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Abstract

Analysis of human body microbial diversity is fundamental to understanding community structure, biology and ecology.
The National Institutes of Health Human Microbiome Project (HMP) has provided an unprecedented opportunity to examine
microbial diversity within and across body habitats and individuals through pyrosequencing-based profiling of 16 S rRNA
gene sequences (16 S) from habits of the oral, skin, distal gut, and vaginal body regions from over 200 healthy individuals
enabling the application of statistical techniques. In this study, two approaches were applied to elucidate the nature and
extent of human microbiome diversity. First, bootstrap and parametric curve fitting techniques were evaluated to estimate
the maximum number of unique taxa, Smax, and taxa discovery rate for habitats across individuals. Next, our results
demonstrated that the variation of diversity within low abundant taxa across habitats and individuals was not sufficiently
quantified with standard ecological diversity indices. This impact from low abundant taxa motivated us to introduce a novel
rank-based diversity measure, the Tail statistic, (‘‘t’’), based on the standard deviation of the rank abundance curve if made
symmetric by reflection around the most abundant taxon. Due to t’s greater sensitivity to low abundant taxa, its application
to diversity estimation of taxonomic units using taxonomic dependent and independent methods revealed a greater range
of values recovered between individuals versus body habitats, and different patterns of diversity within habitats. The
greatest range of t values within and across individuals was found in stool, which also exhibited the most undiscovered
taxa. Oral and skin habitats revealed variable diversity patterns, while vaginal habitats were consistently the least diverse.
Collectively, these results demonstrate the importance, and motivate the introduction, of several visualization and analysis
methods tuned specifically for next-generation sequence data, further revealing that low abundant taxa serve as an
important reservoir of genetic diversity in the human microbiome.
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Introduction

The human body is host to microbial communities (micro-

biome) whose abundances are estimated to exceed the number of

human cells by at least an order of magnitude [1]. These

communities are thought to influence human physiology through

processes related to development, nutrition, immunity, and

resistance to pathogens [2,3,4,5,6]. The HMP [7] was initiated

to probe the nature and extent of the microbial communities living

in and on the human body of so called ‘‘normal’’ adult donors in

an effort to better understand their role in human health and

disease, thus providing a critical baseline for future metagenomic

studies of the human microbiome.

Since the vast majority of microbes are as yet uncultured by

current techniques [8], molecular-based, culture-independent

techniques, such as the use of 16 S profiling have provided

important new insights into the diversity of the microbial world

across a variety of environments [9,10,11,12,13] including the

human microbiome [14,15,16,17]. The HMP has generated an

unprecedented scale of 16 S profiles to investigate the microbial

diversity of the human microbiome consisting of over 230 donors

and up to 18 body habitats across the oral cavity, skin, distal gut

(stool), and when applicable, vaginal body regions (Table 1).

Understanding microbial community diversity is a critical first

component for studying the human microbiome in order to

elucidate the distribution and assembly patterns of microbial

communities across body habitats and individuals and to facilitate

microbial ecological and biological studies [15,18,19]. Character-

ization of microbial community diversity from 16 S sequence

reads requires three basic steps. First, reads must be classified into

distinct taxonomic units thus creating a taxonomic profile. Next,

the taxonomic profile is assessed by quantifying richness, or

number of taxonomic units present, and finally the evenness, based

on the abundance of taxonomic units [20]. Commonly, such

profiles are generated using two general approaches based on the

sequences acquired through each 16 S rDNA sample.

The first method is based on the assignment of sequences to

a taxonomic hierarchy [21]. For example, the Ribosomal

Database Project (RDP) Classifier, uses a naı̈ve Bayesian classifier

to rapidly classify bacterial 16 S rRNA sequences into a higher-

order taxonomy (Bergey’s Taxonomic Outline of the Prokaryotes

[22]). Since a reference sequence from the database is utilized,

sequences with minor sequencing errors may still be properly

associated. However, novel organisms that have not had their 16 S

sequences included into the database may be misclassified or

considered unknown.
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The second approach is independent of taxonomic classification

and uses sequence similarity to form clusters within a predefined

percent similarity, for example, 97% similarity [21]. All reads

within each cluster are considered to be in the same operational

taxonomic unit, or ‘‘OTU.’’ OTU-based taxonomic profiles are

prone to under-clustering. This occurs when reads from the same

organism are divided into multiple taxonomic units due to

sequencing error, or when there is significant diversity of the

16 S copies within a single organism [23,24]. Since OTU-based

taxonomic profiling is database independent, two benefits of its

utilization include potentially differentiating between strains of the

same species, and generating OTUs for as yet uncharacterized

organisms. Due to the shortcomings and advantages of each

approach, both techniques offer alternative views of a sample’s

taxonomic profile, thus being both complementary and confirma-

tory. When the combined approaches are compared, resulting

inconsistent inferences may elucidate interesting aspects of the

samples being analyzed.

After generation of the 16 S profile, the inventory of the

microbial community within a sample is assessed by quantifying

the richness (defined as the number of unique taxa present), the

diversity (which combines the concepts of both richness and

evenness), or the abundance of taxonomic units that have been

accounted for by the taxonomic profile [21]. Diversity indices are

often calculated in community diversity studies as they represent

the distillation of this information into a single positive real

number [25] whose magnitude can be more easily compared.

Estimating the maximum richness Smax, in microbial commu-

nity environments, is an area of ecological and biological interest.

This information can also be used in a practical sense to generate

sequencing coverage estimates and to determine the proportion of

the microbial community that has been discovered as the

sequencing effort is progressing [26]. A commonly used visuali-

zation tool to represent the discovery rate of new taxonomic units

as samples are taken is the rarefaction curve. The x-axis of the

graph is labelled with the number of samples (or donors) that have

been observed, and the y-axis is the number of unique taxonomic

units that have been observed within the samples collected thus

far. The instantaneous slope and height of the curve inform the

analyst about both the expected discovery rate of new taxonomic

units and how many taxonomic units have been discovered at

a particular point. Smax is found at the height of the curve when

the slope is zero, i.e., the sampling saturation point. In previous

studies, due at least in part to the prohibitive cost of sampling and

sequencing, rarefaction curves based on empirical data have not

typically acquired a large number of samples. Therefore, for

communities with great diversity, the instantaneous slope of the

last point of sampling does not become zero, as not all taxonomic

units have been observed. Thus, to predict the number of

taxonomic units in the community based on a rarefaction curve

that is still climbing, the use of extrapolation is a reasonable next

step. This is a different approach than the estimation of Smax based

on the combined distribution of taxa across all samples for

a specific body site. In this latter scenario, parametric finite

mixture models or non-parametric coverage-based estimates, as

implemented in Catchall [27], would be applicable. Efforts have

been made to extrapolate the rarefaction curve with various

parametric models, such as the poisson log-normal cumulative

distribution function (CDF) [28]. In general, parametric statistical

techniques can produce more accurate, precise and robust

Table 1. Diversity indices computed on all genera-based taxonomic units.

