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Abstract

Viruses have evolved elaborate mechanisms to evade or inactivate the complex system of sensors and signaling molecules
that make up the host innate immune response. Here we show that human coronavirus (HCoV) NL63 and severe acute
respiratory syndrome (SARS) CoV papain-like proteases (PLP) antagonize innate immune signaling mediated by STING
(stimulator of interferon genes, also known as MITA/ERIS/MYPS). STING resides in the endoplasmic reticulum and upon
activation, forms dimers which assemble with MAVS, TBK-1 and IKKe, leading to IRF-3 activation and subsequent induction
of interferon (IFN). We found that expression of the membrane anchored PLP domain from human HCoV-NL63 (PLP2-TM) or
SARS-CoV (PLpro-TM) inhibits STING-mediated activation of IRF-3 nuclear translocation and induction of IRF-3 dependent
promoters. Both catalytically active and inactive forms of CoV PLPs co-immunoprecipitated with STING, and viral replicase
proteins co-localize with STING in HCoV-NL63-infected cells. Ectopic expression of catalytically active PLP2-TM blocks STING
dimer formation and negatively regulates assembly of STING-MAVS-TBK1/IKKe complexes required for activation of IRF-3.
STING dimerization was also substantially reduced in cells infected with SARS-CoV. Furthermore, the level of ubiquitinated
forms of STING, RIG-I, TBK1 and IRF-3 are reduced in cells expressing wild type or catalytic mutants of PLP2-TM, likely
contributing to disruption of signaling required for IFN induction. These results describe a new mechanism used by CoVs in
which CoV PLPs negatively regulate antiviral defenses by disrupting the STING-mediated IFN induction.
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Introduction

The innate immune system is the first line of defense that

protects the host against viral infection. Viral infections are

sensed by pattern-recognition receptors (PRRs) of the innate

immune system that recognize pathogen-associated molecular

patterns (PAMPs) and then trigger an antiviral response [1]. Viral

nucleic acids, such as the viral genome or replicative interme-

diates produced during viral replication, can be recognized by

toll-like receptors (TLR3/7/8/9) or the retinoid acid-inducible

gene (RIG)-I-like helicase (RLH) family members RIG-I and

melanoma differentiation-associated protein 5 (MDA-5) [2,3].

Viral double stranded RNA can be sensed by membrane bound

TLRs or cytosolic sensors like MDA-5, whereas RIG-I detects

intracellular viral RNAs bearing 59-triphosphate ends with base-

paired structures to activate antiviral signaling [4–7]. Upon

engagement with viral RNA, these PRRs recruit different adaptor

proteins (MAVS/IPS-1/VISA/Cardif for RIG-I, and TRIF for

TLR3 and MyD88 for TLR7/8/9), and transduce signals to the

downstream kinase complexes which activate IFN regulatory

factor-3 (IRF-3), nuclear factor kB (NF-kB) and ATF-2/c-jun.

These transcription factors coordinately regulate the expression

of type I Interferons (IFN-b and -a). Type I IFNs induce the

activation of STAT transcription factors that induce the

expression of hundreds of IFN-stimulated genes (ISGs) which

establish an antiviral state in surrounding cells, thereby limiting

viral replication and spread.

Recent investigations into the induction of the type I IFN

response identified a new player in the pathway, designated here

as STING (stimulator of interferon genes; also called MITA, ERIS

and MPYS) [8–11]. STING was identified by investigators

screening cDNA libraries for genes that, when overexpressed,

were sufficient to activate production of IFN. Further studies

revealed that STING-knockout mice are susceptible to lethal

infection with herpes simplex virus 1 and vesicular stomatitis virus,

demonstrating the critical role of STING in facilitating immune
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responses to viral pathogens [12]. STING, with four transmem-

brane domains in the N-terminal region, is detected in the

endoplasmic reticulum (ER) and upon activation complexes with

signaling components including TBK1, leading to phosphorylation

of IRF-3 [8]. In addition, activation of STING induces its

dimerization and ubiquitination, which are proposed to play

important roles in the activation of IRF-3 signaling [9].

