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Abstract

Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol
concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues,
such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic
byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that
combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol
production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which
performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase
was deleted, resulting in a mutant (Z5DGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain
Z5DGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best
performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased
the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol
yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol
tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and
intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype
analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid
improvement of yeast strains for desirable industrial phenotypes.
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Introduction

Bioethanol, a clean and renewable biofuel, is a good alternative

to petrol. Global interest on fuel ethanol production increased

considerably since 1970 due to the oil crises. The ethanol market

yield is expected to reach 100 billion liters in 2015 [1]. Yeast

Saccharomyces cerevisiae strains are the most exploited and primary

microbes known to the industry for potable and industrial ethanol

production [2]. Based on the present fermentation technology,

ethanol concentration is usually among 10%–14% (v/v), when a

substrate contains 180–220 g/l total sugars [3]. Nevertheless, an

opportunity still exists for process improvement, which will

produce more desirable production economics. Very high gravity

(VHG) fermentation is such a process that allows a considerable

increase in both the fermentation rate and the ethanol concen-

tration, reducing capital costs and the risk of bacterial contam-

ination. This process is defined as the preparation and fermen-

tation of mashes containing 27 g or more dissolved solids per

100 g mash [4,5]. During industrial VHG fermentation, yeast cells

are exposed to several stresses including osmotic stress (resulting

from the high sugar concentration at the beginning of fermenta-

tion) and ethanol stress (resulting from high concentration of

ethanol at the end of fermentation) and led to stuck or slugglish

fermentation [6,7,8]. Besides, under VHG conditions, more

glycerol, which could consume up to 4% carbon source in

industrial fermentations, were formed as a counterbalancing

product to maintain the redox or osmotic balance of yeast cells

[9]. Thus, breeding yeast strains with higher tolerance of these

stresses, concomitant with less byproduct formation, is essential to

improve ethanol productivity.

Studies on global gene expression have indicated that stress

tolerance are complex traits under the control of multiple genes

that are difficult to modify with traditional breeding, metabolic

engineering, or other genetic manipulation methods [10,11]. Due

to such complexity, genome shuffling, has emerged as a whole

genome engineering approach for strain improvement [12,13].

This approach allows the improvement of complex polygenic

phenotypes by combining useful genetic traits of multiple parental

strains into a single strain. This strategy has been successfully

applied for the rapid improvement of industrially important

microbial phenotypes (ie., osmotic pressure tolerance, thermo-

tolerance, ethanol tolerance, and ethanol productivity in S.

cerevisiae) [14]. However, genome shuffling has limits in practice

due to an insufficiency in proper screening method to control the
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yield of metabolic byproducts. Hou found that the shuffled strain

not only enhanced ethanol productivity under VHG conditions,

but also increased the glycerol productivity [15]. Although the

high production of glycerol has been demonstrated to be beneficial

for strain stress resistance [15], this condition undoubtedly reduces

the productivity of ethanol and offsets the advantage of VHG

fermentation. Over the past decade, the tools in metabolic

engineering have remarkably enabled targeting of necessary

genetic changes for yeast cells to express desired phenotypes.

Glycerol synthesis can be controlled by this technology based on

direct genetic manipulation of key genes (ie., two isoenzymes of

glycerol 3-phosphate dehydrogenase, namely, GPD1 and GPD2)

involved in glycerol metabolism. Nevertheless, most commonly,

genetic manipulation (ie., GPD1 and GPD2 deletion) may

negatively affect strain performance [16]. Therefore we adopted

an approach combing the two aforementioned methods.

In the present study, the fermentation capacities of some

commonly used bioethanol yeast strains were initially compared.

Among these strains, the best performing strain, Z5, was chosen as

the original strain for VHG fermentation performance improve-

ment. To lower the glycerol concentration and raise the rate of

sugar-to-ethanol conversion of recombinants, gene GPD2 involved

in the glycerol synthesis was knocked out in strain Z5. Then,

genome shuffling was used to further improve the fermentation

performance of the engineered strain Z5DGPD2. After three

rounds of genome shuffling, recombinant SZ3-1, which showed

significantly improved fermentation capacity than Z5, was

selected. This improvement was mainly due to the enhancement

of ethanol tolerance in the shuffled strain, which is tightly

associated with cell membrane compositions and trehalose

accumulations. These results demonstrate that the novel strategy

proposed in this study is effective in improving the ethanol

production performance of industrial S. cerevisiae strains under

VHG conditions.