Location Shannon Entropy Tail Smax N

Median Lower Upper Pooled Median Lower Upper Pooled Median Lower Upper

Oral

Buccal mucosa 1.664 0.783 2.541 1.999 4.324 1.485 7.953 7.738 315 172 6,592 201

Hard palate 2.098 1.068 2.695 2.338 5.747 2.911 8.422 9.344 396 202 15,442 199

Keratinized gingiva 1.588 0.463 2.495 1.938 2.973 0.818 6.914 5.907 478 146 11,910 208

Palatine tonsils 2.412 1.476 2.810 2.792 6.389 3.606 9.432 9.897 237 179 9,474 207

Saliva 2.655 1.957 3.008 2.935 8.329 4.875 11.312 11.587 332 199 7,406 183

Subgingival plaque 2.634 1.948 3.049 3.092 7.730 4.498 10.843 11.754 568 177 10,366 206

Supragingival plaque 2.589 1.803 3.002 2.958 7.026 3.560 10.227 9.894 502 155 20,313 205

Throat 2.420 1.261 2.888 2.793 6.586 3.709 9.955 11.269 389 228 13,111 198

Tongue dorsum 2.304 1.552 2.755 2.669 5.466 3.110 7.983 7.687 415 128 10,561 205

Skin

Anterior nares 1.498 0.527 2.418 2.264 3.383 1.331 7.378 12.753 609 374 7,730 173

L Antecubital fossa 2.149 0.499 3.318 2.797 8.882 2.451 24.566 31.345 501 367 15,534 89

L Retroauricular crease 0.843 0.176 2.351 1.277 2.106 0.549 8.418 10.540 504 315 5,808 193

R Antecubital fossa 1.985 0.506 3.279 2.650 8.852 2.471 22.828 29.603 432 352 2,507 94

R Retroauricular crease 0.887 0.115 2.282 1.405 2.030 0.488 9.675 11.761 486 323 21,188 199

Vaginal

Mid vagina 0.211 0.021 1.680 0.696 0.911 0.124 4.184 5.258 176 141 3,823 95

Posterior fornix 0.071 0.011 1.638 0.467 0.398 0.066 2.972 3.237 154 112 3,530 95

Vaginal introitus 0.423 0.045 1.996 1.003 1.514 0.216 4.660 6.967 170 134 8,310 86

Stool 1.663 0.412 2.615 2.062 4.137 1.050 7.231 8.513 226 154 8,504 208

doi:10.1371/journal.pone.0032118.t001
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estimates, with greater statistical power than nonparametric

methods, provided that the model fits the data correctly. When

these assumptions are valid, estimating constants for the un-

derlying distribution functions can be performed with optimization

algorithms. However, when the model is only approximate, sparse

sampling compounds the unreliability of parametric curve fitting,

resulting in overfitting and outcomes that are poorly predictive. As

a result, these techniques have not been generally recommended.

However, the scope of the HMP has provided the community with

a large number of samples from a large set of donors and a broad

range of body habitats, enabling the realistic exploration of

parametric modelling techniques. In particular, for each body

habitat rarefaction curve, values for Smax were calculated and

compared by applying these curve fitting approaches. Four well-

understood CDFs, log-normal, gamma, Pareto [29], and Fréchet

[30] were chosen for consideration in part as they are suitable for

addressing ecological distributions that may be highly skewed

towards the most dominant taxa.

The difficulty of measuring the microbial diversity in a sample is

compressing the complexity of a profile, with a multi-dimensional

representation of taxonomic abundance, into a single scalar

statistic. At the same time, the number of reads per sample for

a metagenomic sample is unlikely to have been sufficient to sample

every organism, especially when a collected sample contains a large

number of low abundant organisms, i.e., the ‘‘rare biosphere’’ [9].

Commonly used ecological diversity indices for quantifying

intrasample diversity, include the Shannon index, a measurement

of entropy and the uncertainty of the sampling outcome, and

Simpson’s diversity index, a description of the probability that

randomly drawing two reads from a sample will produce the same

taxon. In terms of application to ecological studies, each of these

indices was originally derived, or adapted from macroecology. As

such, individually they can perform well when approximating the

microbial diversity of common taxa, however each may fall short

as a single complete measure when examining the numerous low

abundant organisms that dominate the composition of many

microbial communities.

Both the Shannon and Simpson diversity indices have been

shown by Hill [31] through Rényi’s definition of generalized

entropy [32] to have similar characteristics, but differing only in

the contribution of low abundant taxonomic units to the

magnitude of the calculated statistic. Rényi unified the Shannon

and Simpson diversity indices as entropies with a parameter a, the

power to which the contribution of taxonomic abundances are

raised. a’s of 2, 1, and 0, are associated with Simpson’s index,

Shannon’s index, and the total number of species detected,

respectively. It is possible to utilize fractional a’s, eg. 0.25, to

increase the contribution of the low abundant taxonomic units to

a desired impact (Figure 1), but if their specification is arbitrary,

resultant index values may not have meaningful probabilistic or

information theoretic interpretations.

The estimated Smax is dependent on the number of taxonomic

units and their relative abundance across all samples from the site

of interest. Thus it may be expected that a strong correlation exists

between calculated diversity indices such as the Shannon index

and Smax between all samples. However, our investigations suggest

that this index was unable to capture enough of the low abundant

taxa to correlate well with the estimated Smax for many body

habitats. This finding motivated us to formulate the Tail statistic,

t, a rank-based diversity measure with a much stronger correlation

to Smax, and with intuitive characteristics matching the well-

understood standard deviation statistic. As described more

rigorously under Materials and Methods, t is the standard

deviation of the rank abundance curve had it been made

symmetric by reflection around the most abundant, or first, taxon.

The more concentrated the taxa are to a few members, the smaller

t becomes. The sensitivity of t to low abundant taxonomic units is

comparable to a Rényi entropy with fractional a, but with

a probabilistic interpretation. t consists of the number of

taxonomic units as a unit of measure and due to its similarity to

the standard deviation statistic, s, further takes advantage of

existing known properties of s such as the Chebychev’s inequality

[33]. The t statistic provides an important complement to the

study of microbial diversity as it has been derived to suit the nature

of 16 S profiles which tend to exhibit a long-tailed distribution.

These distributions reflect the nature of species abundance in

which many sequences reside in a few taxonomic units while the

majority of taxa are represented by only a few sequences. As such,

t more accurately captures the contribution of low abundant taxa

facilitating an improved ability to elucidate the nature and extent

of variation within and between individuals and body habitats over

time, a central topic of study in human microbiome research [34].

In this study, we present results of an investigation of human

microbiome diversity across habitats and individuals from 16 S

profiles generated by the HMP. First, we present the application

of parametric curve fitting techniques to estimate the maximum

number of taxa and the instantaneous discovery rates in human

body habitats. Next, we present comparisons of the Shannon,

t and Smax diversity estimates between OTU and taxonomy

(genera)-based taxonomic units, and between common and all

taxonomic units. Further, by the introduction of new statistical

analyses tuned for next generation sequencing and improved

methods to visualize and interpret their output, we not only

provide a better understanding of the diversity across body sites

and individuals, particularly through the contribution of low

abundant taxa, but we also show how various approaches to

diversity analyses complement and confirm these observations.

Results and Discussion

The Shannon diversity index and t statistic were calculated for

each body habitat and the median and 95% confidence intervals

(CIs) were recorded in Tables 1–2. The confidence intervals

around the medians highlight the variability of diversity among

individuals across body habitats. To look at the pooled diversity for

each habitat across all individuals, the same statistics were

calculated on a taxonomic distribution generated by combining

the taxonomic distributions equal-weighted by individuals. The

values for the median and 95% confidence intervals for Smax were

generated with bootstrapping and then CDF curve fitting.

The Diversity Across Body Habitats
An examination of genera and OTU-based taxonomic units

yielded largely similar results. The vaginal region had the lowest

diversity, while the skin and oral regions were largely overlapping.

Using the one-sided Wilcoxon Rank Sum Test (WRST) to test for

differences in the medians, oral and skin regions contained more

diversity than the vaginal region (oral versus vaginal, p-

value = 0.0045, skin versus vaginal, p-value = 0.0179) (Tables 1

and 2, Tables S1a–f ). The relative diversity of the stool samples

fell among the oral and skin regions using the Shannon diversity

measure, but appeared to have the greatest diversity based on t for

OTUs (Figure 2).

