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Abstract

Background: The spread of infectious diseases in wildlife populations is influenced by patterns of between-host contacts.
Habitat ‘‘hotspots’’ - places attracting a large numbers of individuals or social groups - can significantly alter contact
patterns and, hence, disease propagation. Research on the importance of habitat hotspots in wildlife epidemiology has
primarily focused on how inter-individual contacts occurring at the hotspot itself increase disease transmission. However, in
territorial animals, epidemiologically important contacts may primarily occur as animals cross through territories of
conspecifics en route to habitat hotspots. So far, the phenomenon has received little attention. Here, we investigate the
importance of these contacts in the case where infectious individuals keep visiting the hotspots and in the case where these
individuals are not able to travel to the hotspot any more.

Methodology and Principal Findings: We developed a simulation epidemiological model to investigate both cases in a
scenario when transmission at the hotspot does not occur. We find that (i) hotspots still exacerbate epidemics, (ii) when
infectious individuals do not travel to the hotspot, the most vulnerable individuals are those residing at intermediate
distances from the hotspot rather than nearby, and (iii) the epidemiological vulnerability of a population is the highest
when the number of hotspots is intermediate.

Conclusions and Significance: By altering animal movements in their vicinity, habitat hotspots can thus strongly increase
the spread of infectious diseases, even when disease transmission does not occur at the hotspot itself. Interestingly, when
animals only visit the nearest hotspot, creating additional artificial hotspots, rather than reducing their number, may be an
efficient disease control measure.
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Introduction

The spread of infectious diseases strongly depends on how

habitat characteristics shape patterns of between-host interactions

[1,2]. In particular, habitat heterogeneity influences patterns of

between-individual contacts and hence, disease dynamics [1,3].

For example, ‘‘habitat hotspots’’, sites that attract individuals or

social groups over long distances, can be visited by a large subset of

a population. Around hotspots, between-individual contact rates

often increase in frequency, which amplifies disease transmission.

In humans, schools and working places are typical examples of

hotspots and have been shown to accelerate the spread of measles,

influenza and SARS [4,5,6]. Thus, limiting transmission at

hotspots has become a promising strategy for mitigating epidemics

(e.g., influenza [7]) although the efficiency of such strategies also

depends on the role hotspots plays relative to other sources of local

transmission (e.g., influenza [6,7])

In wild animal populations, high quality feeding spots (e.g., fruit

trees), breeding sites, waterholes or sleeping sites can exacerbate

direct physical contacts. Empirical and theoretical studies on the

epidemiological importance of habitat hotspots have mainly

focused on how the spatial aggregation of animals favors disease

transmission at the hotspot itself [8,9]. For example, the

aggregation of wild boar at watering sites significantly increases

the transmission of tuberculosis-like lesions [8]. However, inter-

individual contacts may not always significantly increase at the

hotspot itself. This is for example the case of habitat hotspots that

some animal species only visited occasionally, such as some

mineral licks [10,11]. Also, animals present at the same time at a

particularly large hotspot may not be close enough to each other to

transmit infectious diseases. This is the case of large forest clearings

[12,13] or large waterholes. Finally, species such as primates and

ungulates might avoid defecating in hotspots of high food

resources, limiting the transmission of fecal-oral parasites at

hotspots [14,15].

When disease transmission does not occur at the hotspot, it can

still occur at a certain distance from the hotspot. This

phenomenon has received little attention so far. Specifically,
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infective contacts may be observed when infectious individuals

travel to the hotspot and cross the territory of susceptible

individuals and, reversely, when susceptible individuals cross the

territory of infectious individuals. This second type of transmission

may be prominent when the disease reduces the mobility of sick

individuals (i.e., sickness behavior [16,17,18]). For example, in

humans, sick individuals often stay home, which alters disease

dynamics [19,20]. Sick wild animals also commonly reduce their

rate of search for food or water [21]. Such transmission may

particularly apply to parasites that can survive in the environment

(e.g., gastrointestinal parasites) for which the spatial overlap of the

home ranges of sympatric hosts favors transmission [22].

To investigate these transmission mechanisms, we developed an

agent-based model exploring patterns of disease spread in a large

closed population composed of territorial social groups, in which

one or more hotspots influence group movement patterns, but

where direct disease transmission at the hotspot itself is negligible.