Materials and Methods

Strains and media
Yeast strains Z0 (CICC 1300), Z1 (CICC 1308), Z2 (CICC

1043), Z3 (Angel active dry yeast), Z4 (S. cerevisiae var. llipsoideus),

and Z5 (mutant from strain Z4) were industrial strains widely used

in ethanol production. Strains Z5DGPD2 and Z5TPS1-2 was

respectively constructed by deleting the GPD2 gene and overex-

pressing TPS1 and TPS2 in stain Z5. Strain SZ3-1 was the strain

newly constructed in the current study.

Growth medium YPD contained 10 g/l yeast extract, 20 g/l

peptone, and 20 g/l glucose. The SD medium contained 6.7 g/l

yeast nitrogen base without amino acids and 20 g/l glucose. A

fermentation medium from corn mash was prepared by double

enzyme hydrolysis [17].

GPD2 knockout
Plasmid DNA from Escherichia coli and genomic DNA from S.

cerevisiae were obtained by using Plasmid Mini Kit (Omega Bio-

tech, USA) and Yeast DNA Kit (Omega Bio-tech, USA),

respectively. DNA primers were purchased from GenScript Inc.

(Nanjing, China).

Strain Z5DGPD2 was obtained by a one-step disruption of

GPD2. The GPD2-kanMX disruption cassettes contained, from left

to right, fragment GPD2U (the nucleotides -687 to -4 upstream of

the ATG start codon of GPD2), the kanMX gene, and fragment

GPD2D (the nucleotides 22 to 693 downstream of GPD2). E. coli

Top 10 and S. cerevisiae cells were transformed as described earlier

[18,19]. Transformants were selected from the YPD medium

supplemented with 300 mg/ml G418. Correct deletion of GPD2

was verified by PCR analysis using a combination of correspond-

ing target gene-specific primers (Table S1). To eliminate the

G418-resistant gene from the successfully disrupted genome, the

target mutant was transformed with the Cre recombinase

expression plasmid pSH65 [20]. GPD2-kanMX disruption cassettes

were repeatedly used to completely deleted GPD2 until no PCR

product emerged using primers GPD2S and GPD2A (Table S1).

TPS1 and TPS2 overexpression
To overexpress the genes TPS1 and TPS2, their ORF were

amplified by PCR and then cloned into the BamHI and XhoI sites

behind the PGK promoter of the pYES2-derived plasmids pYES3

(contains gene bler) and pYKS3 (contains gene kanr), respectively.

Subsequently, plasmids pYES3TPS1 and pYKS3TPS2 was

introduced into strain Z5 and the transformants were selected

on YPD plate containing 50 mg/ml zeocin and 300 mg/ml G418.

Genome shuffling
The best performing strain was selected after three successive

rounds of sporulation and hybridization. In the first round, strain

Z5 freshly harvested from the YPD medium was grown on the

sporulation medium for 5–7 days. The cells were subsequently

collected and washed thrice with sterile water, followed by

isolation of spores and protoplast regeneration. The resulting cells

were mated randomly and adequately in the YPD liquid medium

for about 24 h. Afterward, these hybrids were appropriately

diluted and spread on selective plates (for details, see ref [21]), and

then fast growing colonies were selected and tested. Finally,

hybrids with good fermentation capacities selected from the first

round served as the starting strains for the subsequent rounds of

genome shuffling, which were conducted using the same methods.

The fermentative stability of ultimately selected hybrids was also

determined by analyzing fermentation performance of these

hybrids and karyotypes every 10 generations after successive

subcultures on the YPD medium for 50 generations.

Fermentation and metabolites
The yeast cells were precultured in 5 ml YPD medium in a test

tube at 30uC without shaking for 24 h and then transferred totally

into corn mash in an Erlenmeyer flask containing approximately

160 g/l total sugars for cultivating at 30uC for 12–16 h with

shaking at 200 r/min. Yeast cells were then harvested and

inoculated in a fermentation medium (200 g corn mash, 280 g/l

total sugars, and pH 5.0) at a concentration of 16105 cells/ml.

Anaerobic fermentation was performed in 500 ml Erlenmeyer

flasks with fermentation locks for 72 h. The concentrations of

main fermentation metabolites were measured on an Aminex

HPX-87H column (Bio-Rad) at 60uC [22].

Cell viability and membrane integrity
Yeast cells from the fermentation broth were collected at

intervals by centrifugation and were then appropriately diluted in

plates on the YPD medium. Cell viability was analyzed by

calculating the colony-forming unit that emerged in each plate.