Although the skin and oral regions largely overlapped in

diversity, the WRST for genera and OTUs indicated that the oral

region had more diversity than skin using the Shannon diversity

measure (p-value = 0.0095). However, using the t statistic, the oral

region was not significantly more diverse than skin for both genera

Microbial Diversity across the Human Microbiome
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Figure 1. Contribution of taxa to diversity. A theoretical rank abundance curve (a PDF) is overlayed with its CDF (black) as a ‘‘Pareto chart’’. The
overlaid colored lines represent each diversity index as lower abundant taxonomic units are included. For example at ‘‘c’’, the height of each curve
represents the relative value of the index if the sample were only composed of a, b, and c. The more quickly an index curve reaches it maximum
normalized value of 1.0, the less the index is capable of resolving low abundance taxonomic units. From the graph, it can be observed that the
Shannon and Simpson diversity indices approach their saturation point more quickly than the Tail statistic or a Renyi entropy with a fractional alpha.
doi:10.1371/journal.pone.0032118.g001

Table 2. Diversity indices computed on all OTU-based taxonomic units.

Location Shannon Entropy Tail Smax N

Median Lower Upper Pooled Median Lower Upper Pooled Median Lower Upper

Oral

Buccal mucosa 1.903 0.709 3.039 2.434 7.406 2.344 16.858 36.236 1,238 875 16,795 201

Hard palate 2.432 1.390 3.160 2.816 9.215 4.047 17.322 34.390 2,171 853 15,848 199

Keratinized gingiva 1.721 0.810 2.811 2.264 3.687 1.051 11.490 25.561 945 654 13,223 208

Palatine tonsils 2.877 1.697 3.448 3.534 12.535 5.298 23.037 79.686 3,958 1,529 27,400 207

Saliva 3.143 2.498 3.682 3.599 16.276 7.829 27.130 67.358 2,673 1,437 23,728 183

Subgingival plaque 3.175 2.231 3.676 3.877 16.444 6.219 28.829 91.758 4,395 1,792 30,450 206

Supragingival plaque 3.005 1.935 3.615 3.575 13.258 5.331 24.574 75.823 6,111 1,581 27,038 205

Throat 2.830 1.349 3.370 3.408 11.485 5.425 20.861 53.181 1,570 1,158 22,531 198

Tongue dorsum 2.609 1.786 3.216 3.109 9.518 4.771 17.449 66.752 2,178 1,530 25,280 205

Skin

Anterior nares 1.656 0.762 2.694 2.532 4.583 1.715 14.190 46.318 1,350 894 17,931 173

L Antecubital fossa 2.496 0.429 3.738 3.219 11.847 3.086 49.009 107.121 1,477 1,039 25,517 89

L Retroauricular crease 0.855 0.177 2.822 1.335 2.708 0.610 15.905 35.921 1,285 800 16,752 193

R Antecubital fossa 2.143 0.487 3.746 2.982 12.340 3.185 48.603 100.726 1,337 1,031 21,389 94

R Retroauricular crease 0.873 0.117 2.421 1.501 2.450 0.583 15.601 49.117 1,410 890 23,636 199

Vaginal

Mid vagina 0.219 0.016 2.072 0.782 1.201 0.113 8.058 16.459 487 362 8,610 95

Posterior fornix 0.086 0.003 1.911 0.549 0.420 0.018 4.476 10.112 335 223 6,134 95

Vaginal introitus 0.433 0.034 2.722 1.242 1.914 0.207 12.179 25.278 635 426 10,601 86

Stool 2.583 1.072 3.849 3.561 17.259 2.944 70.542 418.358 7,010 5,414 86,652 208

doi:10.1371/journal.pone.0032118.t002

Microbial Diversity across the Human Microbiome

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e32118



Figure 2. Body habitats ordered by diversity measure. Body regions are color coded, Oral-black, Skin-red, Vaginal-green, and Stool-blue.
Subfigures a, b, and c, were computed on genera-based taxonomic units. Subfigures d, e, and f, were computed on OTU-based taxonomic units.
doi:10.1371/journal.pone.0032118.g002
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and OTUs with a= 0.05. These body region differences suggest

that skin tended to possess a significant degree of low abundant

taxa that the Shannon diversity was unable to capture. Left and

right measurements were similar in both the retroauricular crease

and antecubital fossa. These symmetrically sampled body sites

provided a useful measure of the amount of variation that can be

expected within an individual.

These results highlight how the t statistic’s assessment of low

abundant diversity could result in differences in the assertions

made of relative microbial diversity when comparing body regions.

Thus, methodologies which help to better elucidate the subtle

Figure 3. Comparison of diversity indices for median versus pooled taxonomic profiles. Simple regression lines were drawn in solid black
for each median individual versus pooled samples scatterplot. The dashed blue lines (slope = 1, y-intercept = 0) represent where a hypothetical
(median = pooled) relationship would exist if all individuals had identical taxonomic profiles. Both the OTU-based and genera-based comparisons
using the Shannon diversity index indicate only a slight and almost constant elevation of the diversity between the median individual and pooled
samples. However, t is able to capture the lengthening tail attributed to the low abundant taxa that are exclusive to certain individuals. See Table S2
for a mapping of abbreviations to habitat names. Green, red, black and blue points represent vaginal, skin, oral, and stool body regions, respectively.
doi:10.1371/journal.pone.0032118.g003
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variations of microbiome diversity are critical in understanding

how body regions support alternative microbial communities.

An examination of the 95% confidence intervals across all body

habitats reveals that the magnitude of variance of diversity

observed between individuals is often greater than the variability

of diversity at a specific body habitat across individuals. For

example, the genera-based median Shannon diversity ranged from

0.071 (posterior fornix) to 2.655 (saliva) and the 95% CIs for the

left antecubital fossa ranged from 0.499 to 3.318. t statistic median

values ranged from 0.398 (posterior fornix) to 8.882 (left

antecubital fossa), with the 95% CI for the left antecubital fossa

ranging from 2.451 to 24.566. The wide variation of both the

Shannon and t diversity measures for the left antecubital fossa

suggests that diversity in these body habitats varied significantly for

both the common and rare taxa.

The Diversity Across Individuals
The diversity across individuals for a specific body habitat

cannot be understood by looking at the median and 95% CIs

across individuals, alone. Since the diversity within a body habitat

or region is based on the number of taxonomic units that the

environment can support, these numbers cannot differentiate

whether the few (or many organisms) a site can support in one

individual, are the same organisms in another individual. As

a result, a set of individuals with low diversity at a habitat of

interest when combined as a group of individuals, may sustain

a much larger group of organisms, however mutually exclusive. To

capture the taxonomic profile of a group of individuals, a pooled

taxonomic profile was constructed by combining, in equal-weight,

the taxonomic profiles of all individuals for a specific habitat. The

diversity statistics were then computed on these combined (pooled)

profiles.

A comparison of the median diversity versus the pooled

diversity can be used to elucidate the extent to which habitats

have mutually exclusive diversity between individuals. This

mutually exclusive diversity then represents organisms that are

found in a subset of the population but not in the remainder, and

vice versa. Generally, when the taxonomic distributions of two

similar sites are combined, the measured diversity should not

increase significantly. However, if new taxa are introduced or

evenness in the distribution is increased, then the diversity of the

combined distribution will be greater than the diversity measured

individually. Since much of the mutually exclusive diversity tends

to be found in the low abundant fraction when the equal-weighted

pooling is performed, the Shannon diversity index does not

differentiate well between the median and pooled diversity. A

scatterplot of median individual diversity versus pooled diversity

was generated for both the Shannon diversity index and t on both

OTU- and genera-based taxonomic units (Figure 3 and Table S2

for abbreviation to sample mapping). A simple linear regression

line was drawn to indicate the mean ratio between pooled and

individual diversity. If all individuals held identical taxonomic

distributions, the regression line would have a slope of 1 and y-

intercept of 0, since there would be no difference between a single

median individual when compared to the collective taxa across all

individuals.

