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Abstract

Recently, whole-genome sequencing, especially exome sequencing, has successfully led to the identification of causal
mutations for rare monogenic Mendelian diseases. However, it is unclear whether this approach can be generalized and
effectively applied to other Mendelian diseases with high locus heterogeneity. Moreover, the current exome sequencing
approach has limitations such as false positive and false negative rates of mutation detection due to sequencing errors and
other artifacts, but the impact of these limitations on experimental design has not been systematically analyzed. To address
these questions, we present a statistical modeling framework to calculate the power, the probability of identifying truly
disease-causing genes, under various inheritance models and experimental conditions, providing guidance for both proper
experimental design and data analysis. Based on our model, we found that the exome sequencing approach is well-
powered for mutation detection in recessive, but not dominant, Mendelian diseases with high locus heterogeneity. A
disease gene responsible for as low as 5% of the disease population can be readily identified by sequencing just 200
unrelated patients. Based on these results, for identifying rare Mendelian disease genes, we propose that a viable approach
is to combine, sequence, and analyze patients with the same disease together, leveraging the statistical framework
presented in this work.
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Introduction

One of the major gaps in our understanding of human genetic

diseases is to fully categorize their molecular basis. To date, the

underlying mutations for at least 3000 human disease loci

remain to be determined (http://www.ncbi.nlm.nih.gov/Omim/

mimstats.html). Recent developments in high throughput sequenc-

ing technologies provide an opportunity for accelerating the

disease gene identification process. In the past two years exome

sequencing, an economical alternative approach to whole genome

sequencing, has achieved ground-breaking success in identifying

genes associated with rare monogenic Mendelian diseases

(RMMDs). In these studies, a number of unrelated patients with

the same rare genetic disease were exome-sequenced to identify

coding variants [1,2].

Ng et al. [2] were the first to demonstrate the effectiveness of this

approach: by sequencing the exomes of four patients of the Miller

syndrome from three kindreds, they identified the gene DHODH as

the sole candidate. Subsequently, exome sequencing has been

successfully applied to several rare Mendelian disorders with a

monogenic component [3,4,5,6,7,8,9,10,11,12,13]. While most of

these cases were recessive diseases[1,2,4,5,6,7,8,9,11,12,13], this

approach can be also applied to dominant diseases [3,10], albeit

substantially more complex bioinformatics analyses are required.

Family history data are extremely helpful as they can narrow down

the scope of search for disease mutations from genome-wide to co-

segregation or identical-by-descent regions [4,5,6,7,10,11,12,14,15].

While exome sequencing has been widely used due to its relatively

low cost and clear interpretation of identified changes, whole

genome sequencing has been used to identify both coding and non-

coding mutations [14,15,16].

It is noted [17] that the exome sequencing for rare monogenic

Mendelian diseases (exome-RMMD) and that of exome sequencing

for complex traits (exome-GWAS) are two distinctive experimental

designs that applied to diseases with different genetic architectures:

While exome-RMMD assumes that rare Mendelian diseases are

caused by rare genetic variants with complete or very high

penetrance, exome-GWAS design does not assume that complex

traits are caused by rare variants nor complete penetrance. As a

result, exome-RMMD and exome-GWAS engage largely different

analysis approaches [17]. There have been enthusiasms and

preliminary studies regarding exome-GWAS, and some works

[18,19] exist for the statistical guidance and power considerations

for exome-GWAS, there has been a lack of statistical framework for

exome-RMMD. This work is focused only on Mendelian diseases or

complex diseases that transmit in a Mendelian fashion in families.

Notably the exome-RMMD design may apply to a disease cohort

with a large number of unrelated individuals (e.g., n = 500–1000)

with a high degree of locus heterogeneity, which resembles classical

whole-genome association studies for complex traits. The main
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difference of exome-RMMD and exome-GWAS is not in the size

of the cohort but rather on the underlying genetic architecture,

although exome-RMMD typically requires a smaller sample size.

Despite these successes on exome sequencing approach for rare

mendelian diseases, concerns remain regarding the feasibility of

extending this approach to Mendelian diseases more broadly.

First, there is a concern on publication bias. Some successful

publications on using very small number of families to find

causative genes for Mendelian diseases may not indicate that all

rare Mendelien diseases can be solved this way. We are aware that

many studies suffer from uncertainty and limited power to trim

down the final candidate gene list. Therefore, a statistical modeling

framework is needed for the guidance for study design and data

analysis.

Specifically, there is a concern on factors that can negatively

impact the utility of this approach. First, limitations of exome

capture sequencing technology result in both false negatives and

false positives in mutation detection. In the case of false negatives,

pathogenic variants may not be detected in any given sample due

to insufficient sequence coverage of some exonic and non-exonic

regions. In contrast, false positives resulting from both short read

mapping and sequencing errors are commonly observed with

current sequencing technologies. Second, distinguishing causative

mutations from other non-causative rare variants in patients is

often not straightforward. Each individual harbors hundreds of

rare and private variants [20]. Our ability to predict the functional

significance of these rare variants is still very limited. Third, most

Mendelian diseases are highly heterogeneous at both the clinical and

the molecular levels. Most genetic diseases are locus-heterogeneous

as mutations in any one of many genes can cause similar clinical

phenotypes. Often mutations in a single gene account for only a

small portion of the patients (,10%). In such cases, simply

intersecting candidate genes derived from sequencing of several

patients is unlikely to lead to identification of disease genes. It is

essential, therefore, to systematically evaluate the impact of these

factors on the statistical power of disease gene identification by

exome sequencing in order to evaluate and guide experimental

design.