Cell membrane integrity during ethanol fermentation at

different fermentation periods was examined by fluorescent

staining with propidium iodide (PI) and fluorescein diacetate

(FDA). Yeast samples from the fermentation broth were harvested,

washed, and resuspended in 16PBS (pH 7.2) to a final OD600 of

0.1 (about 16106 cells). A 10 ml PI stock solution in 16PBS

(500 mg/ml) and FDA stock solution in acetone (1 mg/ml) were

added to 100 ml cell suspensions just prior to the staining and were
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then gently vortexed for staining in the dark for 30 min.

Fluorescence detection was performed by LSM-510 (Zeiss,

Germany). Three fields of view from each cover slip were

randomly chosen.

Measurement of diffusion of intracellular nucleotide
Early-stationary-phase cells were harvested and washed until

the absorbance of the supernate at 260 nm was negligible. The

cells were suspended in 0%, 10%, 15%, and 20% (v/v) ethanol

and incubated at 30uC. After low-speed centrifugation to remove

cells, the absorbances of supernates at 260 and 280 nm were

measured every 3 h until they reached equilibrium. The

calculating equation is as follows [23]:

Nucleotide mg=mlð Þ~(11:87 � A260{10:40 � A280)|100=9

Fatty acid and ergosterol analysis
Yeast cells were cultivated in the YPD medium at 30uC with

shaking at 200 r/min for 20 h. Then, the cells were harvested and

transferred to the SD medium with and without 10% ethanol.

After cultivating for 24 h, total fatty acids and sterols were

extracted as previously described [24]. The composition of fatty

acids was analyzed by gas chromatography with a GC FOCUS,

equipped with a DSQ II MS detector (Thermo, USA) on a DB-5

MS capillary column (J&W Scientific Inc., Folson, CA, USA). The

operation conditions were as follows: hold at temperature 140uC
for 2 min, then from 140 to 170uC at 4uC/min, hold at 170uC for

1 min, from 170 to 240uC at 3.5uC/min, hold at 240uC for

12.5 min, from 240 to 260uC at 12uC/min, hold at 260uC for

2 min; injector temperature: 250uC; MS Transfer Line temper-

ature: 250uC; ion source: 250uC; carrier gas: helium; carrier gas

flow: 1.0 ml/min; injection volume: 1 ml. Fatty acid composition

was calculated based on the area of each peak. Ergosterol content

was measured using the HPLC system equipped with a reverse-

phase column [22] and expressed as mg ergosterol per g dry

weight. Samples for dry weight analysis were washed with sterile

water and then dried at 100uC overnight.

Trehalose and enzymatic activity determination
Yeast cells were precultivated in the SD medium at 30uC with

shaking at 200 r/min for 20 h. The cells were harvested and

subjected to ethanol treatment for 2 h. Trehalose content in the

yeast cells after exposure to 0%, 5%, 10%, and 15% (v/v) ethanol

was determined using the anthrone method [25].

Cell-free extracts of yeast cells treated with 0% and 10% (v/v)

ethanol for enzyme assays were obtained using the Yeastbuster

protein extraction reagent (Novagen, Germany). Trehalose-6-

phosphate synthase (Tps1) and trehalase activities (Ath1 and Nth1)

were determined as reported previously [26–29]. One unit of Tps1

activity was defined as the amount of enzyme that produces

1.0 mmol of NAD+ per minute at 37uC and pH 6.6 [26,29].

Glucose concentration in the supernates was measured using the

glucose oxidase/peroxidase assay. Specific activity of trehalase was

expressed as nmol of glucose liberated per min per mg total

protein [27,28]. Total protein concentration was measured by the

method of Bradford [30].

Quantitative RT-PCR
Total RNA was extracted from yeast cells cultivated in the SD

medium with or without ethanol (10%) using the Fungal RNAout

kit (TIANDZ, Beijing) according to the manufacturer’s instruc-

tions. RNA samples were reverse transcribed into cDNA using the

PrimerScript RT reagent Kit With gDNA eraser (TaKaRa,

Japan).

Quantification of TPS1, TPS2, TPS3, TSL1, ATH1 and NTH1

RNA levels were quantified by quantitative RT-PCR using an ABI

Prism 7500 StepOnePlus instrument (Applied Biosystem). Study

samples were tested in triplicate in a 96-well plate (Axygen, USA)

with a final volume of 20 ml. Primers used for quantitative PCR

(Table S2) were designed using Primer Premier 5.0 software. After

completion of the PCR cycles, melting curve data were then

collected to verify primer specificity. DNA dilution series were

prepared to calculate the amplification efficiency coefficient for

each primer pair with the sample cDNA as the template. The

relative expression of genes was quantified using the comparative

22DDCT method with ACT1 as the reference gene [31].