Coronaviruses (CoV) are positive strand RNA viruses that

replicate in the cytoplasm of infected cells and produce a nested-

set of double-stranded RNA intermediates during viral RNA

synthesis [13]. Despite the generation of dsRNA intermediates,

CoV infection generally does not induce high levels of IFN

production [14–18]. The new-emerging and most pathogenic

CoV, severe acute respiratory syndrome coronavirus (SARS-

CoV) inhibits the induction of IFN-b through blocking translo-

cation of the transcription factor interferon regulatory factor 3

(IRF-3) from the cytoplasm to the nucleus at a later time point in

infection [15]. However, activation of innate immunity in specific

cell types is likely essential for generating a protective immune

response. Studies using knockout mice or siRNA treatment of cell

lines indicate that PRR TLR-7 in plasmacytoid dendridric cells

[19]; MDA5 in brain macrophages [20], MDA5 and RIG-I in

oligodendrocytes [21], and the adapter protein MyD88 are

critical for activation of the innate response and protection from

lethal coronavirus infection [22]. These studies are consistent

with the idea that coronavirus infection induces a type I

interferon response in a subset of cells and that the ability to

mount an effective innate immune response is essential for

clearing the viral infection and generating protective immunity.

Furthermore, recent studies indicate that the inefficient activation

of the innate immune response may contribute to development of

more severe disease [23], [24]. At least two mechanisms have

been proposed to explain the low level of type I interferon

response to coronavirus infection: the sequestering of viral RNA

in double membrane vesicles [25], [26] which prevents or reduces

recognition by PRRs; and/or the expression of viral proteins that

antagonize the innate response (reviewed in [13]). The most

pathogenic CoV, severe acute respiratory syndrome coronavirus

(SARS-CoV), which resulted in a 10% mortality rate, encodes at

least 6 innate immune antagonists, including nonstructural

protein 1 (nsp1) [27], the papain-like protease domain in nsp3

[17], nucleocapsid protein [28,30], membrane protein [29] and

the products of open reading frame 6 (ORF6) and ORF3b [30].

Another important human CoV is NL63, which causes croup in

children and is associated with pneumonia in the elderly [31].

HCoV-NL63 also encodes a papain-like protease, termed PLP2,

which antagonizes IFN induction [14]. These coronavirus

papain-like protease domains (PLPs) are contained within the

nonstructural protein 3 (nsp3), which is expressed as part of a

replicase polyprotein. The PLPs along with a 3C-like protease

(3CLpro) cleave the replicase polyprotein to generate nonstruc-

tural proteins (nsp’s) that associate with ER membranes to

generate convoluted membranes and double membrane vesicles

(DMVs), which are the site of viral replication [25,26]. The CoV

PLPs are tethered to the DMVs by a transmembrane domain

(Figure 1A). Analysis of enzymatic activity and structural studies

revealed that SARS-CoV PLpro and HCoV-NL63 PLP2

function as both proteases and deubiquitinating (DUB) enzymes

[14,32–35]. Initially, we speculated that CoV PLPs may act as

IFN antagonists via their protease or DUB activities, however we

found that both catalytic dependent and catalytic independent

mechanisms contribute to PLP-mediated IFN antagonism

[14,17]. Our previous studies indicated that SARS-CoV PLpro

inhibits host antiviral innate immune response by inhibiting

phosphorylation, dimerization and nuclear translocation of IRF-

3, likely by forming a complex with IRF-3 [17]. However, the

precise mechanism by which CoV PLPs inhibit IRF-3 activation

is still unclear. In this work, we demonstrate that CoV PLPs

antagonize IRF-3 signaling by targeting the IRF-3 scaffolding

protein STING for inhibition. We also characterize both

catalytic-dependent and catalytic-independent roles for PLPs in

blocking the activation of IFN response.

Results

CoV PLPs antagonize STING-mediated activation of IRF-3
To determine if CoV PLPs are capable of blocking STING-

mediated activation of an IRF-3 dependent promoter [36,37], we

assessed the level of IFN stimulated response element reporter

(ISRE-Luc) activity in the presence of STING with increasing

amounts of coronavirus PLPs. Stimulation of HEK-293T cells

with STING alone resulted in greater than 20-fold increase in

activity of the ISRE-dependent reporter. Co-expression of STING

with wild-type PLP2-TM or PLpro-TM resulted in a dose

dependent decrease in ISRE activity indicating that these PLPs

can antagonize STING-mediated activation of an IRF-3 depen-

dent promoter (Fig. 1 B and C and supporting information (SI)

Fig. S1). To determine if this antagonism is dependent on PLP

catalytic activity, cells were co-transfected with plasmid DNA

expressing STING and catalytic cysteine mutants of either PLP2-

TM or PLpro-TM. Consistent with previous studies, CoV PLP

catalytic mutants also act as antagonists, although they are less

effective than wild-type PLPs in antagonizing the IFN response

[14,17]. The effect of PLP2-TM on STING-mediated activation

was also visualized using confocal microscopy. HEK-293T cells

were transfected with STING-HA in the absence or presence of

PLP2-TM and the localization of IRF-3 was monitored by

immunofluorescence assay. In cells expressing STING-HA, IRF-3

translocates to the nucleus. However, in cells co-expressing PLP2-

TM, IRF-3 remains in the cytoplasm (Fig. 1D). In addition,

STING-HA and PLP2-TM co-localize in the cytoplasm of

transfected cells. These results indicate that CoV PLPs antagonize

STING-mediated activation of IRF-3.