Our hypothesis is that terrestrial animals necessarily cross

conspecifics’ home ranges on their way to a hotspot, which

modifies the contact network of the population and may

subsequently alter disease transmission. We assumed that

between-group disease transmission can occur both between

groups having neighbouring territories and between groups

travelling to a hotspot and groups whose territories are crossed

en route. We also assumed that only groups which territory lies

within a certain distance from the hotspot (further referred as

‘‘radius of attraction’’) can visit it, and that their visitation rate

decreases as this distance increases.

The relationship between the radius of attraction and the

disease dynamics was then investigated under two scenarios: i)

when groups including sick individuals do not travel to the hotspot,

and ii) when these groups still travel to the hotspot. The first

scenario corresponds to the case of virulent parasites that can

strongly decrease the mobility of infected individuals, such as

Ebola virus in western lowland gorillas [23], whereas the second

scenario applies to pathogens that do not strongly modify the

behavior of their host, such as some gastro-intestinal macro-

parasites and bacteria [24]. Under both scenarios, we investigated

the relationship between the disease attack rate and the hotspot

radius of attraction, identified the groups in the population that

have the highest risk of infection and explored the relationship

between the number of hotspots and the magnitude of an

epidemic.

Methods

General characteristics
The model has a 51651 lattice structure, where each cell of the

lattice corresponds to a group’s territory. We assumed disease

transmission can occur between each group and its eight

neighbours (Fig. 1). We use Ni to denote the list of indices of the

eight neighbours of group i. Initially, a single habitat hotspot is

placed at the center of the lattice. All groups are assumed to

include ten individuals. At each daily time step, each group either

visits the hotspot or stays in its territory. The probability Pvisit ið Þ of

a visit by group i is a decreasing function of the Euclidean distance,

di, between the group’s territory and the hotspot. We assume that

all groups gain the same benefit from visiting the hotspot and that

the travel cost is proportional to di, leading to:

Pvisit(i)~max 0,Pmax| 1{
di

R

� �� �

where Pmax is the probability of a visit for the eight groups directly

neighbouring the hotspot, and R is the hotspot radius of attraction.

Groups occupying cells that are farther from the hotspot than R

never visit it.

When a group visits the hotspot, it follows a Biased Random

Walk from its home cell to the hotspot (BRW [25]) and returns to

its home cell on the same day. The length of each step of the BRW

(denoted S) is held constant and the direction of the step is

consistently biased towards the hotspot during the approach to the

hotspot and towards the group’s home cell during the return from

the hotspot. Each turning angle is randomly drawn from a normal

distribution N (0, s2), where s is a standard deviation parameter.

The list of groups residing in cells encountered along each BRW to

the hotspot is recorded. Groups travel to the hotspot and come

back within a single time step.

At each time step, each group interacts with (i) groups

occupying neighbouring cells (neighbour-neighbour contact), and

(ii) if the group travels to the hotspot, all of the groups it encounters

along the BRW (traveler-resident contact).

Disease dynamics
We model infectious disease dynamics using a simple stochastic

susceptible-infectious-removed (SIR) epidemic model, with one-

day time steps. Each individual moves independently through the

three states: Susceptible (at risk of contracting the disease),

Infectious (capable of transmitting the disease), or Removed

(recovered or dead). Susceptible individuals can be infected by

infected individuals from either its own group or other groups. The

latter can occur during neighbour-neighbour contacts or traveler-

resident contacts.

The local transmission probability Pi is defined as the per-time-

step probability that a susceptible individual in group i is infected

by an infectious individual from its own group or a neighbouring

group. Let Ii denote the number of infectious individuals in group

i. The probability that the focal individual is infected by at least

one of the infectious individuals in its own group is 1{ 1{Pwð ÞIi ,

where Pw is the within-group transmission probability from an

infected individual to a susceptible individual of the same group.

Likewise, the probability of a susceptible individual being infected

by an infectious individual from one of the eight neighbouring

groups is 1{ P
j[Ni

1{PBð ÞIj , where PB is the between-group

transmission probability from an infected individual to a

susceptible individual of a neighbouring group. Combining these

two sources of infection, the local transmission probability is given

by

Pi~1{ 1{Pwð ÞIi | P
j[Ni

1{PBð ÞIj

� �

The per-time-step probability of becoming infected during

transit to a hotspot PH1
depends on the number of infectious

individuals Ic in each group c encountered en route and the PT

‘‘travelling’’ probability of transmission during one of these

transient contacts between a resident and traveling group.