In this report, we present a formal analytical framework for

exome sequencing studies for RMMDs. Our framework estab-

lishes a quantitative link between the statistical power and various

disease and experimental variables. Based on our model, we found

that underlying mutations and genes can be reliably identified by

sequencing a moderate number of patients for recessive RMMDs

with substantial locus heterogeneity. In contrast, a greater number

of patients or additional genetic mapping data is needed for

mapping genes of dominant RMMDs. Validated by computer

simulations and real data, a web analytic tool has been implemented

which can be used as a guide for both experimental design and data

analysis. Based on our results, we confirmed that a viable approach

for identifying RMMD disease genes is to combine patients with the

same clinical disease and to perform exome sequencing and

subsequent analysis together. Moreover, this approach may be

applicable to disease cohorts with extensive genetic heterogeneity,

leveraging the statistical framework presented in this work.

Results

Modeling framework
As listed in Table 1, we identified a list of relevant experimental

and disease factors which are likely to impact experimental results.

A typical exome-sequencing study for a rare Mendelian disease

consists of a number of unrelated patients (denoted by n). DNA

samples of these individuals are subjected to exome capture and

sequencing. The number of genes (denoted by M) covered by the

exome capture procedure varies depending on the capture design.

Obviously causative genes missed by the capture procedure cannot

be identified by this approach and account for upfront power loss

regardless of downstream filtering and statistical analysis. Our

framework is thus purely focused on the statistical power within the

captured region and the overall power of the exome sequencing

experiment should be actually smaller. For each sample, a

preliminary list of putative variants identified by sequencing will be

subject to filtering procedures such as excluding common variants in

the human population, low quality variants, and synonymous

changes, resulting in m candidate mutations. In cases where genetic

mapping information is available, variants mapped outside of

disease loci identified by homozygosity mapping [5,6] or linkage

analyses [15] can also be excluded, resulting in a shorter list of

candidate mutations. These m variants would include zero or one

disease-causing mutation(s) while the rest are rare or private non-

causative mutations and thus serve as a measure of level of false

positives. The probability that a disease-causing mutation is present

in the final list of m variants is denoted as the sensitivity of mutation

detection, Ps. While the present work focuses on the statistical power

assuming the m and Ps are given, an important decision faced by

investigators is to choose a proper filtering procedure: a more

stringent filtering would reduce false positive (smaller m), but at the

same time reducing the power of detecting the true disease-causing

mutations (smaller Ps). The complex relationship between m and Ps,

depending on the details of filtering and the nature of the disease, is

out of the scope of the present work.

Table 1. Experimental design and disease factors of the causative gene relevant to the statistical power of exome sequencing for
RMMDs.

Factor Symbol Type Definition
Impact to power when other
factors held constant

Sample size n Design Number of unrelated patients sequenced increase

Locus heterogeneity R Disease Proportion of sequenced patients responsible decrease

Dominant/Recessive Disease Genetic link of gene to disease. Dominant = 1, recessive = 0 decrease

Relative gene length w Disease Ratio of the length of the gene to the average gene length decrease

Sensitivity of detecting
mutations

Ps Design Probability of a true mutation in the captured region being
identified after filtering

increase

Filtering efficiency m Design Number of mutations identified after filtering decrease

Genome size M Design Total number of genes in the captured region decrease

doi:10.1371/journal.pone.0031358.t001

Statistical Power of Exome Sequencing
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While all these factors (n,M,m,Ps) are affected by experimental

design, execution, and subsequent data analysis, other factors that

are intrinsic to the underlying disease also need to be considered.

Three intrinsic factors have been identified, including the mode of

inheritance (dominant or recessive), the fraction of sequenced

patients for which a given gene is responsible (denoted by R), and

the conditional probability that a random mutation falls in the

gene, given that there is a mutation. The latter is proportional to

the gene length, referring to the total lengths of the exons of a

gene, and the background mutation rate in the gene region. For

the sake of simplicity, we use the relative gene length (denoted by

w), defined as the ratio between the candidate gene size to the

average gene size in the genome, to incorporate the probability

of having a random mutation in the gene, recognizing that a

complete treatment would also incorporate the background

mutation rate information.

As will be detailed in the Materials and Methods section, we

examined three test statistics at the gene-level, including Ta, Tr, and

Td. For a gene, the basic test statistic is the total variant count

among all sequenced patients. This statistic is denoted as Ta since it

is extended from an additive model. For a recessive model, Ng et al

[2] used the filter requiring at least two mutations in the gene. This

motivates us to define the recessive version of the statistic, Tr, as the

count of patients with at least two mutations in the gene.

Analogously, we denote the count of patients with any number of

mutations in a gene, or the collapsed count, as Td, the dominant

version of the statistic. We assume that mutations occur in a gene

randomly with a probability proportional to w, the relative

gene length. We further assume that different mutations occur

independently, i.e., there is no linkage disequilibrium between these

rare mutations. It can be derived, with a tight approximation, that

each of these statistics Ta, Tr, and Td follows a different binomial

distribution under the null hypothesis where there is no association

between the gene and the disease. The parameters of the binomial

distribution are determined by n, w, m, and M. Based on these

binomial distributions, it is appropriate to conduct exact binomial

tests and the type-I error rate and significance-level cutoff can be

determined. The p-values are subject to Bonferroni correction

controlling for the fact that a total of M hypotheses, one for each

gene, are being tested genome-wide. Upon multi-testing correction,

results obtained from theoretical calculations are consistent with

those obtained from computer simulations (Table S1).

