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Abstract

5-lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we
sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma
capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a
deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO2/2 mice showed
an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal
susceptibility of 5-LO2/2 mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT
macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results
demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive
immune response during histoplasmosis.
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Introduction

Histoplasma capsulatum is a dimorphic, facultative, intracellular

fungal pathogen ingested by resident cells such as alveolar

macrophages and dendritic cells and by neutrophils when these

inflammatory cells are recruited to the site of infection. The

immune response against H. capsulatum is mediated by phagocytes,

neutrophils, and CD4+ and CD8+ T cells [1]. The clearance of the

fungus is associated with Th1-related cytokines, including IL-12,

IFN-c, TNF-a, and GM-CSF, which are essential for the

development of a protective immune response in H. capsulatum-

infected mice [2,3,4]. Fungal clearance is also associated with an

overproduction of lipid mediators, such as leukotrienes (LTs), by

phagocytes [5]. LTs are bioactive lipids derived from the 5-

lipoxygenase (5-LO) pathway of arachidonic acid (AA) metabo-

lism. The 5-LO-activating protein (FLAP) activates 5-LO that

then oxygenates AA to form LTA4 [6]. This intermediate can be

hydrolized to form LTB4 by LTA4 hydrolase or LTC4 synthase,

which catalyzes the conjugation with glutathione to form the

LTC4 that will be formed into LTD4 and LTE4, collectively

known as cysteinyl LTs (CysLTs) [7]. 5-LO metabolites are known

for their ability to function as neutrophil chemoattractants (LTB4)

and for their effects on smooth muscle contraction during asthma

(CysLTs). Currently, the relative roles of LTs in amplifying the

innate and adaptive immune responses are not well understood.

While it’s been shown that endogenous and exogenous LTs

enhance macrophage antimicrobial effector function and secretion

of pro-inflammatory molecules [5,8,9,10], other 5-LO derived

products, such as lipoxins, may limit Mycobacterium tuberculosis [11]

and Trypanosoma cruzi [12] infection. Thus, the specific role of 5-

LO products in modulating chronic fungal infection remains to be

fully understood. Among their many biological functions, LTs

stimulate leukocyte migration and activation [13], microbial

phagocytosis and killing [14,15] and the chemotactic activity for

in vitro-activated effector CD4+ and CD8+ T cells [16,17] and cd T

lymphocytes [18]. Moreover, numerous in vitro and in vivo models

have revealed a protective role for endogenous LTs, particularly

during bacterial peritonitis and tuberculosis, parasitic and HIV

infection [19]. We have recently demonstrated an important role

for LTs in the primary and secondary immune responses against

H. capsulatum [5,20]. 5-LO deficiency impairs both the recruitment

and activation of memory T cells following immunization against

H. capsulatum [20]. Moreover, we have previously shown that

pharmacological inhibition of LTs hinders host defense mecha-

nisms during H. capsulatum infection. However, due to the off-

target effects of LT inhibitors, which are associated with the partial

inhibition of LTs, the precise role of 5-LO metabolites still remains

to be determined. Here, by employing a genetic approach, 5-LO

deficient mice (5-LO2/2) were used to demonstrate the role of

endogenous LTs in histoplasmosis in vivo and in vitro. We

demonstrate that LTs play an important role in host defense

against H. capsulatum through the modulation of nitric oxide (NO)

production, phagocytosis and effector cell recruitment.
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Results and Discussion

5-LO deficiency impairs H. capsulatum clearance and
animal survival

To determine if LTs are indeed required for host defense during

H. capsulatum infection, we initially sought to investigate whether

LTs are produced in the lungs of WT sv129-infected animals. Our

results show that H. capsulatum infection induced LTB4 and

CysLTs production at 7 and 14 days after infection when

compared to uninfected mice (Figure 1). Moreover, we observed

that greater amounts of LTB4 are produced relative to CysLTs

during fungal infection. We then speculated whether the genetic

deletion of the LT-generating enzyme would affect both survival

and fungal load in murine models. Figure 2A shows that during

the 30 days of the infection, 5-LO2/2 mice exhibited 100%

mortality by day 20 whereas 100% of WT mice survived the

infection. Next, we attempted to investigate if the increased

mortality was due to higher fungal numbers in the 5-LO deficient

lung. We observed that the fungal burden of 5-LO2/2 mice was

significantly higher than WT mice at day 7 and was more

pronounced at 14 days post-infection at the site of local infection

(lung) and in the spleen (Figure 2B and 2C). Our data show that 5-

LO metabolites are key mediators involved in the control of H.

capsulatum infection by inhibiting fungal dissemination to other

organs.