Specifically, during a one-day trip to a hotspot, the probability

that a susceptible individual in the group is infected along the way

is given by

PH1
~1{ P

c[BRWi

1{PTð ÞIc

where BRWi denotes the list of indices of the groups encountered

by group i as it travels to and from the hotspot.

Disease Transmission around Habitat Hotspots
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In a second version of the model, infected groups are assumed

to travel to the hotspot. Transmission from infected travelers to

susceptible residents encountered en route can then occur. In this

case, the per day probability that a susceptible individual in group i

is infected by a traveler depends on the numbers of infected

individuals in each of the groups that travels through the territory

of i en route to the hotspot, and is given by

PH2
~1{ P

m[PTi

1{PTð ÞIm

where PTi denotes the set of groups passing through i’s territory.

At the end of each time step, each infected individual is

removed with probability c. We assume that no transmission

occurs between groups travelling to the hotspot simultaneously.

Model versions
We explored two versions of the transmission model. In the

‘‘Sick-stay’’ model, groups that included at least one infected

individual – infected groups – were assumed to stop travelling to

the hotspot; in the ‘‘Sick-travel’’ model, infected groups continue

to travel to the hotspot as if uninfected. In the Sick-stay model,

disease transmission between travelers and residents can only

occur from an infected resident to a susceptible traveler, while in

the Sick-travel model, transmission can be bi-directional.

We also considered models with multiple hotspots. A specified

number of hotspots are randomly placed on the lattice, and

groups visit only their nearest hotspot (according to Pvisit, described

above).

Initial conditions
At the beginning of each simulation, all individuals were

susceptible. Epidemics were started with a single infected

individual. Unless stated otherwise, the first case was introduced

into one of the eight groups adjacent to the hotspot. At each time

step, the number of infected and removed individuals (and groups)

was recorded until no individual in the population was infected,

which indicated the end of the epidemic. For each parameter

combination, we ran 1000 simulations.

For all simulations, the recovery rate c was set to 0.1, the

maximum probability of a visit to the hotspot, Pmax, was set to 0.1,

and the BRW step length S was set to 0.25 (i.e., 1/4 of the distance

between the center of neigbouring group’s territories). We also

assumed that the within-group transmission probability, Pw, was at

least ten times higher than the between-group transmission

probabilities (PB and PT).

Figure 1. Model schematic. The hotspot is located at the center of a 51651 lattice. All other cells correspond to a group’s territory. Groups with at
least one infected individual are considered infected, indicated in dark grey. A 969 section of the lattice depicts the SIR transmission dynamics among
individuals that are either in the same group or neighbouring groups (bottom). Groups follow Biased Random Walks (BRW) during their daylong trips
to the hotspot (top right). Transmission is possible between a travelling group and the groups residing in cells traversed en route to the hotspot.
doi:10.1371/journal.pone.0031290.g001
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The model was implemented in Delphi 7 (Borland Software

Corporation, 2002). Table 1 summarizes parameter definition and

values, and a sample run of the model is shown in Video S1.

Results

Epidemiological impacts of transmission rates and
location of first case

The attack rate (proportion of groups becoming infected

following a single disease introduction) generally increases with

the hotspot radius of attraction R, and the traveler-resident

transmission probability PT (Fig. 2). This occurs whether or not

infected groups are assumed to travel during infection (Fig. 2 and

Fig. S1 in supplemental materials). As predicted by percolation

theory [26], the attack rate also increases with both the within-

group transmission parameter PW and the between-group

transmission parameter PB. Interestingly, the highest impact of

the hotspot radius of attraction on the attack rate was observed for

intermediate values of PW and PB. For low values of PW and PB,

inter-group disease transmission primarily occurred between

travelling and resident groups and was often not sufficient to

sustain an epidemic. For high values of PW and PB, the disease

always percolated, even in the absence of the hotspot. For

intermediate values of PW and PB, groups infected en route to the

hotspot then stochastically triggered small outbreaks around their

territories. The epidemiological impact of the hotspot was

amplified by this interaction between traveler-resident transmis-

sion and neighbour-neighbour transmission.

In both models, the attack rate decreased as the distance

between the hotspot and the point of disease introduction

increased (Fig. 3). The greater this distance, the lower the

probability that a group visiting the hotspot encountered the group

initially infected. The Sick-travel model yields higher attack rates

than the Sick-stay model, particularly for groups ranging at

intermediate distances between the location of the first disease case

and the hotspot.