As will be detailed described in the Materials and Methods

section, given the null distribution, the power of a binomial test

can be derived for all three statistics, Ta, Tr, and Td. Our

derivations are based on the following realistic assumptions. First,

we assume that in the recessive case exactly two causal mutations

after filtering per individual are present in the gene. This is

plausible as individuals with homozygous or compound heterozy-

gous mutations would incur severe damage to their fitness and thus

unlikely to produce offsprings with additional mutations. Similarly,

we assume that in the dominant case exactly one causal mutation

after filtering is present in one copy of a gene per individual. Based

on these assumptions, it can be derived that each of the statistics

Ta, Tr and Td, follow a different binomial distribution, with a

higher mean than the null distribution, except that under the

recessive model Ta follows a distribution closely resembling

binomial. Based on this analytical framework, the effect of all

factors listed in Table 1 on the experiment can be systematically

evaluated by theoretical power calculations, with all calculated

results being validated by computer simulations (data not shown).

We remark that all proposed test statistics, Ta, Tr and Td are

different from many test statistics proposed from rare variant

association (as reviewed by several papers including [17,21,22]).

Primarily, the proposed methods are ‘‘case-only’’ statistics since

exome-RMMD is a case-only design and individuals’ phenotypes

are largely ignored, this is fundamentally different from rare

variant association methods whose very goal is to identify the

statistical association between individuals’ genotypes and pheno-

types. For example, even though the Ta statistic resembles the

simple sum test statistic [23] and the Td statistic resembles the

collapsing method [24], these rare variant association methods

only combine the information across multiple variants in a region

for an individual, while the proposed methods further collapse

individual-level statistics into a single statistic.

All factors directly impact the power of mutation
detection

The statistical power of exome sequencing for rare monogenic

Mendelian disease is high for genes with a recessive link (versus a

dominant link) to the underlying disease, with a low genetic

heterogeneity (1/R), or of a short length (w) (Figure 1). Moreover,

high filtering efficiency (1/m), large sample size (n), and high

sensitivity of mutation detection (Ps, data not shown) can boost the

power further. In a near optimal combination, R = 1, Ps = 0.9, and

m = 5, even a sample size of two almost guarantees identification of

the gene. Below we discuss in detail the effect of individual

parameters while fixing the remaining parameters to the following

default values: R = 0.05, w = 1, Ps = 0.8, m = 300, and M = 20,000.

The justifications for these choices are given below in the

discussion of individual factors.

Genes underlying highly heterogeneous diseases can be
identified by sequencing a moderate number of patients

Most Mendelian diseases are genetically heterogeneous and quite

often mutations in one gene account for only a small fraction of

patients in a sample collection. To evaluate the impact of heterogeneity

on the power to identify disease genes, we vary the fraction of cases

caused by mutation in the same gene, R, from 0.01 to 1.

Under a recessive model, power is high with either large sample

sizes or low genetic heterogeneities (Figure 2, upper panel). For

example, when R = 1, just two patients will already render a power

of 0.41 for Tr. When R = 0.2, power of Tr is high (.0.8) for n = 40.

At very low R values, e.g., R = 0.05, sample size must be large

(n = 200) to achieve sufficient power. At the extremely low values

of R (e.g., 0.01), one would not expect to map a gene with n = 100

samples, because the expected value of Tr equals one. However it

is remarkable that n = 1000 is sufficient to maintain a modest

power (.0.5).

The sensitivity of detecting causative mutations by exome

sequencing, Ps, is also an important factor. When taking Ps to the

default value of 0.8, in some cases (Figure 2, middle panel), the

additive version of the T-statistic Ta, instead of the recessive

version of the T-statistic Tr, can be used to identify genes that are

enriched for rare changes. For large R values (i.e., R$0.1) at small

sample sizes, Ta actually can have a higher power than Tr. Tr is

more powerful for R#0.1. The reason for this counterintuitive

behavior of Tr and Ta is the following: Imperfect sensitivity of

mutation detection (e.g., Ps = 0.8) always results in some power

loss. For a causal gene with two true mutations, there is a chance

that only one mutation is not detected in an individual. While Tr

will lose one count from this individual, Ta can still collect one

count from this individual and thus the loss of power for Ta might

be smaller. Indeed, when sensitivity of detecting mutations is

perfect (Ps = 1), Tr is universally more powerful than Ta. In any

case, Tr universally has better power to detect mutation than Td

for recessive data (Figure S1).

Statistical Power of Exome Sequencing
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Many rare diseases are dominantly inherited. In this case, the

criteria for calling a gene positive in an individual are different

from that of recessive diseases, and the power for identifying

causative genes in dominant diseases is substantially lower than

that of recessive diseases. The power of detecting dominant disease

genes at various R levels is calculated and shown in Figure 2, lower

panel. Under a dominant model, power can be good for modest

sample sizes, when R is sufficiently large. For example, when

R = 0.5, power is good (.0.8) for n = 20. When R = 0.2, power is

good (.0.8) for n = 70. At very low R values, e.g., R = 0.05, even a

very large sample size (e.g., n = 1000) can only offer a power of

0.76. When R,0.05, no sample size smaller than 1000 would be

sufficient.