For OTU- and genera based taxonomic units, slopes of 1.01

and 0.967 were observed respectively, using the Shannon diversity

measure, misleadingly suggesting that there is little increase of

diversity between the median individual and a pooled collection of

samples from the population. However, a look at the t statistic

reveals significantly different outcomes. The slope of the regression

line for the t statistic is 9.617 and 1.768 for OTU- and genera-

based taxonomic units, respectively. In particular, for OTUs it can

be seen that the stool samples consist of significantly more

mutually exclusive diversity than other body habitats. For genera-

based taxa, the left and right antecubital fossae have the greatest

mutually exclusive diversity. The pooled-to-median ratios for both

OTU and genera-based taxonomic units reveal that the skin

samples have more mutually exclusive diversity than the oral

samples. This suggests that the taxonomic diversity in human oral

habitats is shared more closely in the human population than skin

habitats. The vaginal samples, because of their extremely low

diversity, did not exhibit significant mutually exclusive diversity

between donors, likely due to the unusual selective pressure of the

environment. This analysis reveals that systematic differences

between microbial communities do exist, however their detection

must be facilitated with the proper statistical measures, such as the

t statistic, that are sensitive to low abundant taxonomies.

Defining a Core Microbiome Across Individuals
Determining the ubiquity of taxa across body habitats is

a central component to the study of microbial community diversity

in healthy or normal individuals. In this study, we have shown that

there is high variation in diversity between individuals at the same

body habitats, a finding which confounds the determination of

common or ‘‘core’’ taxa across sets of individuals. While diversity

contributed by low abundant microorganisms will no doubt exist

in all body habitats, our analysis of pooled versus individual

diversity using the t statistic indicates that the composition of this

low abundant component will not necessarily be identical among

individuals. A naı̈ve measurement of taxonomic ubiquity will not

take into account the significance of low abundant taxa, thus

producing an oversimplified ‘‘presence or absence’’ determination

of microbiome composition. A more useful model for addressing

the conservation of taxonomic abundance across a set of samples,

in our case various individuals, must be probabilistic and

conditional.

In this study, we have defined a two parameter model for

defining common or core microbiome membership. This defini-

tion not only facilitates a probabilistic interpretation of ‘‘com-

mon’’, but also provides useful visual insights into the distribution

of taxa across a set of donors (Figure S1). The two parameters of

core membership are abundance and ubiquity. The ‘‘abundance’’

refers to the percentage of a taxon in a sample and the ‘‘ubiquity’’

refers to the percentage of samples that possess the taxon. As such,

the ubiquity is a function of the abundance. From a probabilistic

perspective, this relationship can be considered a CDF since as

abundance decreases, ubiquity increases, making it monotonically

increasing, continuous, and bounded at its limits between 0 and 1.

However, for ease of interpretation, it is plotted as a monotonically

decreasing function. Intuitively, one would expect that as the

threshold of percent abundance of a taxon in question increases,

fewer samples would be found in which this taxon exceeds that

threshold. Thus, to define a core, it would be sufficient to identify

the subset of taxa which exceed both predefined abundance and

ubiquity thresholds.

For example, an examination of the collection of 16 S profiles

from stool (Figure 4) revealed four ‘‘core’’ taxa surpassing an

abundance cut off of 0.05% and ubiquity cut off of 97.5%. The

selection of these values serves to demonstrate the presence of low

abundant taxa (found in the tail) which are simultaneously

prevalent across the sample set (ubiquitous). The three taxa at

low abundance are classified as members of the Class, Clostridia.

Of these, two can be classified to the family level (Lachnospiraceae

and Ruminococcaceae) while the classification of the third is

unknown. The fourth ubiquitous taxon found at these cut offs can

be classified to the genus level as Bacteroides. However, as evidenced

Microbial Diversity across the Human Microbiome
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by the more gradual drop off of its CDF (Figure 4), this organism

would be considered part of the ‘‘common’’ core, since its

abundance is significantly higher in a larger fraction of the total

data set.

Richness Among Individuals Predicted by Rarefaction
and Curve Fitting

To estimate the richness, Smax, of each body habitat across all

individuals, a bootstrapping approach was originally used to

generate a set of estimates for the number of taxonomic units

discovered along the rarefaction curve. A single curve for each

body habitat was derived by using the median of the discovered

taxonomic units and a saturation point, Smax, was extrapolated

with curve fitting. While curve fitting this median produced

compelling results, i.e. those with low mean squared errors, the key

drawback to this methodology was that it did not produce CIs.

These are critical for any predictive methodology, since small

changes in a curve’s shape could produce large swings in Smax. In

order to compute CIs, an alternative approach was chosen to

bootstrap the sequence of individuals multiple times, curve fit each

sequence, and then generate a set of Smax’s from which to distill

the median and 95% CIs. The total number of taxonomic

units encountered at a particular point of sequencing was divided

by the estimated value for Smax to approximate the current

percent coverage of population richness. This approach provides

a parametric alternative to the commonly used non-parametric

Good’s coverage estimator, which is simply the number of

taxonomic units sampled more than once, divided by the number

of units sampled in total [35].

A comparison of the fitness of four theoretical CDF curves (log-

normal, gamma, Fréchet, and Pareto) using a least squares

measure, indicated that for genera-based taxonomic units, the log-

normal CDF was the best fit, but for the OTU-based taxonomic

units, the gamma CDF was more appropriate. The wide 95%

confidence intervals around the Smax estimates, with the upper

bounds frequently a few orders of magnitude greater than the

median, suggested that given the variability in donor taxonomic

compositions, there was still an insufficient number of donors to

produce robust results with this methodology. The variation in the

shape of the rarefaction curves, as a result of only permuting the

order of donors sampled, indicated that the taxonomic profiles

across individuals for the same body habitat could be highly

Figure 4. Low abundance, high ubiquity taxa. This figure helps the observer to comprehend the relationship between abundance and ubiquity
when defining a core microbiome. As one would expect, increasing the abundance threshold for defining whether a sample contains a particular
taxon would reduce the percentage of samples (ubiquity) that would contain it. The lines that are presented refer to all taxa in the stool samples that
are in more than 97.5% of the samples with an abundance cutoff of 0.05%. The taxon Bacteroides (red) is both relatively highly abundant and highly
ubiquitous, so its fall off is less steep than the Clostridales shown.
doi:10.1371/journal.pone.0032118.g004

Microbial Diversity across the Human Microbiome

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e32118



variable. This observation was corroborated by the wide 95% CIs

surrounding the site medians for both the Shannon diversity and t
statistics, as discussed previously. Nonetheless, the general trend

still indicated that the skin and oral samples possess a greater

number of taxa (genera- and OTU-based) when compared to

vaginal samples, Figure 2c and 2f subfigures. For genera-based

Smax predictions, the skin region was statistically significantly

greater than the oral region (one-sided WRST, p-value = 0.03).

This was not seen before in both taxonomic and OTU calculations

for both the Shannon and t statistic. Oral and skin regions shared

the same p-values for significance indicating greater diversity when

compared to the vaginal region, as seen previously. (See Tables

S1a–f for full pairwise WRST comparisons of body regions).

An additional by-product of curve fitting is the ability to

estimate the anticipated discovery rate of new taxonomic units

upon additional sequencing. The median and 95% CIs of

taxonomic discovery rates for all sampled body habitats can be

found in Table 3. OTU-based results were generated using the

gamma CDF while the taxonomic-based results were based on the

log-normal CDF. The increase in the number of taxonomic units

and the percentage of all taxonomic units, Smax, are presented.

Note that the discovery rates are a function of N, the number of

donor samples collected thus far, as they are instantaneous rates

for the number of donors sampled to that point. These forecasts

are more dependable than Smax, because any error from

extrapolation has yet to be compounded.

For all body habitats, an additional donor sample would only

lead to a fractional percentage increase in Smax. For example, an

additional donor added to the curve for stool will lead to an

additional 10.5 OTUs being discovered. Due to the low diversity

of the vaginal microbiome, anticipated discovery rates were similar

to other body sites, even though half as many samples were

collected from the donor cohort. The left and right antecubital

fossae experienced lower sampling success rates, resulting in

a lower number of total samples and in taxonomic discovery rates

that were noticeably higher when compared to other skin sites.