LT-enhanced fungicidal activity in the lung is associated
with nitric oxide (NO) generation

NO is a key microbicidal molecule involved in the control of H.

capsulatum infection [21]. In addition, previous studies have shown

that LTs enhance NO production in macrophages infected with

protozoan parasites or macrophages stimulated with TLR agonists

[22,23,24]. We next assessed whether increased susceptibility of 5-

LO2/2 mice could be associated with lung NO production during

fungal infection. Indeed, while H. capsulatum infection increased

NO production in the lungs of WT mice at 7 days post-infection,

5-LO deficiency decreased NO production by ,30% at day 7 and

,50% at day 14 in the lungs of infected 5-LO2/2 mice as

compared to infected WT mice (Figure 2D).

The low levels of NO in 5-LO2/2 mice may be related to a

deficiency in the production of 5-LO metabolites, such as LTs and

lipoxins. The inhibition of NO synthesis by LT inhibitors or

receptor antagonists has been demonstrated previously in other

experimental models, such as T. cruzi [24], M. tuberculosis [8], and

VSV encephalitis infection [10]. The predominance of neutrophils

in the lungs of 5-LO2/2 infected mice suggests that 5-LO

products may interfere either directly or indirectly with the

synthesis of NO by neutrophils. In addition, the low levels of NO

in the lungs of infected 5-LO2/2 mice could be explained by the

predominance of neutrophils over macrophages. Macrophages are

able to produce higher amounts of NO in the presence of

inflammatory stimuli than neutrophils [25]. Therefore, our data

suggest that low levels of NO, either by the predominance of

neutrophils or through the modulation of NO metabolites by 5-

LO products, could help explain the increased susceptibility to

infection of 5-LO2/2 animals.

LT-deficiency exacerbates the inflammatory response in
the lung

To understand the increased fungal susceptibility of 5-LO2/2

mice, we examined the lungs using histopathological analysis. We

observed an intense amount of inflammatory infiltrates in the

lungs from WT infected-mice at days 7 and 14 post-infection, with

a higher recruitment of neutrophils and mononuclear cells than

the PBS-treated group (Figure 3A and B). Alternatively, lung tissue

from 5-LO2/2 mice presented with an intense leukocyte

infiltration with a predominance of neutrophils at days 7 and 14

post-infection as compared with WT mice (Figure 3A and B).

Moreover, the strong influx of neutrophils in 5-LO2/2 mice was

associated with high levels of TNF-a (Figure 3C). The intense

neutrophil recruitment observed in 5-LO2/2 mice infected with

H. capsulatum corroborates our previous findings [5]. The higher

levels of TNF-a observed in 5-LO deficient mice and the

exacerbation of neutrophil recruitment could be explained by

the opposing effects of leukotrienes and lipoxins. While LTB4

enhances neutrophil recruitment and protects neutrophils from

apoptosis, lipoxins enhance neutrophil efferocytosis by macro-

phages [26,27]. Thus, the higher neutrophil recruitment to the

lungs of 5-LO2/2 mice may be due to a lack of apoptotic cell

clearance by macrophages due to the presence of lipoxin and an

increase in apoptotic cells in the absence of LTB4. Moreover, the

exacerbated neutrophil recruitment to the lung of 5-LO deficient

infected mice may be associated with decreased levels of NO due

to the modulation of chemotactic mediators other than LTs.

Peritoneal macrophages from animals deficient in iNOS produce

increased amounts of MCP-1 by promoting increased expression

of CC chemokine receptors, which favors the efficient recruitment

of neutrophils [28].

Even though neutrophils are important for the control of H.

capsulatum infection, this cell type is known to exhibit more intense

fungistatic versus fungicidal activity [29,30,31]. Based on this

observation, we suggest that the inability of neutrophils to perform

fungicidal or fungistatic functions may be impaired due to the

absence of several factors, including LT synthesis. Mancuso et al.