High sensitivity of detecting mutations is required to
identify disease genes

Sensitivity of detecting mutations in an individual is mainly

affected by three factors: the coverage of the capture technology,

the sequencing quality, and the read mapping quality. Various

capture methods have been developed to enrich the coverage of

human exons. Unfortunately, none of the current methods can

capture all exons and typically 10–15% of exons remaining poorly

covered. Since the ceiling of coverage is often beyond investiga-

tors’ control, we define the sensitivity of detecting mutations Ps as

the probability of detecting a mutation within the scope of exon

capture technology. Fortunately, with the advancements of next-

generation and possibly third-generation sequencing technologies,

higher sequence coverage and low sequencing error rates can be

achieved at an affordable cost. For heterozygous sites, it has been

estimated that about 206 coverage is required to reliably detect

both alleles. Still, it is well known that the sequencing coverage and

read mappability is not uniform across the genome and thus Ps

would fluctuate from gene to gene and within a gene. Mutations at

certain nucleotide positions may be difficult to detect for any

patient sequenced. Therefore, although an overall 97% sequenc-

ing coverage of the captured region is reported with current

technology [2], we take a somewhat conservative value Ps = 0.8 in

our discussion. Sufficient sensitivity of detecting mutations

(Ps.0.7) is required to achieve an adequate power even when

sample size is large (Figure 3). In practice, maintaining Ps$0.9 is

reasonably affordable and is sufficient to attain the desired power.

Moreover, extremely high coverage does not yield a good return

on investment.

Strict filtering of false positives has limited impact on
mapping recessive disease genes but can dramatically
improve the power of mapping dominant disease genes

The advantage of exome sequencing for RMMDs is that, based

on the assumption that the disease is caused by rare variants,

common variants can be safely filtered out using existing SNP

databases, and typically only about a few hundred mutations (m)

would remain in an individual. For reference, counting new (not

in dbSNP129, 1000 genomes, nor control exomes) NS/SS/I

(nonsynonymous, splice site, and short coding indel) variants per

patient, Ng et al identified m = 526 in their four patients Miller

syndrome sample [2], and about m = 694 (Table 1 of Ng, et al. [3])

in their 10 patients Kabuki syndrome sample [3]. Using a more

strict loss-of-function filter, they identified m = 75 for the latter

study [3]. Noting that m can be reduced further if additional

linkage mapping information is considered, we set the default

Figure 1. The calculated power of exome sequencing for rare monogenic Mendelian diseases for various parameter combinations.
doi:10.1371/journal.pone.0031358.g001

Statistical Power of Exome Sequencing
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value m = 300 and evaluate the statistical power for detecting

disease genes for the range from m = 5 to m = 500.

Here we analyze the effect of these filters on the power of exome

sequencing for RMMDs. As expected, higher filtering efficiency

(smaller m) increases the power (Figure 4). Interestingly, filtering

efficiency has a more dramatic effect for dominant models than for

recessive models. For example, reducing m from 500 to 50 for

n = 200 can only improve power from 0.769 to 0.989 for a

recessive model, but can improve power from 0 to 0.692 for a

dominant model.

It is worth noting that when m is small (m,30), there is some

power for the recessive model even for a single patient n = 1. This

result can be more dramatic if R is larger than the default of 0.05.

In fact, when R = 1 and m = 5, the power for a recessive model for

n = 1 is 0.64.

There are three main strategies to reduce m. First, m can be

reduced by combining linkage information. Second, m can be

reduced by more fine-tuning of SNP filtering, fueled by the

development of public SNP databases. Finally, m can be reduced

further by applying SNP functional annotations. For example,

Figure 2. Genes underlying highly heterogeneous diseases can be identified by sequencing a moderate sized sample. The calculated
power with varying degrees of genetic heterogeneities (R) ranging from 0.01 to 1 is shown. Upper panel: power of Tr for detecting a recessive gene;
Middle panel: power difference Tr-Ta for detecting a recessive gene; Lower panel: power of Td for detecting a dominant gene. Other parameters are
fixed to the default values: number of mutations m = 300; total number of genes M = 20,000; sensitivity of detecting mutations Ps = 0.8; and the
mutation probability equals genome-wide average w = 1. See Tables S2, S3 and S4 for more dense sampling of R values. Note that power does not
always increase monotonously with sample sizes (zigzag line patterns). The loss of power upon increase of sample size is related to discrete changes
in the significance level cutoff ta of the test and thus very small test size (not close to 0.05) as shown in Table S1, since the distribution of the test
statistic is discrete.
doi:10.1371/journal.pone.0031358.g002

Statistical Power of Exome Sequencing
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loss-of-function filters that select only premature stop-codons and

frameshifts have been productive (Ng et al [3]). Moreover,

functional prediction of variants provided by programs such SIFT

[25], PolyPhen [26], and the genomic evolutionary rate profiling

(GERP) score [27] can be applied. However, these function

predictions are not yet sufficiently accurate (Ng et al [2]; Ng et al

[3]). Finally, function prediction filtering is a double-edged sword:

while it eliminates false positive by reducing m, it can also filter out

true disease-causing mutations (reducing Ps) and thus hurt the

statistical power.

Power is low for long genes
In the calculations above we assume that the probability of a

random mutation falling in a gene is equal to the genomic average

1/M. In reality the probability of a random mutation falling in a

gene may fluctuate depending on the gene size and the local

mutation rate. For convenience, we will interpret w of a gene as

the total length of its exons.

Gene size has a strong influence on power (Figure 5). Power for

long genes is low: for a recessive model with w = 10 or a dominant

model with w$2, there is nearly no power at all. On the other

hand, there is a limited gain in power for shorter genes: there is not

much difference between w = 0.1 and w = 0.2 for both recessive

and dominant models. In practice, it should be critical to include

gene size for calculating P-values, as illustrated below.