Pulsed field gel electrophoresis (PFGE)
Yeast cells were cultivated in the YPD medium at 30uC for 48 h

to reach the late stationary phase. DNA for electrophoretic

karyotyping was prepared in an agarose plug, as described by

Argueso [32]. PFGF was performed with a CHEF Mapper XA

apparatus (CHEF Mapper XA; Bio-rad Laboratories, Hercules,

CA) using the chromosomes of the S. cerevisiae strain BY4743 as the

standard markers. Yeast chromosomes were separated on 1%

pulsed-field-certified agarose gel (Bio-rad Laboratories, Hercules,

CA) as follows: 24 h at 6 V/cm for 60–120 s with a time ramp at

Table 1. Fermentation performance comparisons between industry strains under VHG conditions.

Strain Fermentation products (g/l)
Residual glucose
(g/l)

Fermentation
Rate(g/l/h)

Rate of sugar-to-
ethanol conversion

Ethanol Glycerol Acetate

Z0 108.1561.06 11.5160.09 0.3660.05 36.7561.44 1.5060.01 0.44560.002

Z1 115.5061.14 11.9960.17 0.6460.10 22.1461.50 1.6060.02 0.44860.002

Z2 103.7361.12 11.3460.28 0.9460.03 46.0461.31 1.4460.02 0.44360.002

Z3 112.1061.89 12.2660.24 0.5460.04 30.7161.51 1.5660.03 0.45060.005

Z4 115.7460.75 11.8360.37 0.4860.04 21.3661.28 1.6160.01 0.44760.002

Z5 120.6362.38 10.5360.32 0.7460.02 14.3861.33 1.6860.03 0.45460.006

Z5DGPD2 115.9962.51 8.4360.29 0.3660.03 29.2463.12 1.6160.02 0.46260.003

Data are the mean values and standard deviation of three dependent experiments.
doi:10.1371/journal.pone.0031235.t001
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Figure 1. The fermentation performance of strains Z5, Z5DGPD2 and SZ3-1. The ethanol yield (A), glucose consumption (B), glycerol (filled
symbols) and acetate (open symbols) production (C), and cell survival rate (D) of control strains Z5 (squares), Z5DGPD2 (circles), and shuffled strain
SZ3-1 (triangles) during fermentation were monitored and compared.
doi:10.1371/journal.pone.0031235.g001

Figure 2. Cell membrane integrity of strains Z5, Z5DGPD2 and SZ3-1 at different time of fermentation. Yeast cells harvested at 12 h (A)
and 60 h (B) of fermentation, respectively, were stained with PI and FDA. Viable cells were stained green with FDA and the cells that had lost
membrane integrity were stained red with PI.
doi:10.1371/journal.pone.0031235.g002
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an included angle of 120u. The running buffer used was 0.56TBE

cooled at 14uC.

Results

Screening of the parent strain for further breeding
To select the original strain for further breeding, comparisons of

VHG fermentation performances of strains Z0, Z1, Z2, Z3, Z4,

and Z5 were conducted. Strain Z5 was the most suitable original

strain for further breeding due to its higher ethanol yield and rate

of sugar-to-ethanol conversion than those of other strains (Table 1).

However, the fermentation capacity of strain Z5 (such as residual

sugar) required further improvement to achieve the industrial

standard (,2 g/l).

A new breeding strategy to improve the fermentation
performance of strain Z5

First, the key gene GPD2 involved in glycerol synthesis was

deleted from strain Z5, resulting in strain Z5DGPD2. As

speculated, the glycerol yield of strain Z5DGPD2 decreased by

20% after GPD2 deletion compared with parent strain Z5

(Table 1), but to a certain extent, final ethanol yield was also

affected (4% less than that of Z5). However, the Z5DGPD2 strain

had higher rate of sugar-to-ethanol conversion than Z5 [16].

The contradicting results might be due to the incomplete

fermentation of the Z5DGPD2 strain. As previously stated, the

strain with deletion of GPD2 had a delayed response to glucose

consumption and ethanol production [16], thus a lower

fermentation rate.

Strain Z5DGPD2 was then used as the starting population for

genome shuffling in the current study. After each round of

genome shuffling, 300 fast growing colonies were picked from

the selecting plates, and 10 mutants with desired properties

based on fermentation comparisons were selected and pooled to

the next round of genome shuffling. Finally, after three rounds

of genome shuffling, the strain (namely, SZ3-1) that performed

best among the 300 shuffled strains from the third round and

with good fermentative stability was selected for further study.