The calculation of these anticipated discovery rates can be used in

human microbiome diversity studies as a rational aid in deciding

whether additional sampling of a particular body habitat is

scientifically warranted or cost effective.

The Difference between Taxonomic-based and OTU-
based Units

Detecting differences between the diversity estimated through

OTU-based and genera-based taxonomic units is expected. The

genera-based units are assigned to the genus level, whereas the

OTU-based units are considered to be proxies for species level

granularity when clustering at 97% intracluster sequence

similarity. Note, however, that the 97% similarity typically

associated with species is meant to be applied to a full length

16 S sequence, e.g., paired-end Sanger sequencing, not to

a shorter pyrosequencing read covering only 2–3 variable regions

of the 16 S gene. As a result, if a targeted variable region

contains greater genetic diversity than other portions of the

rDNA sequence, the 97% cut off may produce more OTUs than

taxonomic-based classifications such as species, depending on the

phylogeny of the bacterium. Although OTU-based taxonomic

Table 3. Expected taxonomic discover rates upon additional sampling, estimated with bootstrapping and curve fitting.

Expected Taxonomic Units Discovered Percent Increase of All Taxonomic Units

OTU Genera OTU Genera N

Median Lower Upper Median Lower Upper Median Lower Upper Median Lower Upper

Oral

Buccal mucosa 1.503 0.873 1.989 0.153 0.069 0.227 0.115 0.011 0.138 0.047 0.003 0.060 201

Hard palate 1.516 0.970 1.897 0.196 0.083 0.267 0.078 0.010 0.128 0.047 0.002 0.061 199

Keratinized gingiva 1.202 0.657 1.590 0.142 0.075 0.179 0.116 0.012 0.130 0.029 0.001 0.058 208

Palatine Tonsils 2.957 2.034 3.609 0.120 0.083 0.182 0.077 0.011 0.136 0.046 0.002 0.053 207

Saliva 2.784 1.856 3.392 0.166 0.098 0.240 0.106 0.012 0.144 0.049 0.003 0.064 183

Subgingival plaque 3.475 2.306 3.957 0.148 0.072 0.201 0.085 0.012 0.140 0.025 0.002 0.053 206

Supragingival plaque 2.930 1.910 3.865 0.130 0.073 0.189 0.057 0.011 0.136 0.024 0.001 0.052 205

Throat 2.087 1.443 2.654 0.192 0.113 0.285 0.124 0.010 0.141 0.048 0.002 0.069 198

Tongue dorsum 2.786 2.101 3.422 0.092 0.053 0.152 0.128 0.012 0.145 0.023 0.001 0.051 205

Skin

Anterior nares 2.020 0.869 2.767 0.397 0.295 0.554 0.144 0.014 0.166 0.068 0.006 0.085 173

L Antecubital fossa 4.261 0.849 7.837 0.792 0.393 1.328 0.192 0.018 0.322 0.129 0.008 0.172 89

L Retroauricular crease 1.676 0.671 2.181 0.334 0.190 0.463 0.114 0.010 0.152 0.067 0.008 0.081 193

R Antecubital fossa 3.442 1.386 7.578 0.566 0.274 1.045 0.219 0.024 0.294 0.112 0.041 0.169 94

R Retroauricular crease 2.091 0.822 3.631 0.315 0.159 0.592 0.113 0.010 0.154 0.058 0.003 0.077 199

Vaginal

Mid vagina 1.461 0.452 2.620 0.267 0.158 0.467 0.246 0.024 0.320 0.132 0.012 0.170 95

Posterior fornix 0.892 0.190 1.531 0.256 0.137 0.376 0.170 0.017 0.351 0.146 0.008 0.203 95

Vaginal introitus 2.080 0.637 3.507 0.252 0.115 0.498 0.231 0.025 0.368 0.129 0.005 0.171 86

Stool 10.502 7.608 13.401 0.104 0.060 0.146 0.143 0.013 0.158 0.044 0.002 0.053 208

doi:10.1371/journal.pone.0032118.t003
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units are more sensitive to sequencing errors, they are also more

likely to treat novel organisms properly and partition sequences

more accurately, since they do not depend on a database of

known sequences to classify against. Contrariwise, the genera-

based approach will group novel sequences together as unknown,

and it is common for a single known genus to represent a variable

number of species.

To provide a brief comparison of a few genera-to-OTU ratios,

five common genera were selected to highlight the body site

specific OTU variation which underlies each genus. Table 4

contains the expected number of OTUs per 100,000 reads for the

genus of Bacteroides, Lactobacillus, Propionibacterium, Streptococcus, and

unknown, for the oral, skin, stool and vaginal regions. The

reported ratios were normalized by sequencing depth to minimize

the impact of OTUs that may have been formed due to

sequencing error as read depth increases. Note that this is an

over correction, as one would expect that the rate of OTU

formation would be less than linear compared to the increase in

read depth. Even after this normalization is applied to make the

estimates more conservative, it can still be seen that when a genus

is dominant within a body region, it can have an OTU

composition more complex than other body regions with the

same genus present. It is also noteworthy that, of the four body

regions, stool had a significantly larger number of uncharacterized

(unknown) organisms than the oral, skin, or vaginal regions.

Examination of the one-to-many relationships between genera

and OTUs across body habitats can be visualized with the OTU-

to-Genera ratio bar chart (Figure 5). Each ratio is the number of

OTU-based taxonomic units divided by the number of genera-

based taxonomic units. For each body habitat, OTU-based and

genera-based profiles of taxonomic units were constructed using

the equal-weighted combination of each donor’s profile. Because

the read depth varied from body habitat to body habitat,

resampling was performed to make read depths consistent. The

depth of resampling used to ensure consistency was based on the

left antecubital fossa, which had the shallowest coverage (328,117

reads) of all body habitats.

The OTU-to-Genera ratio varied across the various body

habitats and regions indicating that the relationship between

OTU-based and genera-based units is neither constant nor

attributable to systematic sequencing error or classification bias

alone. Although the ratio among body habitats varied, ratios were

more consistent among body habitats of the same body regions.

Stool samples held the greatest median OTU-to-genera ratio

(27.20) while the vaginal and skin habitats revealed smaller ratios.

Within the oral region, the highest median ratios were determined

for the tongue dorsum (9.08), followed by the subgingival (8.71)

and supragingival(8.67) plaques. These results may in part be

indicative of the habitats in question as the tongue dorsum

represents the papillated surface of the tongue, while the plaque

samples represent biofilms adhered to a non-shedding hard surface

[36]. As such, these are habitats that can generate microenviron-

ments which favor aggregation and the long term association of

diverse microbial communities.

The Diversity of the Common versus all Taxonomic Units
The ‘‘common’’ taxonomic units were defined by applying a cut

off of 1% abundance to the taxonomic profiles of each sample, see

Figure S1. The same calculations for the Shannon diversity, t
statistic and Smax were performed on the filtered data and

summarized in Tables 5 and 6. The proportion of all the estimated

Smax that was considered common for the genera-based taxonomic

units had a median of 0.2365 and for OTU-based taxonomic

units, a median of 0.0726. These results underscore the long-tailed

nature of the 16 S profiles obtained from HMP data in that most

samples are dominated by a small number of taxa. This result

further suggests that certainly the most abundant genera and

perhaps the majority of human microbiome diversity has been

captured in the HMP 16 S data sets.