[32] showed that neutrophil phagocytosis of Klebsiella pneumonia is

augmented by LTB4 and this mediator also participates in

antimicrobial host defense [33]. However, other groups have

shown that M. tuberculosis-infected 5-LO2/2 mice exhibit de-

creased neutrophil recruitment to the site of infection, decreased

NOS2 mRNA levels and no modulation of TNF-a production

[11]. The explanation for such contradictory effects may be

related to the levels of lipoxin and leukotrienes induced by H.

capsulatum and M. tuberculosis infection. The predominance or

Figure 1. LTB4 and CysLTs production in lung tissue. Enzyme
immunoassay quantification of LTB4 and CysLTs concentrations in lungs
from mice that had received either an i.t. PBS injection (uninfected) or
an i.t. infection with H. capsulatum. Data are presented as the mean 6
SEM and are representative of one of two independent experiments
(n = 6). *, p,0.05 vs. PBS.
doi:10.1371/journal.pone.0031701.g001
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reduction of lipoxin and leukotrienes during the course of infection

and the cross-talk between these mediators may explain contra-

dictory results in both models. Whether lipoxins are important for

H. capsulatum infection remains to be determined.

Endogenous 5-LO metabolites increase phagocytosis of
H. capsulatum

The effect of LTs on the enhancement of fungal host defense

could be reflected by a diminished phagocytic capability of LT-

deficient macrophages. It is known that LTs enhance phagocytosis

of both IgG-opsonized bacteria and nonopsonized targets [34,35].

Here, we determined the ability of 5-LO2/2 and WT peritoneal

macrophages (PMs) to phagocytose H. capsulatum. WT macro-

phages exhibited higher rates of phagocytosis in IgG-opsonized H.

capsulatum than for non-opsonized yeast. 5-LO deficient cells

exhibited less phagocytosis of both opsonized and non-opsonized

yeast when compared to WT macrophages (Figure 4A). These

results demonstrated that endogenously produced 5-LO products

are required for macrophage phagocytosis of H. capsulatum yeast.

Bailie et al. [9] demonstrated that the increased susceptibility of 5-

LO deficient mice during K. pneumoniae infection is associated with

a deficiency in the phagocytic and bactericidal capacity of alveolar

macrophages. Similarly, Morato-marques [35] showed that both

LTB4 and CysLTs enhance both phagocytosis and killing of C.

albicans by alveolar macrophages. In addition, exogenous LTs were

able to restore the phagocytic ability of 5-LO2/2 alveolar

macrophages infected with K. pneumoniae [14,15]. Because our

current results did not distinguish among the 5-LO products, we

performed ‘‘add-back’’ experiments in which we added LTB4 or

LTC4 to 5-LO2/2 macrophages and then measured phagocytosis.

Pretreatment with LTB4 and LTC4 restored IgG-opsonized H.

capsulatum phagocytosis by PMs from 5-LO2/2 mice in a dose-

dependent manner (Figure 4B and 4C). We did not investigate

whether LTs enhance H. capsulatum killing; however, we have

previously observed that both LTB4 and CysLTs enhance the

response to different pathogens. We demonstrated that LTB4

enhances the defense against K. pneumoniae and C. albicans in a

manner dependent on ROI secretion; depletion of L. amazonensis is

dependent on RNI generation by LTs. Because an effective

immune response against H. capsulatum is mainly dependent on

RNI production [36], we speculated that LTB4 could enhance NO

secretion, which would further deplete H. capsulatum. The

decreased NO synthesis observed in the Figure 2D reinforces

our hypothesis. Resident macrophages are strategically distributed

throughout various organs to maintain immunosurveillance

through the phagocytosis, killing, and secretion of regulatory

molecules, such as cytokines and lipid mediators. Since H.

capsulatum is a facultative intracellular pathogen, our data may

suggest that the inhibition of phagocytic ability may favor the

proliferation of H. capsulatum outside of macrophages and could

explain the increased CFU we observed in the lungs and spleens of

5-LO2/2 mice.

Figure 2. Effect of 5-LO deficiency on survival, fungal burden and NO2
2 production. (A) 5-LO2/2 and WT mice were infected i.t. with

36106 yeast H. capsulatum and survival was monitored for 30 days (n = 6). CFU numbers in lungs (B) and spleen (C) were evaluated at 7 and 14 days
post H. capsulatum infection. (D) NO2

2 levels were quantified in the supernatant of lung homogenates at different time points using a Griess reaction.
Data are expressed as the mean 6 SEM from one experiment representative of a total of two experiments (n = 6). *, p,0.05 vs. PBS; #, p,0.05 vs. WT.
doi:10.1371/journal.pone.0031701.g002
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Our results show that among all 5-LO products produced

during fungal infection, LTB4 and LTC4 improve the phagocytosis

of opsonized H. capsulatum by peritoneal macrophages.