The results of VHG fermentation showed that the fermentation

capacity of strain SZ3-1 had been considerably improved

compared with those of the control strains Z5 and Z5DGPD2

(Figure 1). At the end of fermentation, strain SZ3-1 nearly

consumed all residual sugars in the fermentation broth and

enhanced the ethanol yield by 8% compared with strain Z5

(Figure 1A and 1B). Strain SZ3-1 exceeded strain Z5 in ethanol

yield and glucose consumption mainly between 48 and 72 h.

Compared with SZ3-1, the cell viability of control strains Z5

and Z5DGPD2 dropped drastically in the later fermentation

phase (Figure 1D), and more petite colonies (respiratory

deficient cells) emerged (data not shown). Moreover, strains

Z5 and Z5DGPD2 exhibited inferior cell membrane integrity

compared with strain SZ3-1 in the later fermentation phase, but

without obvious differences in the earlier phase (Figure 2). Thus,

strain SZ3-1 probably possesses a more prominent ability to

resist the adverse environmental stresses in the later fermenta-

tion phase.

Enhanced performance of strain SZ3-1 compared with Z5
and Z5DGPD2 in ethanol tolerance

During ethanol fermentation, the increasing concentration of

ethanol could gradually reduce cell viability mainly by influencing

the integrity of the cell membrane and its function [33,34]. As

illustrated by Figure 3A, the ethanol stress tolerance of strain Z5

was inferior to that of shuffled strain ZS3-1 but similar to that of

Z5DGPD2 strain. When subjected to ethanol, the nucleotide that

leaked into the supernate of strain SZ3-1 was always less than that

of Z5 (P,0.05) and the differences widened with the increase of

ethanol concentration (the data of strain Z5DGPD2 was similar to

those of strain Z5 but not shown; Figure 3B). These results

illustrated that strain SZ3-1 had better capability to maintain cell

membrane integrity under ethanol stress than that Z5, indicating

the possible mechanisms for the improved ethanol stress tolerance

of strain SZ3-1.

Figure 3. Determination of ethanol stress tolerance of strains
Z5, Z5DGPD2 and SZ3-1. (A) Growth of strains Z5, Z5DGPD2 and SZ3-
1 on different concentration of ethanol. Cells were grown in the YPD
liquid medium at 30uC overnight and 10-fold serial dilutions of each
sample were spotted onto the YPD medium and the YPD medium
containing 10%, 15%, 20% (v/v) ethanol. Stress tolerance was calculated
as the percentage of biomass formation or viable cells in stressed
culture compared with that in control culture. (B) Time course of
extracellular nucleotide concentration in cell suspension of strains Z5
(filled symbols) and SZ3-1 (open symbols). Yeast cells were suspended
in aqueous solution with 0% (triangles), 10% (squares), 15% (diamonds),
and 20% (circles) (v/v) ethanol and incubated at 30uC. Concentration of
nucleotide that leaked into the supernatant was measured every few
hours.
doi:10.1371/journal.pone.0031235.g003

A Novel Strategy to Construct Yeast Strains

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e31235



Relationship between ethanol tolerance and cell
membrane composition

Under the ethanol stress, yeast cells may change membrane

compositions to confront membrane fluidization and stabilize the

plasma membrane [35]. Among the various membrane compo-

nents, unsaturated fatty acid and ergosterol were considered as the

two critical determinants of ethanol tolerance [36].

The main fatty acids of yeast cell membranes are divided into

saturated fatty acids (palmitic acid C16:0 and stearic acid C18:0) and

unsaturated fatty acids (palmitoleic acid C16:1 and oleic acid C18:1)

[6]. When grown in the absence of ethanol, strain SZ3-1 had

markedly higher proportions of C18 fatty acids, especially C18:1,

and a slightly lower unsaturation index than that of strain Z5. In

terms of unsaturated fatty acids, strain Z5 and strain SZ3-1 were

indistinguishable. After exposure to 10% ethanol, both strains had

a further increase in C18 fatty acid total content (8% and 9% for

strain Z5 and SZ3-1, respectively), concomitant with a dramatic

decline in C16 fatty acid, whereas the concentration of unsaturated

fatty acids and the unsaturation index remained relatively

constant. However, both increments of total C18 fatty acid

proportions and C18:1 fatty acid proportions in strain SZ3-1 were

higher than those of Z5.