A scatterplot of the median estimated Smax versus the Shannon

and t statistic computed on the pooled taxonomic profiles for

both OTU-based and genera-based units on all 18 body habitats

illustrates the difference of diversity estimates using only common

or all taxonomic units (Figure 6.) After the application of the 1%

abundance filter (green), there was not a significant change in the

computed Shannon diversity indices for each body habitat when

compared to all taxonomic units (blue). This result was consistent

between OTU-based and genera-based units. However, an

examination of the t statistic revealed a stronger impact due to

the removal of the rare taxonomic units, especially for the OTU-

based taxonomic units. Computation of Spearman’s correlation

coefficient between Smax and the Shannon diversity index

resulted in the values of 0.326 (genera-based) and 0.574 (OTU-

based). The higher the correlation between the diversity index

and Smax, the better the diversity index can predict the

magnitude of Smax. In contrast, examination of the t statistic

revealed a greater impact from truncating the rare taxonomic

units. This is displayed by the downward shift of the t statistic.

Spearman’s correlation coefficient was measured as 0.552 and

0.941, for genera-based and OTU-based taxonomic units,

respectively. These scatterplots confirm the Shannon diversity

index’s inability to capture the contribution of low abundant taxa

to human microbiome diversity.

Comparing Low Abundance Diversity with the
Dominance Profile

A traditional rank abundance curve is useful for determining the

most dominant members of a sample, however the length of the

long tails of microbiome samples and their associated low heights

make them difficult to visualize. Applying a logarithmic trans-

formation to the abundance measurements along the y-axis may

ameliorate the study of the exponentially disappearing tail,

however establishing a clear visual comparison between many

samples is still difficult.

The dominance profile is introduced to help visualize and

compare the structure and diversity contained in the long tail. It is

a stacked bar plot that color codes the total taxonomic units

sampled based on their logarithm abundance. The dominance

profile was generated on the combined taxonomic profiles of the

four body regions (Figure 7a and 7b). The height of each bar plot

represents the number of taxonomic units that have been

discovered in the body region and each stacked partition

represents a range of that taxon’s abundance. For example,

Table 4. Expected OTUs per 100,000 reads represented for
the most common genera across body regions.

Genera Oral Skin Stool Vaginal
Across All
Regions

Bacteroides 18.39 41.17 2137.16 39.11 152.44

Lactobacillus 1.54 3.19 7.63 54.66 5.36

Propionibacterium 2.79 104.78 18.17 13.71 26.61

Streptococcus 33.14 7.76 9.27 15.39 20.24

Unknown 7.97 6.98 69.95 5.28 10.25

doi:10.1371/journal.pone.0032118.t004
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taxonomic units with a measured abundance greater than or equal

to 10%, 1%, 0.1%, and 0.01%, are assigned red, orange, yellow-

green and green, respectively. To make the comparison of low

abundance taxonomic units comparable between samples with

unequal sampling depths, an abundance filter was applied to all

four body regions based on the region with the shallowest

cumulative read depth (stool). This makes the lowest detectable

abundance consistent among body regions.

From an examination of the results (Figures 7a and 7b), it can

be seen that the majority of taxonomic units are present at a low

abundance for both genera-based and OTU-based taxonomic

units. For genera-based taxonomic units, the skin contains the

greatest richness compared to the other body regions. However,

a view of the dominance profile using OTU-based taxonomic

units indicates that the stool contains the greatest richness. This

confirms the unique one-to-many relationship between genera-

based and OTU-based units for stool. Furthermore, these results

demonstrate that the patterns of diversity discovered when

comparing genera to the higher granularity units represented by

OTUs, cannot be reconciled with a fixed scaling factor, or

coefficient, alone. This highlights the potential value of new

statistical tools, both visual and quantitative, that can be applied

to resolve the patterns of taxa found in the ‘‘rare microbio-

sphere’’.

Figure 5. OTU-to-Genera ratios. The median ratio of OTUs to Genera was calculated and plotted from greatest to least for each body habitat.
These medians and 95% confidence intervals were estimated with bootstrapping by resampling from the combined distribution of OTUs and Genera
to a common read depth. The common read depth chosen was the body habitat with the least read coverage, left antecubital fossa.
doi:10.1371/journal.pone.0032118.g005
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Conclusions
The breadth and depth of sampling provided through 16 S

profiles generated by the HMP has created an unprecedented

opportunity to improve assessments concerning the variability of

human microbiome diversity within and between individuals and

body habitats including advances to the methods and visualiza-

tions used to produce and view these assessments. Our study

reveals that the patterns of diversity recovered from the HMP 16 S

profiles including Smax, and the instantaneous rate of discovery of

new taxa, differ based on the granularity of the taxonomic units

(genera versus OTUs). Further, while it is possible to apply

parametric methods to the estimation of maximal taxa within

a body habitat using the HMP data sets, the choice of best curve

fitting also varied based on taxonomic granularity.

The application of standard ecological diversity indices such as

the Shannon diversity index reveals an underestimation of

diversity, since much of the richness is attributed to low abundant

taxa found in the long-tailed distribution of sampled taxonomic

abundance. By introducing the concept of the Tail statistic, t, we

demonstrate how the analysis of the human microbiome elucidates

body habitat specific characteristics which could not be detected

by observing standard ecological diversity indices alone. The

observation that different body habitats and individuals will have

characteristic and systematic differences in both richness and

evenness emphasizes the importance of quantifying these variables

and employing improved methods for visualizing these results, in

order to ultimately understand the nature of microbial community

structure and its relationship to human health.

Materials and Methods

Ethics Statement
As a part of a multi-institutional collaboration, the HMP human

subjects study was reviewed by the Institutional Review Boards at

Baylor College of Medicine under IRB Protocol H-22895, the

Washington University School of Medicine under protocol

number HMP-07-001 (IRB ID# 201105198) and at the J. Craig

Venter Institute under IRB Protocol Number 2008-084. All study

participants gave their written informed consent before sampling

and the study was conducted using the HMP Core Sampling

Protocol A. Each IRB has a federal wide assurance and follows the

regulations established at 45 CFR Part 46. The study was

conducted in accordance with the ethical principles expressed in

the Declaration of Helsinki and the requirements of applicable

federal regulations.

Computing the Tail Statistic
The Tail statistic is essentially the standard deviation of the rank

abundance curve had it been made symmetric by reflection

around the most abundant taxon, i = 1. The Tail statistic, t, is

defined as:

t~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i~2

Pr½i�|(i{1)2

s

n is the number of taxa discovered in the sample. Pr[i] is the

proportion of the ith most abundant taxa. The sum of Pr[i] from i

Table 5. Diversity indices computed on ‘‘common’’ genera-based taxonomic units.

Location Shannon Entropy Tail Smax N

Median Lower Upper Pooled Median Lower Upper Pooled Median Lower Upper

Oral

Buccal mucosa 1.413 0.512 2.278 1.740 2.187 0.535 5.073 4.743 3,647 43 20,153 201

Hard palate 1.815 0.805 2.398 2.092 3.392 1.314 5.616 5.515 59 40 9,560 199

Keratinized gingiva 1.404 0.399 2.332 1.827 1.948 0.400 5.067 4.493 52 35 12,525 208

Palatine tonsils 2.131 1.259 2.553 2.565 4.131 1.756 6.330 7.115 67 50 8,086 207

Saliva 2.308 1.645 2.746 2.713 5.018 2.575 7.560 7.964 756 55 7,012 183

Subgingival plaque 2.343 1.609 2.783 2.924 5.116 2.592 8.043 9.364 59 47 2,090 206

Supragingival plaque 2.368 1.589 2.763 2.804 5.203 2.269 7.827 8.033 44 38 2,167 205

Throat 2.156 0.943 2.606 2.627 4.328 0.890 6.794 8.344 355 65 36,106 198

Tongue dorsum 2.095 1.386 2.488 2.476 3.811 1.920 5.619 5.682 37 30 3,487 205

Skin

Anterior nares 1.301 0.398 2.095 2.046 1.623 0.427 4.292 6.096 101 52 8,922 173

L Antecubital fossa 1.499 0.229 2.672 2.481 2.783 0.300 7.660 15.626 153 100 4,651 89