Re-analyses of published data
We tested whether our framework can help guide both

experimental design and data analysis in recently published

exome sequencing studies [2,3]. Exome sequencing was conducted

to investigate Miller syndrome, a recessive disorder, for four

patients from three kindreds (Ng, et al. [2]). The relevant

parameters were m = 526, M = 17,000, Ps = 0.97, and n = 3. This

is a sufficiently powered design: the retrospective power calculated

with these parameters would be 0.99 (using the Tr statistic) for

discovering a gene of average length and no locus heterogeneity

(R = 1). Using the actual data from this study, we estimate that w

would be 0.736 as the average length of proteins in the CCDS

2008 (20090327), the target exome capture set, is 538 aa, and the

identified gene DHODH encodes a 396 aa protein. As a result, the

calculated p-value would be 3.261026, more significant than the

p-value of 1.561025 reported (Ng, et al. [2]). Therefore, analysis

under our framework is consistent the study design and the data

analysis of Ng, et al. [2], but gives more quantitative details.

Exome sequencing is less-powered for dominant diseases. As

indicated from the model, lowering the level of false positives

Figure 3. High sensitivity of detecting mutations is required to achieve a useful power. The power for varying degrees of sensitivities of
mutation detection, ranging from 0.1 to 1 is shown. Other parameters are fixed to the default values: number of mutations m = 300; total number of
genes M = 20,000; genetic heterogeneity R = 0.05; and the mutation probability equals genome-wide average w = 1. See Tables S5 and S6 for more
dense coverage of sensitivities of mutation detection.
doi:10.1371/journal.pone.0031358.g003

Statistical Power of Exome Sequencing
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(small m) is the key for identifying mutations underlying dominant

diseases. This is consistent with data presented in a study in which

exome sequencing was conducted for 10 unrelated individuals with

Kabuki syndrome, a dominant disorder (Ng et al [3]). After allele

frequency based filtering using dbSNP, 1000 Genome projects, and

control exomes, an average of 694 candidate genes per patient were

identified (Table 1 of Ng, et al. [3]). They found that seven out of the

10 patients carry rare variants in the MLL2 gene. However, since

MLL2 is about ten times the average gene size, this observation

(Td = 7) is actually not statistically significant (p = 0.007 before

Bonferroni correction). When a stringent loss-of-function filter was

applied, the false positive rate is reduced by nine fold with each

individual having an average of 75 mutations. As a result, the p-

value for observing seven out 10 patients carrying rare variants in

MLL2 become 6.9861025 and is statistical significant. Interestingly,

MUC16 was considered as a ‘‘likely false positive due to its extremely

large size’’ although all 10 patients carried rare mutations in this

gene (Ng, et al. [3]). Indeed our analysis confirmed this claim: due to

the large coding region size (14,507 aa), the p-value for finding

mutations in MUC16 in 10 out of 10 patients is still not significant

even before Bonferroni correction. In other words, using p-values of

the Td statistic, MUC16 should be ranked lower than MLL2 even

though more individuals carry MUC16 mutations.

The data analysis of exome sequencing experiment can be more

challenging than merely filtering of variants using existing SNP

databases. In fact, Ng, et al. [3] developed a post hoc ranking scheme

for candidate genes. They first assign case scores to patients based

on their phenotypes and functional prediction scores to individual

variants, and then rank the candidate genes by the summation of

case scores and variant scores. A more rigorous analysis of exome

sequencing data should be under a formal statistical framework, and

our work provides a start toward this direction.

Discussion

Exome and whole genome sequencing of patients are becoming

a major approach for unlocking the molecular basis of unchar-

acterized human rare Mendelian disease loci. In this report, we

have identified various disease and design factors that influence the

statistical power of this approach. An analytical framework that

quantitatively links these factors to statistical power has been

established. This model is validated by computational simulation.

As expected, the statistical power of identifying disease genes is

affected by both experimental conditions as well as intrinsic

features of the diseases. Importantly, based on our model, for

recessive Mendelian diseases, the vast majority of disease genes

can be readily identified when a moderate number of patients with

the same disease are sequenced and analyzed together. This is true

even when the heterogeneity of the disease is high. For example, in

the case of recessive disease, a power of 0.89 can be reached for

Figure 4. Strict filtering of false positives has limited impact on recessive diseases but dramatically reduces the power of detecting
dominant disease genes. The power for varying degrees of filtering efficiencies, ranging from 5 to 500, is shown. Upper panel: power of Tr for
recessive data; Lower panel: power of Td for dominant data. Other parameters are fixed to the default values: genetic heterogeneity R = 0.05; total
number of genes M = 20,000; sensitivity of detecting mutations Ps = 0.8; and the mutation probability equals genome-wide average w = 1. See Tables
S7 and S8 for more dense coverage of filtering efficiencies.
doi:10.1371/journal.pone.0031358.g004
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identifying a gene responsible for as little as 5% of the disease

population by sequencing 200 unrelated patients. In contrast, the

power for dominant diseases is substantially lower where sequencing

of more than 1000 patients is needed to achieve a comparable

power. Our result is significant since it indicates that the molecular

basis for the vast majority of uncharacterized recessive disease loci

can be resolved using the exome sequencing approach.