CoV PLPs associate with STING
One possible mechanism for HCoV PLPs antagonism of

STING-mediated activation of IFN is to associate with STING,

either directly or as part of a multi-protein complex. Co-

immunoprecipitation experiments were performed to determine

if CoV PLPs associate with STING. HEK-293T cells were co-

transfected with plasmid DNA expressing an epitope tagged

version of STING (STING-Flag) in the presence or absence of

PLP2-TM and cell lysates were subjected to immunoprecipitation

with anti-Flag antibody. The products of the immunoprecipitation

were separated by SDS-PAGE and visualized by immunoblotting

(Fig. 2A). The results show that both NL63 wild-type and catalytic

mutant PLPs are detected in association with STING. Similar co-

immunoprecipitation results were obtained using PLpro-TM (Fig.

S2) Next, we wanted to determine if STING is sequestered in

HCoV-NL63-infected cells. HEK293-ACE2 cells, which express

angiotensin-converting enzyme 2 (ACE2), a key receptor for SARS

and NL63 coronaviruses, were transfected with STING-V5,

infected with HCoV-NL63 and analyzed by confocal microscopy

at 24 hrs postinfection. HCoV-NL63 replicase protein nsp3 which

contains the PLP2-TM region is detected as punctate, perinuclear

staining in virus-infected cells [35,38]. Interestingly, we detected

partial co-localization of STING and nsp3 in virus-infected cells

suggesting that STING may be sequestered in the viral replication

PLoS ONE | www.plosone.org 2 February 2012 | Volume 7 | Issue 2 | e30802

CoV PLPs Disrupt STING-Mediated Signaling



CoV PLPs Disrupt STING-Mediated Signaling

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e30802



complex and unable to mediate signaling (Fig. 2B). These results

indicate that these CoV PLPs associate with STING either directly

or as part of a multi-protein complex.

STING dimerization is reduced in the presence of CoV
PLPs

Recent studies indicate that activation of the innate immune

response signaling pathway induces dimerization and phosphor-

ylation of STING, which are required for activation of the IFN

response [9]. STING dimers can be visualized as a band at 80 kDa

when resolved on SDS-PAGE [9]. We hypothesize that PLPs

inhibit STING-mediated signaling through the disruption of

assembly or stability of STING dimers. To test this hypothesis,

cells were co-transfected with plasmid DNA expressing STING-

Flag in the presence or absence of PLP2-TM and Sendai virus

(SeV), and cell lysates were evaluated for STING dimers by

immunoblotting with anti-Flag (Figure 3A). We detected STING

dimers in STING-transfected and SeV-infected cells (Fig. 3A,

lanes 2 and 4). In contrast, STING dimers were reduced in cells

co-expressing PLP2-TM (Fig. 3A, lanes 3 and 5). Similar results

were obtained when we evaluated PLpro-TM for disruption of

STING dimers (Fig. S3), indicating that these CoV PLPs either

prevent assembly or promote dissociation of STING dimers. A

similar reduction in STING dimers was seen in cells transfected

with STING-HA and infected with SARS-CoV (Fig. 3B, lane 2).

In contract, STING dimers were not reduced when infected with

SeV (Fig. 3B, lane 3). Collectively, these results indicate that

STING dimerization was reduced in the presence of CoV PLPs,

and was also substantially reduced in cells infected with SARS-

CoV.

Figure 1. Expression of coronavirus PLPs blocks STING-mediated activation of the interferon stimulated response element (ISRE).
(A) Schematic diagram of human coronaviruses (HCoV) NL63 illustrating the processing of replicase polyproteins to generate nonstructural proteins
(nsp’s). The papain-like protease domains, the catalytic residues that essential for protease catalytic activity [35], and the transmembrane (TM) domain
within nsp3 are indicated. (B and C) HEK293T cells were transfected with the STING-HA, ISRE-luc reporter and either wild-type or catalytic mutants of
HCoV-NL63 PLP2-TM or SARS-CoV PLpro-TM. Asterisks indicate statistical significance (P,0.05) in comparison with ISRE-reporter activity stimulated
with STING. (D) Immunofluorescence microscopy of HEK-293T cells expressing STING-HA and PLP2-TM-V5. Cells were fixed at 24 hrs post-transfection
and the localization of endogenous IRF-3 (anti-IRF-3, green) and the epitope-tagged products was visualized by confocal microscopy.
doi:10.1371/journal.pone.0030802.g001