Group-specific epidemiological risk
In the Sick-travel model, groups ranging closer to the hotspot

exhibited higher probabilities of infection (Fig. 4 and Fig. S2 in

supplemental materials), since their territories are crossed by large

numbers of infected groups travelling to the hotspot (Fig. S4a).

The relationship is more complex in the Sick-stay model: groups

ranging at intermediate distances from the hotspot experience the

highest risks of infection (Fig. 4 and Fig. S3 in supplemental

materials). In this case, hotspot-mediated infection occurs only

from infected residents to susceptible travelers. Groups ranging

close to the hotspot travelled more often, but encountered only a

small number of potentially infected groups. Groups ranging far

from the hotspot encountered larger numbers of groups when

visiting the hotspot, but did so only rarely. Thus groups ranging at

intermediate distances experienced the greatest number of

potentially infective contacts with resident groups encountered

en route to the hotspot (Fig. S4b). When epidemics occur, the

difference in spatial pattern of disease spread observed between

the models is insensitive to the parameter values (Fig. S2 and Fig.

S3).

The fact that groups ranging at an intermediate distance from

the hotspot display a higher number of potentially infective

contacts can easily be understood using a simple mathematical

model. Indeed, the expected number of groups encountered by a

group i visiting the hotspot, per time unit, can be assumed to be

approximately proportional to Pvisit and to the territory-hotspot

distance di:

EH (i)!Pvisit di

!Pmax di{
di

2

R

 !
:

This approximation holds as long as di is large or the turning angle

is low. The derivative of this second-order polynomial has a

maximum in R=2.

Second, we assessed the epidemiological impact of the hotspot

on groups that never visit it because they range at a distance larger

than R from the hotspot. For both models, when PB is high enough

to allow some between-neighbour transmission, the attack rate for

these groups was found to be larger than expected under a model

with no hotspot (R = 0) (Fig. 4). Stochastic, local between-group

transmission events allow the spread of the disease beyond the

radius of attraction. Groups that never visit the hotspot are thus

indirectly impacted by the hotspot.

Finally, outside of the radius of attraction, disease spreads as

expected for a lattice model [27] whereas inside the radius of

attraction, disease spread rapidly among the groups, with no

apparent spatial structure.

Number of hotspots
For both models, the relationship between the number of

hotspots and the attack rate is bell-shaped (Fig. 5). For a low

number of hotspots, adding new hotspots increases the fraction of

the population ranging within the radius of attraction of these

hotspots and, thereby, increases the overall attack rate. Beyond a

certain number of hotspots, however, all groups are already

attracted by at least one hotspot on the landscape. Under the

assumption that these groups travel exclusively to the nearest

hotspot, adding more hotspots decreases the distance travelled by

the groups and the number of infective contacts they can have en

route, and thereby lowers the attack rate.

Discussion

Spatial features of the landscape such as habitat hotspots can

profoundly influence the spread of infectious diseases [28,29]. Our

model extends previous studies focusing on transmission at the

Table 1. Overview of processes and parameters of the model.

Parameter Value

Population structure

Number of groups 2601

Group size 10

Hotspot travel characteristics

R: Hotspot radius of attraction 0–35

Pmax: Visit probability for groups located next to the hotspot 0.1

S: Step length of the Biased Random Walk (BRW) 0.25

s: Standard deviation for the BRW deviation angle 2

Disease dynamics

c: Recovery rate (days21) 0.1

Pw: Within-group transmission probability 0.02–0.06

PB: Between-neighbours transmission probability 4e-04 – 16e-04

PT: Traveler-resident transmission probability 1e-06 – 1e-03

doi:10.1371/journal.pone.0031290.t001
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hotspot, and reveals that hotspots can also strongly alter disease

transmission by generating infective contacts between animals

travelling towards or from the hotspot and animals whose

territories are traversed. Our results show that even when sick

groups stay in their territory, hotspots may increase the size of an

epidemic. When infected animals cease to visit the hotspot, groups

ranging at intermediate distances to the hotspot are the most

vulnerable. We also found that the epidemiological impact of

hotspots extends far beyond the subset of the population that visits

it; even groups having no contact with those visiting the hotspot

display elevated risks of infection. Finally, our model predicts that

when groups visit their nearest hotspots, the epidemiological

impact of hotspots is most severe when the number of hotspots is

intermediate.

Hotspots impact disease transmission via a combination of both

local between-neighbour and long-range traveler-resident trans-

missions, which is characteristic of a small-world network [30].