Ergosterol also plays a critical role on ethanol stress tolerance in

S. cerevisiae by stabilizing the normal structure of membranes [37].

The biosynthesis of ergosterol was slightly reduced in the presence

of ethanol (Table 2). However, contrary to what had been

observed for fatty acids, the concentrations of ergosterol in strains

Z5 and SZ3-1 were barely different whether confronted with

ethanol or not.

More trehalose accumulation in strain SZ3-1
A strong correlation between trehalose content and stress

resistance has been revealed for a variety of stresses, especially

ethanol stress [38]. Figure 4A shows that the amount of trehalose

in strain SZ3-1 grown in control cultures was 29% higher than

that of Z5. In the presence of 5%, 10%, and 15% ethanol,

trehalose synthesis of both strains were strongly stimulated, but

strain SZ3-1 still accumulated more trehalose compared with Z5.

These results indicate that yeast cells accumulate trehalose as a

protectant under ethanol stress.

The intracellular level of trehalose in S. cerevisiae is the result of a

well-regulated balance between enzymatic synthesis and degrada-

tion. Figures 4B–4D show that strains Z5 and SZ3-1 displayed

different enzymatic activities of both Tps1 and trehalase when

cultivated in the absence or presence of ethanol. Under

nonstressful conditions, strain SZ3-1 had a higher Tps1 activity

(22%, Figure 4B) and lower trehalase activity (15% and 32% for

acid trehalase and neutral trehalase respectively, Figures 4C and

4D) compared with Z5. When subjected to 10% ethanol, a

decrease in both Tps1 (25% and 27% for Z5 and SZ3-1,

respectively) and trehalase activity (49% and 61% in acid trehalase

for Z5 and SZ3-1, respectively, and 57% and 49% in neutral

trehalase for Z5 and SZ3-1, respectively) was observed. However,

strain SZ3-1 always showed higher Tps1 activity and lower

trehalase activity (including acid and neutral trehalase) than those

of strain Z5 with or without ethanol (P,0.05). This result could

precisely explain why SZ3-1 accumulated more trehalose than did

Z5. Similarly, more trehalose accumulation in stressed cultures

than control cultures was presumably due to the predominant role

of trehalose synthesis over that of trehalose degradation

(Figure 4B–4D).

Studies on various microorganisms have shown that trehalose

accumulation induced by numerous forms of stresses is mainly

mediated at the transcription level [27]. In agreement with the

result that yeast cells accumulated more trehalose under ethanol

stress, the expression levels of TPS1, TPS2, TPS3, and TSL1, which

were involved in trehalose synthesis, were all highly upregulated in

both Z5 and SZ3-1 strains after exposure to 10% ethanol. Besides,

ATH1 and NTH1, which encode acid trehalase and neutral

trehalase, respectively, were also upregulated (Figure 5). The fact

that ethanol stress induced genes involved in both trehalose

synthesis and degradation might enable the yeast cell to adjust its

trehalose content rapidly to counteract ethanol-induced change. In

accordance with the result of enzymatic activity determinations,

the upregulation of genes in the synthetic pathways and the

downregulation of genes in the degraded pathway caused more

trehalose accumulation in strain SZ3-1 in response to ethanol

stress compared with strain Z5.

To further demonstrate the contribution of trehalose to the

improved ethanol tolerance of SZ3-1, we overexpress the genes

TPS1 and TPS2 in strain Z5 (resulting in strain Z5TPS1-2). The

intracellular trehalose of strain Z5TPS1-2 was significant higher

than that of strain Z5 (P,0.05) and close to that of SZ3-1 with or

without ethanol stress (Figure S1). Notably, engineered strain

Z5TPS1-2 enhanced the viability by 40% compared to Z5 under

the treatment of 15% ethanol for 10 h, but still 25% less than that

of SZ3-1. These results suggested (i) more intracellular trehalose

indeed contributed to the ethanol tolerance of Z5 and (ii) the

improved ethanol stress of SZ3-1 was the result of the changes of

multiple physiological factors.

Table 2. Fatty acid compositions in plasma membrane and ergosterol content of strains Z5 and SZ3-1 cultivated in different
conditions.