Effect of 5-LO deficiency in recruitment of effector T cells
Previous studies have shown that LTs are important chemo-

tactic factors for CD4+ [16] and CD8+ [17] T cells and that this

recruitment depends on the expression of the BLT1 receptor.

Next, we assessed whether H. capsulatum-infected 5-LO2/2 mice

demonstrated defective leukocyte recruitment to the site of

infection. Other than the importance of innate effector mecha-

nisms that control fungal infection, a protective immune response

against H. capsulatum also depends on the activation of antigen-

specific CD4+ and CD8+ T cells [1]. We next explored the role of

endogenous LTs in the recruitment of CD4+ and CD8+ effector T

cells during H. capsulatum infection. The recruited population of

effector CD4+ and CD8+ T cells was CD44high and CD62low, and

the number of CD4+ and CD8+ T cells increased progressively

during infection in WT animals when compared with the PBS-

treated group. In contrast, 5-LO deficiency blunted T cell

Figure 3. 5-LO deficiency increases the inflammatory response in the lung. Representative lung sections from WT and 5-LO2/2 mice
infected with H. capsulatum (A). Hematoxylin-eosin staining for leukocytes (magnifications 6100) and GMS staining for yeast cells (black arrow)
(magnifications 6400). (B) Neutrophils recruitment from lung parenchyma (C) TNF-a production from homogenized lungs. Cells and cytokines were
obtained as described in the Material and Methods section from mice after i.t. injection of PBS or i.t. infection with H. capsulatum. Cells were
enumerated and identified after Rosenfeld staining, and TNF-a levels were determined by ELISA. Data are expressed as the mean 6 SEM from one
experiment representative of a total of two experiments (n = 6). *, p,0.05 vs. PBS; #, p,0.05 vs. WT.
doi:10.1371/journal.pone.0031701.g003
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recruitment to the lungs of infected 5-LO2/2 mice (Figure 5A and

5B).

Islam et al. [37] also showed that LTB4-BLT1 is a chemoat-

tractant for CD4+ and CD8+ effector and memory T cells.

Furthermore, we have shown that recruitment or activation of

memory T cells (CD4+ and CD8+) during the secondary immune

response against H. capsulatum was suppressed and was associated

with an increased susceptibility for 5-LO deficient mice [20]. To

determine whether the absence of effector T cells was due to

decreased recruitment or generation of these cells, we performed

proliferation assays using CFSE dilution of spleen cells from

uninfected WT and 5-LO2/2 mice (PBS) and H. capsulatum-

infected mice. As shown in Figure 5C, spleen cells from WT and 5-

LO2/2 PBS and H. capsulatum-infected mice proliferate in vitro

with a-CD3 and a-CD28 stimulation (polyclonal). Interestingly,

only spleen cells from WT infected mice proliferated after

stimulation with cell-free antigens (CFAgs, antigen-specific stim-

ulation). Taken together, our results suggest that the increased

mortality and CFU number in 5-LO2/2 mice may be associated

with a deficiency in the activation and proliferation of antigen-

specific T cells in the draining lymph node and the recruitment of

these cells to the site of infection. The mechanisms underlying the

role of LTs in T cell proliferation remain to be determined;

however, some possibilities include the activation of Src and Syk

kinases, which are known to be important for T cell proliferation

and are also activated by LTB4 [38].

In summary, we demonstrate that inhibition of the 5-LO

enzyme resulted in enhanced susceptibility to pulmonary fungal

infection, which is associated with lung fungal persistence,

decreased NO production, decreased phagocytic capacity and

impaired proliferation and/or activation of effector T cells. These

findings indicate that LTs are essential mediators that enhance the

innate and adaptive immune response in the context of chronic

infections such as histoplasmosis.