Figure 2. Coronavirus NL63 PLP2-TM associates with STING and nsp3 co-localizes with STING in virus-infected cells. (A) HEK293T cells
were cotransfected with plasmid DNAs expressing STING-Flag and either wild type or catalytic mutants of NL63-PLP2-TM-V5. Cell lysates were
prepared at 28 hrs post-transfection and subjected to immunoprecipitation (IP) with anti-Flag antibody. The products of the immunoprecipitation
were separated by SDS-PAGE and subjected to immunoblotting (IB). STING-Flag, PLP2-TM-V5 and the catalytic mutant expression were selectively
detected from whole cell lysates (WCL) using anti-Flag and anti-V5 antibodies. (B) HEK293-ACE2 cells were transfected with STING-V5 for 4 hours and
then infected with HCoV-NL63 for 24 hrs and evaluated for expression of and localization of replicase product nsp3 (anti-nsp3, red) and STING-V5
(anti-V5, green).
doi:10.1371/journal.pone.0030802.g002

CoV PLPs Disrupt STING-Mediated Signaling

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e30802



To determine if PLP catalytic activity is important for disruption

of STING dimers, cells were co-transfected with plasmid DNA

expressing STING-HA and STING-Flag and plasmid DNA

expressing wt or catalytic mutants of PLP2-TM. Disruption of

dimers was assessed by immunoprecipitation and immunoblotting

(Fig. 3C). If STING-HA and STING-Flag form heterodimers,

Figure 3. NL63 PLP2-TM interacts with STING and disrupts STING dimers. (A) HEK293T cells were co-transfected with plasmid DNA
expressing STING-Flag, and/or PLP2-TM and/or infected with Sendai virus (SeV) as indicated above. The cell lysates were separated by SDS-PAGE and
subjected to immunoblotting with antibodies as indicated on the left. (B) HEK293-ACE2 cells were transfected with plasmid DNA expressing STING-
HA and infected with SARS-CoV as indicated and cell lysates were subjected to immunoprecipitation with anti-HA. The immunoprecipitated products
were analyzed by SDS-PAGE and immunoblotted to access STING monomers and dimers. Whole cell lysates were immunoblotted to detected SARS-
CoV replicase protein nsp3 and STING-HA. (C) Cells were co-transfected with STING-HA and STING-Flag with either wild-type or the indicated catalytic
mutant of PLP2-TM and lysates were immunoprecipitated (IP) and immunoblotted (IB) to detect expression of each product.
doi:10.1371/journal.pone.0030802.g003
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then immunoprecipitation with anti-HA and immunoblotting with

anti-Flag will allow detection of these heterodimers, as shown in

Fig. 3C, lane 2. A reduction in STING dimers was detected in cells

expressing wt PLP2-TM and the D1849A mutant which retains

DUB activity (lanes 3 and 6), but not in cells expressing the

C1678A or H1836A mutants which do not possess DUB activity

[33]. These results indicate that PLP2 DUB activity is important

for disruption of STING dimers. Similar results were obtained

when we evaluated PLpro-TM for disruption of STING dimers

(Fig. S3) A previous report indicates that only the dimer form of

STING is ubiquitinated [9], which coupled with our observation

that PLPs with DUB activity reduce the accumulation of STING

dimers, supports a role for DUB activity in negatively regulating

STING. Thus, these results are consistent with a role for viral

DUB activity in antagonizing either the assembly or stability of

STING dimers.

PLP2-TM disrupts MAVS-STING-IKKe interaction
Next, we wanted to determine if PLP2-TM altered the assembly