Our framework can provide guidance for both experimental

design and data analysis. In general, proper combination of

sufficient sample size, capture sequencing coverage, cutoff for

variants identification, stringency of variants filtering, and

inclusion of genetic mapping information are important to

maximize the success of exome sequencing experiments. However,

strategies used to tackle recessive versus dominant disease are quite

different. In the case of recessive disease, the key factor is the

sample size. Based on our model, genes underlying highly

heterogeneous recessive diseases can be identified by sequencing

a moderate number of patients. In contrast, since the Tr statistic,

counting the number of individuals with $2 mutations is already

quite effective for recessive diseases, reducing false positive

mutations by aggressive allele frequency filters and bioinformatic

filtering have only a minor impact on improving power. In the

case of dominant diseases, the key factor is to reduce the number

of candidate variants. Both aggressive filters and genetic mapping

should be implemented to maximize the exclusion of variants in

order to improve the power. In contrast, although positively

correlated, increasing sample size has limited impact on the power

for highly heterogeneous dominant diseases. Other than variant

filtering and sample size, a common factor important for

experimental design is the underlying heterogeneity of the disease.

To increase power, it is highly desirable to minimize heterogene-

ity. This may be achieved by grouping patients based on their

clinical phenotype. In addition, reiterating the analysis by

excluding samples with already identified causative mutations

can also be informative. An often overlooked but potentially

confounding factor to be considered during data analysis is the

length of the gene. As genes with large size incur more rare

variants by chance, it is important to adjust the statistical

significance of findings based on gene size. To facilitate the

ranking of putative disease genes, the binomial test p-values

proposed in our report can be calculated for each candidate gene,

which provides a unified metric to rank genes similarly to what is

used in Genome-wide Association Studies (GWAS) analyses. To

facilitate experimental design, statistical power estimation, and p-

value calculation, an online calculator has been developed and can

be accessed at http://exomepower.ssg.uab.edu.

Our results show that, for rare monogenic Mendelian diseases,

it would be feasible to apply the exome-sequencing approach to

discover causative genes even when a substantial level of genetic

heterogeneity exists among patients. This can be achieved by

Figure 5. Power is low for long genes. The power for varying degrees of relative mutation probabilities, ranging from 0.1 to 10 times the genome
average is shown. Upper panel: power of Tr for recessive data; Lower panel: power of Tr for recessive data. Other parameters are fixed to the default
values: number of mutations m = 300; genetic heterogeneity R = 0.05; total number of genes M = 20,000; and sensitivity of detecting mutations
Ps = 0.8. See Tables S9 and S10 for more dense coverage of filtering efficiencies.
doi:10.1371/journal.pone.0031358.g005
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conducting rigorous statistical tests that can evaluate the statistical

significance of identified mutations present in a small portion

of a relatively large collection. Therefore, a key to identifying

genetically heterogeneous rare Mendelian disease genes is to

collect large samples of patients and analyze the sequence data

together. As patients with mutations in individual disease genes are

rare, it will be more efficient and powerful to combine samples

with the same disease from multiple collections for sequencing. In

effect, the study of rare disease is not unlike the study of common

diseases in which investigators form large consortiums to achieve a

sufficiently powered sample size. Given a sufficient number of

samples, the lack of extended family data, a major bottleneck for

linkage-based disease gene mapping approaches, does not pose a

substantial problem for exome sequencing.

Admittedly, in this work we adopted a simple statistical

framework. Real RMMD exome data analyses often involve in

applications of a number of filters. There are several directions

where a more advanced statistical framework could be estab-

lished. First, the current framework assumes there is only a single

mutation filter. In real data analysis there is often an array of

filters, each with a different set of criteria, that are applied in

combination. It is an interesting question how to best combine

these filters and adjust the p-values accordingly. Second, the

current framework adopts simple mutation count statistics. It

may be useful to take into account the strengths of different types

of mutations and the phenotypic differences among patients,

such as the weighted sum statistics [28] and the post hoc score

developed by Ng et al [3]. Third, explicit modeling of disease

heterogeneity, either phenotypic or genetic, should be explored

as well. Fourth, the proposed test for recessive diseases simply

requires that at least two mutations are present in a same gene, as

haplotype information of these mutations are typically unavail-

able. It is possible, with improved genotype and haplotype calling

algorithms or longer sequencing reads, that haplotype informa-

tion can be estimated or observed, and thus one can improve the

recessive test by requiring two mutations to be on different

chromosomes. Fifth, mutation filters may be applied based on

allele frequencies. Our discussion was mostly focused on strict

filters which assume that disease-causing mutations are not

present in any of healthy individuals. While this is likely true for

dominant diseases and very rare recessive diseases, it may not be

true for rare recessive diseases with a moderate prevalence, in

which case mutations may be present in healthy individuals in

heterozygous state. In that case, filters based on a certain allele

frequency cutoff may be more appropriate. Sixth, software tools

predicting variants’ pathogenicity such as PolyPhen2 [26], SIFT

[25], and MutationTaster [29] are often used. The statistical

properties of these filters may be studies in future research.

Seventh, while this work is primarily focused on exome

sequencing, the main results are also applicable to the analysis

of the genic portion of whole genome sequencing for rare

diseases [15]. Finally, many successful discoveries of disease-

causing genes of RMMD by exome sequencing capitalize on the

rich information on family information. For example, rare

recessive diseases often run in highly inbred families in which

patients often carry a common homozygous mutation. While our

model is designed for exome sequencing of unrelated individuals

of rare Mendelian diseases, it offers insights into two factors that

may explain the high rate of success of familial exome

sequencing: This would be a special case with zero genetic

heterogeneity (R = 1). Also, very strict filtering criteria requiring

disease causing mutations to be homozygous can be used,

resulting very small m.