Disease dynamics in our model resemble those in a classic small-

world network in several aspects. First, the attack rate increases

with long-distance interactions, determined by the hotspot radius

of attraction (Fig. 2). Second, new foci of infection established by

long-distance traveler-resident contacts only spread when the local

transmission rate, between neighbours, is sufficiently high. This

phenomenon extends the influence of the hotspot beyond the

radius of attraction (Fig. 4). Finally, as in small-world networks

[31], all groups within the hotspot radius of attraction were

infected almost at the same time. Thus, habitat hotspots

potentially play a significant role in fuelling disease outbreaks,

much like other natural mechanisms that generate small-world

networks, such as the movement of vectors between plants [32,33].

We find that hotspots are expected to influence disease

dynamics significantly, even when infected groups do not travel

to the hotspot at all. However, in this case, the hotspot effect

strongly decreases as the distance between disease introduction

and the hotspot increases. The reduction of mobility in infected

groups also generates an unexpected spatio-temporal pattern:

groups ranging at intermediate distance from the hotspot have the

highest risk of infection, even if the disease is introduced

immediately next to the hotspot. This counterintuitive result

highlights the importance of understanding the behavioral effects

Figure 2. Influence of multiple model parameters on attack rate, when infected groups do not travel (Sick-stay model). The fraction
of groups infected increases with the hotspot radius of attraction, but varies with the traveler-resident transmission probability PT (four lines in each
graph), within-group transmission probability Pw (three different columns of graphs), and between-neighbour transmission probability PB (four
different rows of graphs). Each value is based on 1000 simulations in which disease was introduced randomly in one of the eigth groups adjacent to
the hotspot.
doi:10.1371/journal.pone.0031290.g002
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of disease in wild animal populations. For example, as in humans,

predicting the impact of hotspots on disease dynamics will strongly

depend on understanding whether infectious individuals still travel

to hotspots because disease symptoms appear after an infectious

state (e.g., influenza H1N1 [6,19]), or whether infectious

individuals do not visit hotspots because disease symptoms appear

before the infectious state (e.g., SARS [34,35]). Furthermore, our

results suggest that when transmission does not directly occur at

hotspots, disease control measures targeting groups residing

around the hotspot might not necessarily be the most efficient

ones. Further simulation work is needed to identify optimal disease

control measures.

Figure 3. Attack rate decreases with the distance between the hotspot and point of disease introduction. Sick-stay model (solid lines)
and Sick-travel model (dashed lines) are compared for different values of the hotspot radius of attraction (R). Each graph presents a different value of
the traveler-resident transmission rate (PT). Each value is averaged over 1000 stochastic simulations, assuming PB = 8e-04 and Pw = 0.06.
doi:10.1371/journal.pone.0031290.g003

Figure 4. Probability of infection depends on distance to hotspot. The relationship is presented for different values of the hotspot radius of
attraction (R) in Sick-stay model (left) and Sick-travel model (right). Vertical lines compare the probability of infection when there is no hotspot (R = 0)
to the probability of infection when there is a hotspot (R.0), for groups residing beyond the radius of attraction (distance to hotspot greater than R).
This quantifies the indirect epidemiological impact of the hotpot on groups that never travel themselves or encounter travelers en route to the
hotspot. Black arrows show the analytical prediction of the most vulnerable group to disease for R = 10, 20 and 30 respectively. Parameter values are
PB = 8e-04, PT = 0.001 and Pw = 0.06. Each value is based on 1000 stochastic simulations in which disease was introduced randomly in one of the eight
groups adjacent to the hotspot. Results for other parameter values are shown in Fig. S2 and S3.
doi:10.1371/journal.pone.0031290.g004
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The habitat of wild animal populations often includes more

than one hotspot. For example, the habitat of terrestrial mammals

can include a small number of high-value hotspots attracting

dozens of groups (e.g., salt licks or forest clearings) and more

numerous low-value hotspots attracting only a few groups

(e.g., fruiting trees). Our model reveals that, when groups are

assumed to travel to their nearest hotspot, the impact of

disease outbreaks is a bell-shaped function of the number of

hotspots (Fig. 5). This result challenges the hypothesis that the

number of hotspots and disease prevalence will correlate posi-

tively [8], and could be used to optimize strategies for con-

trolling disease in wild animal populations. Thus, wildlife

managers may consider increasing, rather than decreasing [36],

the number of water holes in order to reduce the number of

highly-connected individuals or social groups, and hence the

impact of an outbreak. However, additional studies are needed to

determine if our result still holds when each animal visits more

than one hotspot.