of complexes required for activation of IRF-3 and the IFN

response. MAVS, a mitochondrial-associated adaptor protein is a

critical player in viral activation of the IFN response. Activation of

MAVS mediates the assembly of a multi-protein complex that

activates TBK-1/IKKe to phosphorylate IRF-3 [39]. Recent

studies revealed that STING associates with MAVS to recruit

TBK-1/IKKe and IRF-3 to a complex [8], and that activation of

STING is critical for activation of IRF-3 [11,12]. Therefore, we

investigated if PLP2-TM had any effect on assembly of these

signaling complexes. HEK-293T cells were co-transfected with

plasmid DNAs expressing STING-HA along with Flag-RIG-I,

Flag-MAVS or Flag-IKKe in the presence or absence of PLP2-

TM. Cell lysates were harvested and evaluated for co-immuno-

precipitation of complexes by immunoblotting. We found that

expression of PLP2-TM had no effect on co-immunoprecipitation

of RIG-I with STING (Fig. 4A), but that co-immunoprecipitation

of MAVS and IKKe was disrupted by expression of PLP2-TM

(Fig. 4B, lane 4 and Fig. 4C, lane 4). Overall, these results are

consistent with an important role for CoV PLPs in blocking

activation of IFN by disrupting STING-mediated activation and

complex formation.

PLP2-TM blocks ubiquitination of signaling molecules
Modification of signaling molecules by ubiquitination plays a

critical role in activation of the IFN response [40–42]. Here, we

asked if PLP2-TM can recognize and deubiquitinate key

complexes in the IFN signaling pathway. HEK-293T cells were

transfected with HA-Ub and epitope-tagged versions of either

RIG-I, TBK-1, IRF-3 or STING and cell lysates were subjected to

immunoprecipitation and immunoblotting to determine the

ubiquitination status of the immunoprecipitated proteins (Fig. 5).

We found that there was a dramatic reduction in the amount of

ubiquitinated RIG-I (A), TBK-1 (B), IRF-3 (C) and STING (D) in

cells expressing PLP2-TM. We also investigated the role of the

PLP2-TM catalytic activity in mediating deubiquitination. Cells

were transfected with HA-Ub and either wild-type or catalytic

mutants of PLP2-TM and as expected, we detected a reduction in

the level of ubiquitinated STING in the presence of wt and the

D1849A mutant of PLP2-TM (Fig. 5D, lanes 4 and 7).

Interestingly, expression of the PLP2-TM C1678A and H1836A

mutants, which are catalytically inactive [35], still resulted in

reduced levels of ubiquitined STING compared to the control

(Fig. 5D, lanes 5 and 6). These results suggest that the catalytically

inactive mutants of PLP2-TM may block access of STING to the

ubiquitination machinery, thereby resulting in reduced levels of

Figure 4. NL63 PLP2-TM disrupts signaling complex formation.
HEK293T cells were co-transfected with STING-HA together with either
Flag-tagged RIG-I (A), Flag-tagged MAVS (B) or Flag-tagged IKKe (C),
and PLP2-TM-V5. At 28 h after transfection, cell lysates were prepared
and subjected to immunoprecipitate (IP) and immunoblot (IB) with the
indicated antibodies. The asterisk indicates the nonspecific band.
doi:10.1371/journal.pone.0030802.g004
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Ub-conjugated STING. Thus, the IFN antagonism of the catalytic

mutants may be due to physical interaction with STING which

blocks access of ubiquitin chains or Ub-ligases or other modifying

enzymes that are required for efficient signaling [43,44]. A

previous report indicates that only the dimer form of STING is

ubiquitinated [9], which coupled with our observation that PLPs

with DUB activity reduce the accumulation of STING dimers,

supports a role for DUB activity in negatively regulating STING.

Thus, these results are consistent with a role for viral DUB activity

in antagonizing either the assembly or stability of STING dimers.

Discussion

In this study, we investigated the mechanisms of the IFN

antagonism imposed by the coronavirus papain-like proteases

(CoV PLPs). Previous studies suggested that CoV PLPs block IFN

synthesis by inhibiting virus-activated IRF-3 phosphorylation and

nuclear translocation, but the underlying mechanism was unclear

[14,17,32]. Here we show that both SARS-CoV PLpro-TM and

HCoV-NL63 PLP2-TM associate with an ER-associated protein,

STING and block assembly or stability of STING dimers which

are important for downstream signaling and induction of the IFN

response. Importantly, we have demonstrated that STING

colocalizes with nsp3 (which contains PLPs) in HCoV-NL63

infected cells, and that STING dimerization was substantially

reduced in cells infected with SARS-CoV. In addition, we found

that ubiquitination of signaling molecules is dramatically reduced

in the presence of HCoV-NL63 PLP2-TM, which may contribute

to destabilizing the signaling complex. Targeting of the signaling

complex by blocking ubiquitination and disruption of STING

dimers presents yet another mechanism used by coronaviruses to

prevent activation of innate immunity and illustrates how

coronavirus PLPs negatively regulate the IFN antiviral immune

response in host cells.