Strain Fatty acid composition (%)a
Unsaturation Index (D/mol)b ergosterol (mg/g) dry weight)

C16:0 C18:0 C16:1 C18:1 C18:2

Z5 (0%ethanol) 7.91 3.10 48.84 39.85 0.31 0.89 5.99

SZ3-1 (0%ethanol) 8.67 4.48 41.44 45.40 0.01 0.87 6.06

Z5 (10%ethanol) 6.88 3.93 46.37 42.54 0.27 0.89 5.19

SZ3-1 (10%ethanol) 8.58 4.86 36.98 48.61 0.91 0.86 5.25

Data are the mean values and standard deviation of three dependent experiments.
aFatty acids are denoted by the number of carbon atoms: number of unsaturated linkeages.
bUnsaturation Index(D/mol) was calculated as: D/mol = [16(% monoene)+26(% diene)+36(% triene)]/100.
doi:10.1371/journal.pone.0031235.t002
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Figure 5. Relative expression level of six genes related to trehalose metabolism. Strains Z5 and SZ3-1 were grown in the absence (0%) or
presence (10%) of ethanol. Gene expression of four cases were compared: strain Z5 grown in the presence and absence of ethanol (Z5 (10%)/Z5 (0%));
strain SZ3-1 grown in the presence and absence of ethanol (SZ3-1 (10%)/SZ3-1 (0%)); strain SZ3-1 and Z5 grown in absence of ethanol (SZ3-1(0%)/
Z5(0%)); and strain SZ3-1 and Z5 grown in the presence of ethanol (SZ3-1 (10%)/Z5 (10%)).
doi:10.1371/journal.pone.0031235.g005

Figure 4. Trehalose concentrations and related enzymatic activity of stains Z5 and SZ3-1. Yeast strains were harvested at the stationary
phase and exposed to ethanol stress. Trehalose concentration (A) of strains Z5 (light gray) and SZ3-1 (gray) subjected to different ethanol stress (0%,
5%, 10%, and 15% (v/v) ethanol) was measured. Finally, we determined related enzymatic activities, namely, trehalose-P-synthase (B), acid trehalase
(C), and neutral trehalase (D) under 0% ethanol and 10% ethanol conditions.
doi:10.1371/journal.pone.0031235.g004
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Chromosomal rearrangement and genetic stability
estimate

PFGE was performed to determine the electrophoretic karyotype

of each strain. The intact chromosomes isolated from strains Z5 and

SZ3-1 were shown in Figure 6. As expected, the karyotypes of

shuffled strain SZ3-1 remarkably differed from that of parent strain

Z5 with the disappearance of wild-type bands and emergence of

novel bands. The relative DNA content of strain SZ3-1 was slightly

less than that of the original strain Z5 (Figure S2). These results

suggested that chromosomal rearrangements, such as gene local

amplification, chromosome copy number changes, and intrachro-

mosomal and interchromosomal translocations, might occur in the

whole genome during genome shuffling. Correspondingly, the

recombination events would facilitate the combination of beneficial

mutations and confer ethanol resistance in the shuffled strains. The

genetic stability of the recombinant SZ3-1 was also analyzed. After

successive subcultures in the YPD liquid medium for 50 generations,

the karyotypes of the strain SZ3-1 from every 10 generations were

determined, with the results showing that this character of this strain

could be steadily inherited (data not shown).

Discussion

The application of VHG fermentation for bioethanol produc-

tion can considerably improve the final ethanol concentration and

save the energy consumption. However, this technology will

impose severe environmental stresses on yeast cells, often resulting

in stuck fermentation and more formation of metabolic bypro-

ducts. Therefore, enhancing the stresses resistance and lowering

the metabolic byproducts would be useful to improve VHG

fermentation performance of yeast strains.

Genome shuffling is a recently developed approach and has

been proved effective for the improvement of complex phenotypes

in microorganisms [12]. However, the application of this approach

is limited in the absence of an appropriate screening method to

control the yield of metabolic byproducts. With the aid of

metabolic engineering, this limitation can be overcome. Glycerol

yield can be reduced through metabolic engineering by the

deletion of the GPD2 gene. Given that the deletion of GPD2 affects

the fermentation rate and ethanol yield, the present study proposes

the performance of metabolic engineering prior to genome

shuffling, considering that negative effects resulting from genetic

manipulation could be circumvented during the process of genome

shuffling. A mutant strain, SZ3-1, was obtained using this strategy.

This strain could effectively ferment 280 g/l glucose within 72 h

while simultaneously maintaining a high fermentation rate and a

low glycerol yield. Through ethanol tolerance and membrane

integrity analysis, strain SZ3-1 was found to show markedly

enhanced ethanol tolerance than that of Z5, which contributed to

its improved fermentation performance under VHG conditions.

