sense, which specifically labeled

the target mRNA, and antisense, to control for unspecific binding

or for background staining due to the endogenous alkaline

phosphatase activity of the tissue.

For the hybridization reaction, slides were incubated in

hybridization buffer with addition of 100 ng/ml of probes ON

in a humidified chamber at 70uC. The washing steps included

incubations with formamide 50%/26SSC, 0.1% Tween-20 (post-

hybridization buffer) for two times 1 h at 70uC, Subsequently the

samples were treated with Buffer B1 (Maleic acid 100 mM

pH 7.5, NaCl 150 mM, 0.1%Tween-20) blocked with 10% Fetal

Calf Serum (FCS)/B1 for 30 min at RT and incubated ON at 4uC
with anti-digoxigenin-AP antibody in 10%FCS/B1.

Slides were washed twice with B1, incubated in Tris-HCl

100 mM pH 9.5, MgCl2 50 mM, NaCl 100 mM, 0.1% Tween-20

for 30 min at RT, and finally detected with Nitroblue tetrazolium

Chloride (NBT)- 5-Bromo-4-Chloro-3-indolyl phosphate, tolui-

dine salt (BCIP).

When the colour reaction was completed, sections were washed

with 0.1%Tween-20/PBS and dried [11].

Expression analysis of the b-galactosidase reporter gene
and immunohistochemistry (IHC)

Brains were isolated from postnatal day (P) P2, P10, P30, P60

Hyccin Het mice , fixed 3 h with fixing solution (glutaraldehyde

0.2%, ethylene glycol tetracetic acid (EGTA) 100 mM, 2%

Paraformaldehyde (PAF) in PB buffer, i.e. phosphate buffer

0.12 M, pH 7.4), washed once with PB buffer and three times

with Wash Buffer (MgCl2 0.1 M, 1%, sodium deoxycholate 2%

NP-40 in PB buffer).

The tissues were embedded in 2.5% agarose in PB buffer.

Coronal sections (100 um) were cut with a microtome HM 650 V

(Bioptica), washed 3 times with Wash Buffer and with PB, and

then incubated with X-Gal solution (X-Gal 100 mg/ml, ferrocy-

anide potassium 2 mg/ml, ferricyanide potassium 1.64 mg/ml in

Wash Buffer) for 3 h (P2, P10 mice) and ON (P30, P60 mice) at

37uC.

Sections were analyzed with Neurolucida software (Micro-

BrightField) connected to a Nikon E-800 microscope via a colour

CCD camera.

For the colocalization studies, coronal sections from brains of

P30 Hyccin Het mice were cut with the microtome (1500 um) and

processed for X-Gal staining. Following the staining and the

washes, tissues were incubated in 4% PAF/PBS for 1 h at 4uC,

cryo-protected with incubation in 30% sucrose/PBS ON at 4uC,

embedded in OCT (Tissue-Tek Sakura Finetek) and stored at

280uC.

Free-floating coronal sections (40 um) were cut on a cryostat

(Leica CM1900UV), processed with 0.5% SDS/PBS for antigen

retrieval, incubated with 0.3%, H2O2 1,0% CH3OH/PBS,

washed three times in PBS, blocked with 15%/Horse Serum/

0.1% Tween/PBS (blocking solution) for 30 min at RT and

incubated with the primary antibodies diluted in blocking solution

ON at 4uC. The following day the sections were washed three

times with PBS, blocked for 30 min in blocking solution and

incubated with the secondary antibody anti-mouse Dako EnVision

for 30 min a RT in the dark. Sections were washed with PBS,

were developed with DAB (Dako Group), and mounted with

Vectashield Mounting Medium (Vector Laboratories).
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Immunofluorescence analyses
Brains were isolated from P30 C57/BL6J WT mice and fixed in

4% PAF/PBS ON at 4uC and cryo-protected with sequential

incubations with 15% sucrose/PBS O.N. at 4uC and 30%

sucrose/PBS until submerged. The tissues were hence incubated

in a 1:1 solution containing OCT and 30% sucrose/PBS for

1 hour in agitation at RT, and finally embedded in OCT.

Free-Floating sections (40 um) were cut on a cryostat, were

rinsed with PBS, incubated with 0.5 M Ammonium Chloride for

antigen retrieval, rinsed with PBS, blocked with 3% Bovine Serum

Albumin (BSA)/0.1% TritonX-100 (blocking solution) in PBS for

30 min at RT, and incubated with primary antibodies diluted in

blocking solution ON at 4uC.

Sections were washed three times with 0.1% Triton X-100/

PBS, incubated with the secondary antibodies diluted in blocking

solution 1 hour at RT, washed two times with 0.1% Triton X-

100/PBS and two times with PBS, and mounted on polysinated-

coated slides with mounting medium Vectashield.

Images were obtained using a Leica TCS SL confocal

microscope equipped with argon/He-Ne laser sources and an

HCX PL APO CS 63.061.40 oil objective. During image

acquisition, the 488 and 633 laser were set at 20% energy and

the emission range was between 500–550 and 650 and 700 nm for

Hyccin-Alexa 488 and NF-Alexa 633, respectively. The photo-

multiplier voltage gain was set to eliminate cell autofluorescence.