Targeting the stimulator of IFN genes, STING
Recent studies have revealed the arsenal of proteins that viruses

use to evade and subvert recognition by pattern-recognition

receptors (PRRs) or activation of signaling molecules that are

designed to respond to infectious agents [45]. STING is a key

scaffolding protein that links the cytosolic viral RNA sensors RIG-

I, rather than the MDA5, to the mitochondria protein MAVS

[8,11]. These cytosolic sensors have been shown to be important

for recognition of coronavirus RNA in oligodendrocytes [21] and

brain macrophages/microglia [20]. Activation of STING, either

by expression of N-RIG, the constitutive active caspase recruit-

ment domain of RIG-I or ectopic expression of STING itself,

induces the formation of STING dimers, which are modified by

phosphorylation and ubiquitylation [9]. The activation of STING

facilitates the recruitment of IRF-3 and TBK-1 into a complex

where IRF-3 is phosphorylated. Phosphorylated IRF-3 forms

dimers and is transported to the nucleus to activate transcription of

type I IFN genes. CoV PLPs target STING and prevent this key

scaffolding protein from activating IRF-3. Previously, we showed

that PLpro blocks NF-kB-dependent promoter activity and that

antagonism is abrogated using protease inhibitors [14]. Thus, CoV

PLPs interact with key signaling molecules and exploit both

catalytic dependent and catalytic-independent mechanisms to

block the innate immune response. CoV-PLPs disrupt signal

transduction to both IRF-3 and NF-kB, the key transcription

factors required for activation of IFN-b (Fig. 6). Interestingly, CoV

PLPs seem to exploit both catalytic dependent and independent

mechanisms to block STING activity and a catalytic-dependent

mechanism to disrupt NF-kB activity.

Previous studies have shown a role for viral proteases in

cleavage of key IFN signaling molecules [45]. For example, the

NS3/4A protease of hepatitis C virus and GB virus B and the

3ABC precursor of hepatitis A virus cleave MAVS/IPS-1, the

mitochondria-associated signaling molecule, which blocks activa-

tion of IFN synthesis [46–51]. Therefore, it seemed reasonable to

hypothesize that CoV PLPs exploited their protease or DUB

activity to antagonize the innate immune response. However, we

had previously shown that catalytically defective PLP mutants

were still capable of inhibiting IRF-3 activation [17]. Furthermore,

addition of a protease inhibitor that blocks both protease and

DUB activity [52] failed to abrogate the PLP inhibition on

activation of IRF-3 dependent promoters [14]. This led us to

suspect that CoV PLPs were interacting with a component in the

IFN signaling pathway. The fact that CoV PLPs are expressed as a

polyprotein that localizes to the ER [25,26] led us to evaluate ER

resident signaling molecules as targets of antagonism. The results

presented in this study indicate that CoV PLPs are particularly

potent antagonists because they can block: 1) STING dimeriza-

tion; 2) the MAVS-STING-IKKe interaction required for

signaling and 3) the ubiquitination of key signaling molecules

such as RIG-I, STING, IRF-3 and TBK-1. Interestingly,

catalytically inactive mutants of PLPs can interact, either directly

or as part of a signaling complex, with STING and moderately

inhibit IRF-3 activation for IFN induction, but wild type PLPs

exhibit the most robust inhibition. We found that catalytic activity

was important for blocking either the assembly or the stability of

STING dimers. In addition, we found that PLP2-TM either

Figure 5. Reduction of ubiquitinated forms of RIG-I, STING,
TBK1 and IRF-3 in the presence of NL63 PLP2-TM. HEK293 cells
were transfected with Flag-tagged RIG-I(A), TBK1(B), myc-IRF-3(C), or
STING-Flag (D) together with plasmid DNA expressing HA-tagged Ub in
the presence or absence of V5-tagged PLP2-TM-V5. Cells were
incubated for 24 hours after transfection and treated with 25 mM
MG132 for 4 hours prior to harvesting lysates. Lysates were immuno-
precipitated with the indicated antibody and the products were
subjected to immunoblotting with anti-HA to evaluate ubiquitinated
proteins (upper panels). The whole cell lysates (WCL) were blotted to
evaluate expression of each epitope-tagged product (bottom panels).
doi:10.1371/journal.pone.0030802.g005
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actively deubiquitinates or blocks the ubiquitination of the

signaling molecules. This is consistent with these reported works

that STING dimers were modified by ubiquitin [9]. By associating

with STING, either directly or as part of a signaling complex,

CoV PLPs can target and either block or deubiquitinate this

important signaling molecule. Of course the question still remains

if the PLP-STING interaction is direct or indirect, and what

region(s) of the PLP are required for this potential interaction.