Materials and Methods

Mice
5-LO deficient or knockout (5 LO2/2) (129-Alox5tmlfun) mice

and strain-matched wild-type (WT) sv129 mice (6–8 weeks old)

Figure 4. 5-LO deficiency affects the ability of macrophages to phagocytose H. capsulatum. (A) PMs from WT and 5-LO2/2 mice were
incubated for 1 h with a yeast:macrophage ratio of 1:5 in the absence or presence of IgG. PMs were pretreated with LTB4 (B) and LTC4 (C) for 5 min
before the addition of opsonized H. capsulatum. Phagocytosis was calculated as described in the Material and Methods section and was expressed as
a percentage of the control. Data are expressed as the mean 6 SEM from one experiment representative of a total of three experiments (n = 6).
*, p,0.05 vs. control; #, p,0.05 vs. WT cells; & p,0.05 vs. 5-LO2/2 cells.
doi:10.1371/journal.pone.0031701.g004
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were obtained from The Jackson Laboratory (Bar Harbor, ME,

USA) and were bred in the Faculdade de Ciências Farmacêuticas

de Ribeirão Preto (Universidade de São Paulo, Brazil). All

experiments were approved and conducted in accordance with

the guidelines of the Animal Care Committee of the University.

Infected animals were kept in biohazard facilities and were housed

in cages within a laminar flow safety enclosure under standard

conditions.

Preparation of H. capsulatum and infection of mice
The H. capsulatum strain used in this study was isolated from a

human pulmonary clinical isolate at the Hospital das Clı́nicas from

Faculdade de Medicina de Ribeirão Preto (Universidade de São

Paulo, Brazil). Live mycelia were obtained by fungal culture at

25uC on Sabouraud dextrose agar (Difco, Detroit, MI, USA) for 2

months, and conidia morphology was observed. Later, mycelia

were grown in BHI blood agar at 37uC for 7–15 days to convert

them to yeast form and morphology was also confirmed.

Yeast cells were used when their viability was $90% based on

fluorescein diacetate and ethidium bromide. The infection was

performed as described previously [20]. Briefly, mice were

anesthetized with tribromoethanol 2.5%, restrained on a small

board and infected by the intratracheal route. Animals received

either 100 ml phosphate buffered saline (PBS) or 36106 viable H.

capsulatum yeast in 100 ml PBS (sublethal inoculum of H.

capsulatum).

Quantitation of fungal load in the spleen and lungs
Recovery of H. capsulatum was performed as previously

described by Sá-Nunes et al. [39]. Three serial dilution was made

and 0.2 ml of the dilution was plated on a BHI-agar-blood slant.

The fungal burden was counted after incubation at 37uC for 21

days. The results are expressed as colony forming units (CFU) per

lung and spleen.

Quantitation of NO
NO production was determined by measuring the amount of

nitrite (NO2
2) in lung homogenates, obtained as described above,

using the Greiss reaction as previously described [5].

Measurement of LTs and cytokine
Lungs were removed on days 7 and 14 post-infection to measure

LTB4, CysLTs and TNF-a. Briefly, tissue was homogenized

(Mixer Homogenizer, Labortechnik, Germany) in 2 ml of

RPMI1640, centrifuged and stored at 270uC until assayed. A

specific enzyme immunoassay was used to quantify LTB4 and

CysLTs (LTC4/D4/E4, Cayman Chemical, Ann Arbor, Mich.)

according to the manufacturer’s instructions [20]. Commercially

available ELISAs were used to measure TNF-a (R&D Systems,

Minneapolis, MN). The sensitivity of the assay was ,10 pg/ml.

Histopathologic analysis
Lungs were removed on days 7 and 14 post-infection, and

tissues were fixed in 10% formalin, embedded in paraffin, cut into

four to five mm sections and stained with haematoxylin and eosin

(HE) and Grocott’s methanemine silver (GMS). Analysis of these

sections was performed with a video camera (Leica Microsystems

Ltd., Heebrugg, Switzerland) applied to a Leica microscope DMR

(Leica, Microsystems GmbH, Wetzlar, Germany) that was

attached to a computer. Images were processed by Leica QWin

software (Leica Microsystems Image Solutions, Cambridge, UK).

Peritoneal macrophages (PMs) isolation and culture
PMs were obtained from control 5-LO2/2 and WT mice by

washing peritoneal cavities with 5 ml of ice-cold phosphate

buffered saline (PBS). The cells were centrifuged (1606g,

10 min, 4uC), resuspended in RPMI 1640 medium, and were

adjusted to 26106 cells/ml. The percentage of macrophages was

determined microscopically using a modified Rosenfeld stain,

where a typical experiment yielded ,95% macrophages. Cells

were cultured overnight in RPMI containing 10% fetal bovine

serum and were washed twice the next day with warm free serum

medium so that non-adherent cells could be removed.