The values of the parameters of our model can be estimated

from empirical data. The relationship between the distance from a

group’s territory and the hotspot visitation rate can be estimated

using capture-mark recapture and telemetric data, between-group

contact rates can be estimated from direct observation or

telemetric data, and plausible distributions of disease transmission

rates can be found in the literature. The step length of the biased

random walk is assumed to have a fixed value (here, 0.25 times the

size of a territory). This parameter does not need to be estimated

accurately since it is redundant with another parameter, the

traveler-resident contact rate, which is allowed to vary. Thus, the

model can be applied to a broad range of host-parasite systems,

from primate groups travelling to waterholes on a daily basis

[37,38] to large mammals visiting every few weeks mineral-rich

Figure 5. Number of hotspots. Each line graphs the change in attack rate as a function of the number of hotspots, for a different value of PB (from
4e-04 to 16e-04). Results are presented for hotspots ranging from 1–100 (left) and 1–500 (right) in the Sick-stay model (top) and the Sick-travel model
(bottom). Each value is averaged over 1000 stochastic simulations assuming R = 30, Pw = 0.06, PT = 4e-04. Each hotspot was located randomly in the
population, and disease was introduced into the group ranging in the middle of the habitat.
doi:10.1371/journal.pone.0031290.g005
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areas [12,13,39]. In our model, the impact of the hotspot is

particularly sensitive to the ratio between the local and the

traveler-resident between-group transmissions. When the local

between-neighbour transmission is high compared to the traveler-

resident transmission, the impact of the hotspot is minimal.

We considered two discrete transmission scenarios, the Sick-

travel and the Sick-stay scenarios. However, intermediate

scenarios are also possible. For example, infected groups may

fission such that only healthy individuals travel to the hotspot. In

this case, we expect that although the overall disease transmission

will increase compared to the pure Sick-stay scenario, the spatial

pattern of the disease impact will be qualitatively similar to that

observed for the Sick-stay model.

In this study, we have shown how transmission occurring

around habitat hotspots influences disease transmission patterns,

while previous studies have focused on disease transmission

occurring at the hotspot itself. In some ecological systems, both

transmission modes may coexist. For example, some fecal-orally

transmitted parasites can infect both the soil and waterholes, and

spore-forming bacteria such as Bacillus anthracis can persist for

extended periods of time in animal carcasses, water and soil [40].

Additional works are needed to understand such epidemiological

systems.

Supporting Information

Figure S1 Influence of multiple model parameters on
attack rate, when infected groups travel (Sick-travel
model). The fraction of groups infected increases with the

hotspot radius of attraction, but varies with the traveler-resident

transmission probability PT (four lines in each graph), within-

group transmission probability Pw (three different columns of

graphs), and between-neighbour transmission probability PB (four

different rows of graphs). Each value is based on 1000 simulations

in which disease was introduced randomly in one of the eigth

groups adjacent to the hotspot.

(TIF)

Figure S2 Group’s probability of infection in relation to
the distance to the hotspot, predicted by the Sick-travel
model. The relationship is presented for different values of the

hotspot radius of attraction (R). Each graph represents a

combination of the between-neighbour (PB) and the traveler-

resident (PT) transmission. The disease was introduced randomly

in one of the eight groups adjacent to the hotspot. For all

simulations, Pw = 0.06.

(TIF)

Figure S3 Group’s probability of infection in relation to
the distance to the hotspot, predicted by the Sick-stay
model. The relationship is presented for different values of the

hotspot radius of attraction (R). Each graph represents a

combination of the between-neighbour (PB) and the traveler-

resident (PT) transmission. The disease was introduced randomly

in one of the eight groups adjacent to the hotspot. For all

simulations, Pw = 0.06.

(TIF)

Figure S4 Traveler-resident contact patterns. Each graph

shows the relationship between the distance of a group from the

hotspot and (a) the number of other groups that travel through its

territory when travelling to and from the hotspot, (b) the number

of resident groups it encounters when travelling to and from the

hotspot. Values are based on encounters occurring during 100

time steps, in the absence of disease transmission.

(TIF)

Video S1 Model dynamics. The model shows one simulation

run corresponding to the Sick-travel model. White, red and black

squares represent susceptible, infected and removed groups,

respectively. Blue squares represent groups travelling to the

hotspot at each time step. The hotspot, in green, is in the middle

of the lattice. The disease is introduced at the periphery.

(WMV)
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