These studies are currently ongoing. Understanding how to

negatively regulate STING-mediated innate antiviral signaling by

CoV PLPs may lead to the development of novel antiviral

therapies and new insights for regulating the IFN response during

acute and chronic infections.

DUBs as negative regulators of IFN activation
One of the striking findings in this report is the similarity in the

function of CoV PLPs and cellular DUBs such as the NF-kB

responsive gene A20, deubiquitinating enzyme A (DUBA), and the

tumor suppressor protein associated with cylindromatosis (CYLD)

[53–55]. Like CoV PLPs, cellular DUBs were identified as

negative regulators of the innate immune response. A20 is

considered a ‘‘central gatekeeper in inflammation and immunity’’

[56] because of its ability to interact with and mediate ubiquitin-

editing on signaling molecules such as RIP1, TRAF6, RIP2 and

NEMO. A20 DUB activity removes K-63 linked polyubiquitin

chains from RIP1, TRAF6, RIP2 and NEMO which results in

negative regulation of the innate immune response. In addition,

A20 has been shown to act by antagonizing interactions between

signaling molecules and ubiquitin conjugating enzymes [57].

Interestingly, both A20 and CoV PLPs can act on K-63 linked

ubiquitin chains [14,58]. Further experiments are needed to

determine if recognition, processing or sequestering of K-63 linked

ubiquitin is important for CoV PLPs negative regulation of the

IFN response. Cellular proteins DUBA and CYLD also negatively

regulate the innate immune response. Kayagaki and co-workers

found that DUBA targets and deubiquitinates TRAF3, a signaling

molecule required for activation of IRF-3 [55]. They showed that

reducing the expression of DUBA augments the IFN response to

poly(I:C) whereas ectopic expression of DUBA blocks the IFN

response. CYLD has been shown to deubiquitinate RIG-I to

inhibit IFN production [53,54]. Ectopic expression of CYLD

antagonizes the IFN response whereas siRNA-mediated knock-

down of CYLD expression allows for a more robust IFN response.

It seems that CoV PLPs are usurping the function of cellular

DUBs by behaving as negative regulators of the innate immune

response through targeting STING for both deubiquitination and

dimer disruption.

Another possibility is that CoV PLPs function by sequestering

STING as a mechanism of blocking activation of IFN. Both

catalytically active and inactive CoV PLPs could interact and

sequester STING and thereby prevent activation of IRF-3.

Coronavirus PLPs are part of the viral replicase polyprotein that

associates with ER membranes to form convoluted membranes

and double membrane vesicles (DMVs) which are the sites of

viral RNA synthesis [25,26,59]. Interestingly, STING also resides

in the ER and upon activation assembles with Sec5 into exocyst

vesicles [12]. The interaction of STING with PLP2-TM may

block the signals required for STING to translocate to exocyst

vesicles. Thus, further studies with CoV PLPs may reveal specific

targets of STING that modulate this arm of the innate immune

response.

In summary, the results of this study indicate that HCoV-NL63

and SARS-CoV PLPs inhibit host IFN-b production by targeting

and nullifying STING. Blocking this key scaffolding protein

prevents activation of IRF-3 and subsequent transcription of IFN-

b. The antagonism functions of CoV PLPs are important negative

regulators of the innate immune response and may be important

in the virulence and pathogenesis of human coronavirus infection.

Further characterization of the PLP-STING interaction may

provide new targets for antiviral interventions.

Materials and Methods

Cells and virus
HEK293T cells [44] were cultured using Dulbecco’s modified

Eagle’s medium containing 10% (v/v) fetal calf serum, supple-

mented with penicillin (100 U/ml) and streptomycin (100 mg/ml).

HEK293-ACE2 cells, which express angiotensin-converting en-

zyme 2 (ACE2), a key receptor for SARS and NL63 coronaviruses,

were kindly provided by Dr. Kui Li (University of Tennessee

Health Science Center, Memphis, USA) and cultured as above

with the addition of puromycin (10 mg/ml). HCoV-NL63 was

propagated in LLC-MK2 cells [35] which were kindly provided by

Lia van der Hoek (University of Amsterdam, The Netherlands)

and as previously described [35]. SARS-CoV was propagated in

VeroE6 cells as previously described [52]. All work with SARS-

CoV was performed in a biosafety level 3 facility using approved

protocols. Sendai virus was kindly provided to the Chen lab by Dr.

Shaobo Xiao (Huazhong Agricultural University, Wuhan, China)

or purchased from Charles River Laboratories.