L Retroauricular crease 0.670 0.000 1.978 1.210 0.667 0.000 3.747 4.955 128 57 22,355 193

R Antecubital fossa 1.472 0.208 3.009 2.475 2.323 0.305 10.141 16.991 142 112 5,444 94

R Retroauricular crease 0.677 0.000 1.876 1.282 0.671 0.000 3.561 5.186 91 62 26,787 199

Vaginal

Mid vagina 0.076 0.000 1.516 0.583 0.121 0.000 1.989 2.803 39 26 8,526 95

Posterior fornix 0.000 0.000 1.437 0.464 0.000 0.000 1.914 1.478 27 20 14,278 95

Vaginal introitus 0.115 0.000 1.433 0.632 0.157 0.000 2.233 2.958 48 30 3,731 97

Stool 1.406 0.246 2.432 1.894 2.423 0.280 5.532 6.426 61 46 4,353 208

doi:10.1371/journal.pone.0032118.t005
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= 1 to n, should equal 1, where Pr[i] $Pr[i+1], for all i. Unlike

Hill’s numbers, such as the Shannon or Simpson’s diversity indices

where the impact of low abundance taxonomic units are

dampened by the power Pr[i] is raised to, t measures the

dispersion of the ranked taxonomic abundances away from the

most abundance taxonomic unit. The value of 1 is subtracted from

each i, because 1 represents the mean of the rank abundance curve

had it been made into a symmetric distribution by reflection. See

Figure 8 for a visualization of how the t statistic is related to the

standard deviation. From the values in Figure 8, the following is

a sample calculation of t, for that rank abundance curve.

t~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:265(2{1)2z0:196(3{1)2z:::z0:007(13{1)2

q
~3:764

One of the characteristics that can be exploited by the Tail

statistic’s relationship to standard deviation is Chebyshev’s in-

equality. Chebyshev’s inequality provides a lower bound for the

proportion of the population that can be found within k standard

deviations, s, of the mean, m, independent of the distribution type.

Since the scale of t is the same as that of the standard deviation,

Chebyshev’s inequality can also be applied to estimate the number

of taxa necessary to capture a defined percentage of the

population. The t-modified Chebyshev’s Inequality is:

Pr ((X{1)§kt)ƒ
1

k2

X is the random variable which represents the measured number

of taxa in the sample. To estimate the number of taxa necessary to

capture .95% of the population, t is multiplied by k = 4.4725,

then added to 1. To capture .99% of the population, t would be

multiplied by 10 and then added to 1. Alternatively, by counting

up the number of number of taxonomic units, D, seen in a sample,

and using a previously estimated t, provides a lower bound on the

proportion of taxonomic units discovered so far.

Proportion of TaxonomicUnitsDiscovered§1{
t

D

� �2

Computing the Rarefaction Curve
Each rarefaction curve was calculated by bootstrapping the

donors and the reads from the taxonomic distribution of each

donor, based on either the genera-based or OTU-based

taxonomic unit distributions for each donor and body habitat.

To compute the median and confidence intervals of species

richness, Smax, each bootstrapped rarefaction curve was curve fit

to estimate its saturation point. Each bootstrapped rarefaction

curve thus represented an alternative sequence ordering of donors

being selected with replacement from the donor pool. This was

important because the variability in each individual’s body habitat

species richness and evenness could significantly modulate the

shape of the rarefaction curve depending on the order of when

each donor was encountered.

Table 6. Diversity indices computed on ‘‘common’’ OTU-based taxonomic units.

Location Shannon Entropy Tail Smax N

Median Lower Upper Pooled Median Lower Upper Pooled Median Lower Upper

Oral

Buccal mucosa 1.492 0.536 2.417 1.950 2.505 0.652 6.104 6.634 69 54 270 201

Hard palate 2.016 0.991 2.707 2.453 4.170 1.550 7.415 7.814 70 60 266 199

Keratinized gingiva 1.509 0.568 2.328 2.047 2.245 0.564 5.803 6.053 67 53 121 208

Palatine tonsils 2.360 1.466 2.888 3.126 5.307 2.219 8.844 14.954 106 92 156 207

Saliva 2.526 1.914 2.928 3.088 6.148 3.542 9.528 13.094 108 90 390 183

Subgingival plaque 2.527 1.839 2.953 3.501 6.762 3.128 10.461 22.275 126 105 159 206

Supragingival plaque 2.531 1.608 2.987 3.227 6.251 2.241 10.294 15.336 95 82 127 205

Throat 2.380 0.880 2.870 3.086 5.573 0.819 9.396 14.535 117 95 159 198

Tongue dorsum 2.240 1.532 2.745 2.761 4.636 2.325 7.674 8.262 56 50 267 205

Skin

Anterior nares 1.380 0.644 2.253 2.201 1.716 0.640 4.586 8.745 102 73 682 173

L Antecubital fossa 1.636 0.149 2.714 2.629 3.292 0.192 8.878 23.104 158 130 3,886 89

L Retroauricular crease 0.654 0.000 1.865 1.209 0.647 0.000 3.987 7.623 97 70 712 193

R Antecubital fossa 1.433 0.165 2.920 2.601 2.466 0.256 10.249 25.275 159 130 233 94

R Retroauricular crease 0.646 0.000 1.913 1.306 0.646 0.000 3.834 7.720 112 77 718 199

Vaginal

Mid vagina 0.078 0.000 1.786 0.631 0.122 0.000 2.638 4.184 66 35 533 95

Posterior fornix 0.000 0.000 1.750 0.529 0.000 0.000 2.452 2.302 28 20 514 95

Vaginal introitus 0.091 0.000 1.965 0.686 0.135 0.000 3.301 4.650 49 39 386 97

Stool 1.981 0.681 2.728 2.963 3.580 0.825 7.883 23.818 192 160 3,865 208

doi:10.1371/journal.pone.0032118.t006
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Let us define the number of discovered taxonomic units, t(n), (y-

axis) for each donor count, n, (x-axis). For example, if a 3rd donor

(n = 3) had been sequenced, the number of taxonomic units

discovered among the 3 donors might be 200, so t(3) = 200, where

t(n) # t(n +1). Let us define the nth donor, dn, who is a member of all

available donors, D, and a taxonomic profile, p(dn), as the

distribution of taxonomic units from dn’s body site. Choose

a donor, dn randomly with replacement from D. Then for this

additional donor, dn, sample r reads from p(dn). t(n) is then

calculated by counting up all the unique taxonomic units that have

been discovered among di where i = 1, 2, … n by looking at the

r6n reads.

Curve Fitting the Rarefaction Curve
The rarefaction curve can be thought of as a CDF, if Smax,

the maximum number of taxonomic units across the population,

is used as a normalization factor to convert the number of

discovered taxonomic units to be within the range of 0 and 1.

The CDFs of four commonly used theoretical probability

distributions (log-normal, gamma, Pareto, and Fréchet), were

fit to each rarefaction curve, see Figure S2. Fitting of the

rarefaction curve to the same probability density function (PDF)

was not attempted, because the derivative of the rarefaction

curve produced a very unsmooth result due to the variability of

donor diversity. To fit the theoretical CDF to the targeted

rarefaction curve required the optimization of each distribution’s

parameters, usually the shape and scale. Any location param-

eters were generally fixed at zero, because the rarefaction curve

starts at zero donors and zero discovered taxonomic units. In

addition to the standard distribution specific parameters, the

additional parameter Smax was also included for optimization.

The cost, or objective, function to be minimized was the root

mean square distance (RMSD) between the rarefaction curve

and the theoretical parameterized CDF multiplied by Smax. The

RMSD was chosen because it allowed for the comparison of

fitness between curve fits of unequal donor size. The R

function, optim, was used with the Nelder-Mead algorithm to

perform the optimization. To avoid the common problem with

stopping at local minima, multiple optimization runs were

performed. An initial run was performed with Smax seeded at

the number of taxa in the target sample’s distribution. After

a first Smax estimate was made, a new set of optimizations was

seeded from various distances relative to the first Smax estimate.