More ethanol-tolerant strain SZ3-1 incorporated more long-

chain fatty acids (mainly C18:1) into the membrane phospholipid

than the less-tolerant strain Z5 at the expense of short-chain fatty

acids. This finding is well suited with the results of Chi [39] but

does not correlate with the results of Castillo Agudo [40] who have

showed that the more ethanol-tolerant strains contain a lower

amount of long-chain fatty acids compared with less ethanol-

tolerant strains. This discrepancy might be caused by the

differences in the yeast strains and the analytical procedures used.

Several authors have proposed that the ability of cells to increase

the proportion of unsaturated fatty acids in plasma membrane is

the principal mechanisms used by yeast to adapt to the presence of

ethanol [35,41]. Surprisingly, in the current study, the proportion

of total unsaturated fatty acids varied very slightly between the two

strains, similar to the degree of fatty acid unsaturation.

Ergosterols represent another category of lipid components in

the yeast membrane that is responsible for structural membrane

features. Castillo Agudo [40] found yeast strains with the highest

concentration of ergosterol to be the most tolerant of ethanol. In

the present study, no difference was observed in the ergosterol

levels between strain Z5 and SZ3-1, even exposed to ethanol. In

agreement with the repressive effect of ethanol on ergosterol

biosynthesis [35,42], the ergosterol concentrations of these two

strains were decreased after ethanol treatment.

As a protectant that contributed to the survival of yeast under

various stressful conditions, more trehalose accumulation was

observed in strains Z5 and SZ3-1 under ethanol stress.

Corresponding with previous studies [38,43], strain SZ3-1 always

had higher concentration of intracellular trehalose (Figure 4A) and

could better coped with ethanol stress with greatly increased

trehalose content than the strain Z5. The increasing intracellular

trehalose content was probably a mechanism for yeast cells to

respond to ethanol stress, and the difference in the trehalose

content in each strain was the key to the diverse tolerance of

ethanol stress. A decrease in both trehalose synthase and trehalase

was observed in yeast cells after ethanol exposure. Nevertheless,

several genes associated with trehalose metabolism were highly

expressed (TPS1, TPS2, TPS3, TSL1, ATH1, and NTH1), as

reported by Li and Kaino [38,43]. The conflicting result might be

Figure 6. Karyotype profiles of strains Z5 and SZ3-1 obtained
by PFGE. Lanes M, Z5 and SZ3-1 respectively represent the
chromosomal profiles of strains BY4743, Z5 and SZ3-1. Numbers
corresponding to each band are designated in the left.
doi:10.1371/journal.pone.0031235.g006
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due to the adverse effect of ethanol on the enzyme structure [44].

Ethanol might affect the activity of trehalose synthase and

trehalase at different extents. Thus, more trehalose accumulation

in stressed cultures than control cultures was due to the

predominant role of trehalose synthesis over the role of trehalose

degradation (Figure 4B–4D and 5). In particular, the superior role

of trehalose synthesis in strain SZ3-1 was more obvious than that

of strain Z5. Overall, variations in the cell membrane components

and trehalose are considered to be important determinants of

ethanol tolerance in the shuffled strain.

Ethanol stress tolerance is a complicated phenotype controlled

by multiple genes and is difficult to be altered by single gene

modification. Improvements in ethanol tolerance, as well as

relevant physiological and biochemical characteristics, indicated

that large-scale genomic changes occurred in yeast strain SZ3-1.

The PFGE result revealed and confirmed the occurrence of the

gross chromosomal rearrangements during the process of genome

shuffling considering that strains Z5 and SZ3-1 displayed quite

different karyotype profiles, with differences in both chromosome

lengths and chromosome numbers. Chromosomal rearrangements

were considered to play an important role in yeast evolution and

adaptation [45]. In the present study, through successive

chromosome rearrangements during sporulation and hybridiza-

tion, ethanol tolerance of strain SZ3-1 was improved by adjusting

cell membrane compositions and trehalose concentrations. These

results further prove the effectiveness of genome shuffling in the

modification of the regulatory of multiple metabolic pathways and

complex phenotypes.

To the best of the author’s knowledge, the present study is the

first report to introduce the combination of genome shuffling and

metabolic engineering into industry breeding for industrial yeast

strains. The proposed novel technique has been proved effective in

enhancing the fermentation performance under VHG conditions

of yeast strains in the current study. The technique could not only

reduce the yield of the undesired product that is inevitably

generated during fermentation and improve the yield of the target

product, but also improve the complex phenotypes, which are

difficult to modify by traditional approaches. This proposed

strategy could also be applied on other trait improvements or on

other microorganisms. The authors expect that the strategy

developed in the present study can be used as an efficient tool

for industrial strain breeding.
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