Materials and Methods

Setup of the framework
An exome-sequencing study for a rare disease consists of n

unrelated patients. Suppose m mutations survive rigorous filtering,

scattered among a total of M candidate genes. For simplicity we

assume that the number of surviving mutations is the same for

each individual sequenced patients. In practice the number will

vary between individuals but the variation is likely small. The raw

data collected is an n-by-M count matrix, C, in which element Cij is

the number of mutations at gene j for individual i. Xij is the coding

of genotype at gene j for individual i. Under a recessive model,

X r
ij~I(Cij§2), where I(x) is the indicator function taking 1 if x is

true, and 0 otherwise, and the superscript r denotes the recessive

model. Under the dominant model, X d
ij~I(Cij§1), and the

superscript d denotes the dominant model. There is no additive

model for Mendelian diseases, but for the sake of completeness,

the genotype coding for an additive model is X a
ij~Cij . As in most

association studies, we are interested in the statistic Tj~
P

i

Xij for

gene j, as it aggregates information across multiple patients. There

are three versions of the T-statistics, Tr, Td, and Ta, for recessive,

dominant, and additive models, respectively.

Type-I error rate and significance-level cutoff
We focus our discussion on single gene based test and consider

one gene of interest, namely, gene j, at a time. Under the null

hypothesis, gene j is not associated with the disease, and all m

mutations identified after filtering are random non-causal muta-

tions. We first assume that gene j is of average length and the

conditional probability of each of the m mutations landing on gene j,

given that there is a mutation, is p~
1

M
. This is obviously simplistic

and we will provide treatment for different gene length in later

discussion. As a result, the mutation count of gene j, given that

there are total m mutations, follows a binomial distribution:

Cij*Bin m,
1

M

� �
. We remark that this is not a hypergeometric

distribution as mutations can land on the same gene multiple times.

Since we only focus on a single gene at a time and omit the subscript

j in the following discussions. For a typical exome sequencing project

for a Mendelian disease after rigorous filtering, m is much smaller

than M and thus 1{
m

M
&1. It can be shown that X d

i for a

dominant model is a Bernoulli random variable with p&
m

M
, and

X r
i for a recessive model is a Bernoulli random variable with

p&
m(m{1)

M2
and these approximations are very tight (see

Document S1). Therefore, the dominant-version of the T-statistics is

Td~
Xn

i~1

X d
i*Bin n,

m

M

� �
:

Similarly, the recessive-version of the T-statistics follows

Tr~
Xn

i~1

X r
i*Bin n,

m(m{1)

M2

� �
:

Moreover, the additive-version of the T-statistics is

Ta~
Xn

i~1

X a
i*Bin nm,

1

M

� �
:

.

Statistical Power of Exome Sequencing

PLoS ONE | www.plosone.org 9 February 2012 | Volume 7 | Issue 2 | e31358



In reality the probability of a random mutation falling on a gene

may fluctuate depending on its size and its local background

mutation rate. Assume a gene with a probability p that is w times of

the genomic average to carry a mutation, i.e., p~
w

M
, we can use

M 0~
M

w
and the above derivations still apply if we substitute M

with M9.

Based on the above derivations, an exact binomial test can be

implemented where the score cutoff ta of a test statistic T for a

given significance level a is set to be ta~min t F tð Þ§1{ajf g,
where F 0ð Þ is the binomial cumulative distribution function of T.

Since we are considering a total of M potential hypotheses, one for

each gene, a multiple testing correction is required. We adopt the

Bonferroni correction in the present work, where the significance

level is set to be a0~a=M. Notice that the binomial distribution is

discrete and thus for a fixed a0, the cutoff ta0 can be a stepwise

function of the sample size n. This explains the non-continuous

nature of the power curves in the Figures 2, 3, 4, and 5.

Power calculation
For a gene with a recessive link, for a patient, we assume that

there are exactly two mutations, one on each chromosome, in the

gene of interest. There is a probability R that the gene carries these

two mutations. When the gene carries the two mutations, there is a

probability Ps to discover either of them. Therefore, the

distribution of the number of mutations under a recessive model,

ci, would be a ‘‘trinomial’’ distribution:

Pr(ci~0)~

Pr(ci~1)~

Pr(ci~2)~

(1{R)zR(1{Ps)
2

2RPs(1{Ps)

RPs
2

:

The distribution of the recessive version of the T-statistic for a

recessive gene is

Tr
r ~

Xn

i~1

I ci§2ð Þ*Bin(n,RPs
2),

where the superscript r stands for recessive genetic model and the

subscript r stands for the recessive version of the T-statistic. The

distribution of the dominant version of the T-statistics for recessive

gene is:

Tr
d~

Xn

i~1

I ci§1ð Þ*Bin n,RPs
2z2RPs 1{Psð Þ

� �
:

The distribution of the additive version of the T-statistic

Tr
a~

Pn
i~1

ci follows an extension of the binomial distribution,

which we call the ‘‘trinomial distribution’’:

Pr Tr
a~k

� �
~
Xn

i~0

n

i

� �
n{i

k{2i

� �
qipk{2i 1{p{qð Þnzi{k

,

where p~Pr ci~1ð Þ~2RPs(1{Ps), and q~Pr(ci~2)~RPs
2.