Single plane images were taken at the center of cell thickness.

Cell immunofluorescence studies were performed in HeLa cells

transiently transfected with a GFP-hyccin expression vector and in

cultures of rat SC and DRG sensory neurons. Cells were fixed for

15 min in 4% paraformaldehyde in PBS at RT and then

permeabilized with ice-cold methanol for 10 min at 220uC. Cells

were incubated with 5% FBS in PBS-TRITON 0.3% for 30 min

and then with the primary antibodies in a humidified box at 4uC
ON. After three washes in PBS, cells were incubated with the

secondary antibodies conjugated with Alexa Fluor 488 or 633 for

1 h. Following a PBS rinse, the coverslip (mounting with

Vectashield reagent (Vector)) and the ACLAR dishes were

observed at a confocal microscope.

Images were obtained using a Leica TCS SL confocal

microscope equipped with argon/He-Ne laser sources and an

HCX PL APO CS 63.061.40 oil objective. The photomultiplier

voltage gain was set to eliminate cell autofluorescence. Single

plane images were taken at the center of cell thickness.

Micrographs from DRG sensory neurons and primary SC were

taken with an Olympus DP-70 digital microscope camera attached

to an Olympus Provis AX-60 module fluorescence microscope

with a 406 or 1006 objective lens.

Western blot
Lysates of HeLa cells, fibroblasts, brain, sciatic nerves and

organotypic DRG cultures were prepared directly in ice cold

RIPA buffer [50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1%

NP40, 0.25% Na-deoxycholate,1 mM PMSF, 1.100 proteinase

inhibitor cocktail]. Samples were sonicated and recovered by

centrifugation (5810 R; Eppendorf) for 15 min, at 12.0006g, 4uC.

The total protein content was determined in supernatants by the

Bio-Rad Protein Assay kit (Bio-Rad); equal protein amounts were

loaded onto 12–15% polyacrilamide gel and separated by SDS-

PAGE.

Proteins were transferred onto polyvinylidene difluoride mem-

branes (Immobilon PVDF; Millipore). After the blocking reaction

(5% BSA in PBS/0.1% Tween 20), membranes were incubated for

1 h at RT with primary antibody diluted in 1% BSA/PBS. Blots

were rinsed and incubated with horseradish peroxidase rabbit anti-

goat IgG secondary antibody and visualized using the ECL

detection method (GE Health care). The sample protein signal

was normalized to the respective GAPDH signal. For peptide

competition assays, Hyccin (D-15) antibody diluted 1:500 in 1%

BSA/PBS was pre-incubated for 1 h at RT with 5 fold of the

competing Hyccin D-15 homologous peptide and centrifuged

(20,0006g for 15 min). The supernatant was applied onto a PVDF

membrane to which the HeLa cells lysate had been transblotted.

Electron Microscopy
Sciatic nerves were isolated from P2, P10, P30 and P60 Hyccin

Het mice, fixed 1 h with 2% glutaraldehyde/PB, washed and

incubated in Bluo-Gal staining solution (0.4 mg/ml Bluo-Gal,

3.1 mM potassium ferricyanide/ferrocyanide, 10 mM MgCl2,

0.12 M PB, pH 7.4) ON at 37uC After washing in PB, samples

were post-fixed for 1 hr at RT with 1% osmium tetroxide in

0.06 M sodium cacodylate buffer. Nerves were dehydrated and

rapidly infiltrated in propylene oxide and epoxy resin to minimize

the solubilization of Bluo-Gal precipitates and then embedded.

Ultrathin sections (70 nm) were performed using a Reichert

ultramicrotome (Leica Microsystems, Wetzlar, Germany), col-

lected on copper grids and not counterstained to better visualize

Bluo-Gal crystals. All the samples were analysed under a JEM-

1011 electron microscope (JEOL Ltd, Tokio, Japan) at 80 kV.

Statistical analysis
Descriptive analyses were firstly performed; quantitative data

were reported as median values with first and third quartiles (1st–

3rd q) and minimum and maximum value (Min-max). The

comparison of quantitative data in different groups of observations

was evaluated by the non parametric analysis of variance Kruskal-

Wallis test); the post-hoc analysis was made by the Dunn’s test.

All the statistical tests were two-sided and a p value less than

0.05 was considered as statistically significant. The software

‘‘Statistica’’ (StatSoft Co., Tulsa, OK, USA) was used for all the

statistical analyses.

Supporting Information

Figure S1 Immunoblot analysis of hyccin. Panel A: Total

cellular lysates of fibroblasts from controls (C) and HCC affected

individuals (Pt). Panel B: Total cellular lysates of Hela cells in the

absence (2) or presence of competing peptide (+). An antibody

against GAPDH was used as an internal control.

(TIF)

Methods S1 Specific primers for quantitative real-time
PCR of FAM126a (NM_001191969 rattus norvegicus,
NM_053090 mus musculus), beta-actin (ACTB, NM_
031144 rattus norvegicus, NM_007393 mus musculus),
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH,
NM_017008 rattus norvegicus, NM_008084 mus muscu-
lus) and Myelin Protein Zero (MPZ, NM_017027).
(DOC)
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