Fungal phagocytosis assays
Phagocytosis assays were assessed using an adapted protocol

that was previously described [40]. Briefly, H. capsulatum yeast was

opsonized with 10% heat-inactivated specific immune serum (IgG)

for 40 min at 37uC. The serum containing specific IgG without

complement was prepared by heating to 65uC for 30 minutes in

water bath. After opsonization, yeast cells were washed and

labeled with FITC (AMRESCO) for 1 h at 37uC. IgG-opsonized

FITC-labeled H. capsulatum was further diluted in RPMI incubated

with PMs at a ratio of 1:5 (yeast cell: macrophage). After a 1 h

incubation in the dark (37uC, 5% CO2), uningested yeasts cell

were washed with phosphate buffered saline (PBS), and residual

extracellular FITC was quenched with trypan blue (250 mg/ml;

Molecular Probes) for 1 min. Fluorescence was determined with a

microplate fluorometer (485ex/535em,SPECTRAFluor Plus; Te-

can, Research Triangle Park, NC). In some experiments, cells

were pretreated for 5 min with LTB4 or LTC4 (Cayman

Chemical, Ann Arbor, Mich.) diluted in RPMI before the addition

of IgG-opsonized FITC labeled H. capsulatum. The results are

expressed as a percentage of the control.

Spleen cells isolation and proliferation assay
Spleens from infected mice (7 days post-infection) and age-

matched uninfected control mice were aseptically removed and

minced, and the released cells were washed three times in RPMI

1640 (Gibco BRL, Grand Island, USA). Cells were resuspended at

56106 cells/ml in RPMI supplemented with 10% fetal bovine

serum (Gibco BRL), penicillin (100 U/ml, Gibco BRL) and

streptomycin (100 mg/ml, Gibco BRL) and were dispensed into

96-well flat- bottom microtiter plates in 0.1 ml. For polyclonal

stimulation, a-CD3, a-CD28 (2 mg/ml, Sigma Chemical Co., St.

Louis, USA) and specific stimulation, cell-free antigens from H.

capsulatum (CFAgs) (50 mg/ml) [39] were added to wells (0.1 ml) in

triplicate and cultured for 72 h at 37uC. Splenic cell proliferation

was measured by dilution of intracellular CFSE staining as

detected by flow cytometry (FACSortTM - BD Bioscience).

Leukocytes isolated from lung parenchyma
Approximately 7 and 14 days following infection, the lung was

removed and total cells were obtained by enzymatic digestion as

Figure 5. Deficiency of 5-LO impairs T cell recruitment to the lung. Cells were obtained as described in the Material and Methods section
from mice after i.t. injection of PBS or i.t. infection with H. capsulatum. The lymphocyte population was gated for forward/side scatters and analyzed
the percentage of T cells expressing a phenotype effector (CD44high/CD62low). (A) CD4+ T cells, CD8+ T cells (B) and T cell proliferation(C). Data are
presented as the mean 6 the SEM from three experiments. *, WT and 5-LO2/2 vs. PBS; #, WT vs. 5-LO2/2. p,0.05.
doi:10.1371/journal.pone.0031701.g005
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described previously [41]. Leukocyte numbers and differential

counts for neutrophils were obtained as described previously [42].

Flow cytometric analysis
Lung leukocytes were adjusted to a concentration of 56105

cells/100 mL, and FccRs were blocked by the addition of

unlabeled anti-CD16/32. Leukocytes were stained with anti-

CD4 mAb (PerCP- Cy 5.5), -CD8 mAb(PerCP Cy.5.5), -CD44

mAb (FITC) and -CD62 L (PE) mAb murine specific and isotype

controls for 30 min at 4uC (BD Pharmingen) as previously

described [20]. The results were calculated by determining the

percentage of total CD4+ or CD8+ T cells with an effector

phenotype (CD4+CD44 highCD62 Llow/neg or CD8+CD44

highCD62 Llow/neg). T cell immunophenotyping was performed

using FACSort (BD Biosciences) and CellQuest software, and T

cell proliferation was analyzed using FACSCanto (BD Biosciences)

and FACSDiva software.

Statistical analysis
The data are presented as the mean 6 SEM. Comparisons were

performed using an ANOVA followed by the Bonferroni test by

the Prism 4.0 statistical program (GraphPad Software, San

Diego,CA). Differences in survival were analyzed by the log rank

test. Values of p,0.05 were considered statistically significant.
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