Throughout this work, we used this exact formula in our power

calculations. As a note, this distribution can be approximated by a

normal distribution when n is large, just like a binomial:

Tr
a*N 2qzp,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1{p)z4q(1{p{q)

p� �
.

For a gene with a dominant link, we assume that there is exactly

one mutation on our gene of interest. For a patient, there is a

probability R that the gene carries this mutation. When the gene

carries the mutation, there is a probability Ps to discover it.

Therefore, the distribution of the number of mutations under

a dominant model would be ci*Bin 1,RPsð Þ, and the distri-

bution of the additive version of the T-statistics and the

distribution of the dominant version of the T-statistics are equal:

Td
d ~Td

a ~
Pn
i~1

ci§1ð Þ~
Pn
i~1

ci*Bin(n,RPs). The recessive ver-

sion of the T-statistics Tr, however, has zero power for detecting

dominant variants.

The above discussions are focused on the contribution to the

disease from single genes. In reality there could be J disease-

causing genes g1,:::,gJ , each gj with a certain power Pj being

identified by exome sequencing. As a result, the power of

identifying any of them will be the Ptotal~1{ P
J

j~1
1{Pj

� �
.

Web Resources
Online Exome Power Calculator: http://exomepower.ssg.uab.

edu

Supporting Information

Figure S1 The power difference of Tr-Td for recessive
data for varying degrees of genetic heterogeneities (R-
values) ranging from 0.01 to 1. Other parameters are fixed to

the default values: number of mutations m = 300; total number of

genes M = 20,000; sensitivity of detecting mutations Ps = 0.8; and

the mutation probability equals the genome-wide average w = 1.

(EPS)

Table S1 The empirical type-I error rates of Tr, Ta, and
Td by computer simulations. Different combinations of

sample sizes (n) and sensitivities of mutation detection (Ps) are

explored. In each experiment m = 500 mutations are generated over

M = 20,000 genes with the null distribution. The empirical type-I

error is defined as the proportion of experiments when statistics T is

greater than the cutoff determined by the Bonferroni-corrected

a~0:05 significant level (a0~2:5|10{6), over the total of 1,000

experiments. It is clear that the type-I error rates are well-controlled

in all cases (the small number of cases when the type-I error rates is

greater than 0.05 are highlighted in bold), many are even too

conservative due to the discrete nature of the binomial test.

(DOC)

Table S2 The calculated power of Tr for detecting a
recessive gene with varying degrees of genetic hetero-
geneities (R) ranging from 0.01 to 1. Other parameters are

fixed to the default values: number of mutations m = 300; total

number of genes M = 20,000; sensitivity of detecting mutations

Ps = 0.8; and the mutation probability equals the genome-wide

average (w = 1).

(DOC)

Table S3 The power difference of Tr-Ta for recessive
data for varying degrees of genetic heterogeneities (R-
values) ranging from 0.01 to 1. Negative numbers are

highlighted in bold. Other parameters are fixed to the default

values: number of mutations m = 300; total number of genes

M = 20,000; sensitivity of detecting mutations Ps = 0.8; and the

mutation probability equals the genome-wide average w = 1.

(DOC)

Table S4 The power of Td for dominant data for
varying degrees of genetic heterogeneities ranging from
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0.01 to 1. Other parameters are fixed to the default values:

number of mutations m = 300; total number of genes M = 20,000;

sensitivity of detecting mutations Ps = 0.8; and the mutation

probability equals the genome-wide average w = 1.

(DOC)

Table S5 The power of Tr for recessive data for varying
degrees of sensitivities of mutation detection, ranging
from 0.1 to 1. Other parameters are fixed to the default values:

number of mutations m = 300; total number of genes M = 20,000;

genetic heterogeneity R = 0.05; and the mutation probability

equals the genome-wide average w = 1.

(DOC)

Table S6 The power of Td for dominant data for
varying degrees of sensitivities of mutation detection,
ranging from 0.1 to 1. Other parameters are fixed to the

default values: number of mutations m = 300; total number of

genes M = 20,000; genetic heterogeneity R = 0.05; and the

mutation probability equals the genome-wide average w = 1.

(DOC)

Table S7 The power of Tr for recessive data for varying
degrees of filtering efficiencies, ranging from 5 to 500.
Other parameters are fixed to the default values: genetic

heterogeneity R = 0.05; total number of genes M = 20,000;

sensitivity of detecting mutations Ps = 0.8; and the mutation

probability equals the genome-wide average w = 1.

(DOC)

Table S8 The power of Td for dominant data for
varying degrees of filtering efficiencies, ranging from 5
to 500. Other parameters are fixed to the default values: genetic

heterogeneity R = 0.05; total number of genes M = 20,000;

sensitivity of detecting mutations Ps = 0.8; and the mutation

probability equals the genome-wide average w = 1.

(DOC)

Table S9 The power of Tr for recessive data for varying
degrees of relative mutation probabilities, ranging from
0.1 to 10 times of the genome average. Other parameters

are fixed to the default values: number of mutations m = 300;

genetic heterogeneity R = 0.05; total number of genes M = 20,000;

and sensitivity of detecting mutations Ps = 0.8.

(DOC)

Table S10 The power of Td for dominant data for
varying degrees of relative mutation probabilities,
ranging from 0.1 to 10 times of the genome average.
Other parameters are fixed to the default values: number of

mutations m = 300; genetic heterogeneity R = 0.05; total number of

genes M = 20,000; and sensitivity of detecting mutations Ps = 0.8;

and the filtering efficiency m = 300.

(DOC)

Document S1 Proofs of claims.
(DOC)
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