The set of parameters with the lowest RMSD value across all

seeded optimizations was reported.
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Figure 6. Comparison of all and ‘‘common’’ taxonomic units and their effect on the Shannon and t statistics. For both genera-based
and OTU-based taxonomic units, the Shannon diversity index and t were compared against the median estimated Smax on all (blue) and common
(green) taxonomic units. Each point in the scatterplot represents one of the 18 body habitats. There is a closer relationship between t and Smax than
for the Shannon diversity index, for both genera and OTU based profiles. The red line represents a simple regression line across all points.
doi:10.1371/journal.pone.0032118.g006
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Estimating Taxonomic Discovery Rates
The taxonomic discovery rates were estimated by using the

probability distribution function (PDF) of the CDF utilized in the

fitted curve. The log-normal and gamma distribution were

selected for the genera-based and OTU-based taxonomic units,

respectively. Since the PDF is the first derivative of the CDF, an

instantaneous discovery rate can be computed with the PDF

simply as a function of N (samples collected so far) because the

other parameters of the distribution function, i.e., shape and scale,

have already been estimated by curve fitting. The median and

95% CIs of the rates were estimated using the same bootstrapped

rarefaction curves used to estimate the median and 95% CIs for

Smax.

Description of Donor Recruitment, Sampling and 16 S
rRNA Gene Sequencing

Subjects were recruited, enrolled and sampled at two re-

cruitment centers (Baylor College of Medicine, Houston, TX and

Washington University, St. Louis, MO) as detailed in (Aagaard K,

Petrosino J, Keitel W, Watson M, Katancik J, et al. ‘‘A

Comprehensive Strategy for Sampling the Human Microbiome,’’

In preparation.). In brief, subjects between the ages of 18 and 40

years who passed a screening for systemic health based on oral,

cutaneous, and body mass exclusion criteria (see http://hmpdacc.

org/micro_analysis/microbiome_sampling.php) were eligible for

enrollment and subsequently approved by the Institutional Review

Boards of the respective recruitment centers. Samples were

obtained from 15 male or 18 female body sites (habitats) using

a common sampling protocol (see http://hmpdacc.org/doc/

HMP_Clinical_Protocol.pdf). The following body habitats were

sampled: nine oral samples (saliva, swabs from the buccal mucosa,

tongue, keratinized gingiva, hard palate, tonsils, and throat, and

sub- and supragingival plaque scraping); three vaginal samples

(swabs from the vaginal introitus, posterior fornix, and vaginal

midpoint); four skin samples (bilateral retroauricular crease and

antecubital fossa swabs); airways (both anterior nares, swabbed

and pooled); and stool (self collected by commode kit). Genomic

DNA from all samples was isolated using the Mo Bio PowerSoil

DNA Isolation Kit (http://www.mobio.com) as detailed in

(Aagaard K, Petrosino J, Keitel W, Watson M, Katancik J, et al.

‘‘A Comprehensive Strategy for Sampling the Human Micro-

biome,’’ submitted, and The Human Microbiome consortium

‘‘Mapping the human microbiota: resources from the Human

Microbiome Project,’’ in preparation, see also http://hmpdacc.

org/doc/sops_2/manual_of_procedures_v11.pdf), and subse-

quently amplified and sequenced on the Roche-454 FLX

Titanium platform according to the ‘‘HMP 16 S Protocol’’

(Jumpstart Consortium Human Microbiome Project Data Gener-

Figure 7. Dominance Profiles. These stacked bar plots help to compare the low abundant taxonomic units, which may be difficult to visualize
with rank abundance curves alone. The number of taxonomic units for each body region is represented by the height of each bar plot. The
proportions that are colored represent the relative logarithm of abundance with the color key on the left. The subpanels, a and b, represent genera
and OTUs, respectively.
doi:10.1371/journal.pone.0032118.g007

Figure 8. Relationship between the Tail statistic, t, and Standard Deviation, s. t is the standard deviation of the rank abundance curve after
reflection around the most dominant taxonomic unit, i = 1. The blue bars represent the rank abundance curve. Above each bar, the probability, Pr[i],
of the ith most dominant taxonomic unit has been labelled in italics. The natural numbers labelled in bold above the blue bars represent the rank, i, of
each taxonomic unit. The name of each taxonomic unit is labelled along the x-axis. The grey bars represent the mirror image of the rank abundance
curve. Treating i = 1of the symmetric distribution as m = 1, the standard deviation, s, is then 3.764, which also represents t for this rank abundance
curve and sample.
doi:10.1371/journal.pone.0032118.g008
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ation Working Group, ‘‘High-throughput methods for 16 S

sequencing in human metagenomics,’’ submitted, and see also

(http://www.hmpdacc.org/).

16S rRNA Sequence Data Processing and Data Set
Sequence reads were processed using a pipeline constructed by

the HMP Consortium as described in (The Human Microbiome

Consortium, ‘‘Structure, Function and Diversity of the Human

Microbiome in an Adult Reference Population,’’ submitted.). Data

from the ‘‘high stringency’’ pipeline was used in this analysis and

quality was assured with the following steps described here in brief.

For sample multiplex barcode deconvolution and 16 S primer

trimming, a one nucleotide unambiguous mismatch to the sample

barcode and up to two nucleotide mismatches to the adjacent

PCR primer were allowed, respectively. Sequences with an

ambiguous base call or a homopolymer stretch longer than eight

nucleotides were removed from subsequent analyses. The high

stringency pipeline incorporated a strategy of calculating the

average quality score within a 50 nucleotide window that was

shifted along the sequence. When the average quality score of the

window decreased to ,35, the sequence was trimmed. After

trimming, all sequences were aligned using a NAST-based

sequence aligner [37] to a custom reference based on the SILVA

[38] database of curated alignments. Sequences shorter than 200

nucleotides or that did not align to the anticipated region of the

reference alignment were removed and extraneous bases that

extended beyond the targeted variable region were trimmed.

Chimeric sequences were then identified using the Mothur

implementation of the ChimeraSlayer algorithm which was

trained to the ‘‘Gold’’ database (http://microbiomeutil.

sourceforge.net). These filtered alignments formed the data set

used for the generation of taxonomic classifications using RDP

[22].

From the read processing described above, a total of 3,044

samples (17,371,356 total reads) were analysed. The breakdown of

sample and sequencing statistics by body habitat is given in Table

S3.

Supporting Information

Figure S1 Idealized rank abundance curve with com-
mon and rare taxa labelled. The common taxa have been

defined as any taxa with abundance greater than 1% (blue). The

rare taxonomic units tend to outnumber the common taxonomic

units although their proportion of abundance is low.

(EPS)

Figure S2 Bootstrapped instance of rarefaction curve
and resultant fitted curves. This is an example of a resultant

curve fit for keratinized gingiva using OTUs for a single instance

of bootstrapping. Bootstrapping the sequence of donors was

necessary to generate a median and 95% confidence intervals for

Smax, for each body site. From this methodology, it is possible to

compare various models by looking at the Root Mean Square

Deviation (RMSD) outcomes. The smaller the RMSD, the better

the fit.

(EPS)

Table S1 Wilcoxon Rank Sum Test P-values for body
region differences. The null hypothesis is row body regions are

less than or equal to the column body regions. The alternative

hypothesis is that the row body regions are greater than the

column body regions. For example, looking at genera-based

taxonomic units for the Shannon diversity, the oral body region

had significantly greater diversity than the vaginal body region, p-

value = 0.0045 with an a of 0.05. Statistically significant

differences are highlighted in blue. P-values were not corrected

for multiple comparisons.

(DOC)

Table S2 Mapping of body habitat to abbreviations.

(DOC)

Table S3 Sampling and read depths across body
habitats.

(DOC)
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