Figure 6. Model depicting the mechanisms used by CoV PLPs
to block STING from signaling the activation of the IFN-b
induction pathway. (A) Activation of sensors such as RIG-I induces
interaction with the signaling complex including MAVS, STING, IRF-3
and TBK-1. Activated MAVS interacts with STING, which dimerizes,
leading to the activation of IKK complex, TBK1 and IKKe [8]. The
activation of this complex leads to the ubiquitination of RIG-I, STING,
IRF-3 and TBK1 and the phosphorylatin of STING and IRF-3. Activated
the transcription factor IRF-3 translocates to the nucleus inducing
production of IFN. (B) Coronavirus papain-like protease domains
(depicted here as PLP) interact with STING to block signaling by
blocking assembly or stability of STING dimers and preventing the
ubiquitination of signaling proteins, such as RIG-I, TBK1, and IRF-3.
doi:10.1371/journal.pone.0030802.g006
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Plasmid DNAs
DNA constructs containing wild type and catalytic mutants of

NL63 PLP2-TM SARS-CoV PLpro-TM and plasmids of IFN-b-

Luc, PRD(III-I)4-Luc, ISRE-Luc and HA-tagged Ub were previ-

ously described [14,17]. Flag-hIPS-1(MAVS), BOS-Myc-hIRF3,

Flag-hTBK1, Flag-hRIG-I were kindly provided by Dr. Himanshu

Kuma and Shizuo Akira (Immunology Frontier Research Center

Osaka University, Osaka, Japan). pcDNA3.1-HA-ERIS (designated

here as STING-HA) and pCMV14-Flag-ERIS (designated STING-

Flag) were kindly provided by Dr. Zhengfan Jiang (School of Life

Sciences, Peking University, Beijing, China).

Luciferase reporter gene assay
HEK293T cells were transfected with the indicated stimulator

plasmid DNA (STING-HA), reporter plasmid DNA [pRL-TK,

ISRE-Luc, IFN-b-Luc, or PRD(III-I)4-Luc] and either NL63

PLP2-TM or SARS-CoV PLpro-TM using either Lipofectamine

2000 or Mirus LT1 according to the manufacturer’s protocol and

incubated for 24 hours. Firefly luciferase and Renilla luciferase

activities were assayed using the Dual Luciferase Reporter Assay

Kit (Promega). Data were shown as mean relative luciferase (firefly

luciferase activity divided by Renilla luciferase activity) with

standard deviation from a representative experiment carried out in

triplicate. For statistical analysis, the data between Vector (300 ng)

and PLP (PLpro)-TM with various concentrations were subjected

to unpaired, two-tailed Student’s t test using the Microsoft SPSS

12.0 software, and P values of ,0.05 were considered to indicate

statistical significance.

Immunofluorescence assays
HEK293 or HEK293-ACE2 cells were plated on fibronectin

treated glass coverslips in 12-well plates. To evaluate localization of

STING and NL63 PLP2-TM, plasmid DNA expressing STING-

HA (225 ng per well) was transfected in the presence or absence of

300 ng of PLP2-TM using Mirus LT1 according to the manufac-

turer’s protocol. At 16 hours post transfection, cells were fixed with

3.7% formaldehyde for 10 min at room temperature. Cells were

then incubated with 1:200 dilution of rabbit anti-IRF-3 (Active

Motif), mouse anti-HA (Covance), and goat anti-V5 (Genscript) in

ADPS (PBS+0.1% Triton-6100+5% fetal calf serum) for 1 hour at

room temperature. Cells were washed three times with PBS and

incubated with 1:200 dilution of chicken anti-rabbit Alexa Fluor

(AF) 488, donkey anti-mouse AF568, and donkey anti-goat AF647

(Molecular Probes) in ADPS for 1 hour in the dark. Following the

incubation, cells were washed three times with PBS, mounted, and

imaged with the Zeiss LSM-510 confocal microscope.

To evaluate STING localization in NL63 infected cells,

HEK293-ACE2 cells were transfected with 100 ng of a plasmid

expressing human STING-V5 for 4 hours. Cells were subsequently

infected with 200 ml of HCoV-NL63 (16104 pfu/ml). At 24 hours

post infection, cells were fixed with 3.7% formaldehyde for

10 minutes at room temperature. Cells were then diluted with a

1:1000 dilution of rabbit anti-nsp3 [35] and 1:1000 dilution of

mouse anti-V5 for 1 hour at room temperature in ADPS. Cells were

washed three times with PBS and incubated with a 1:200 dilution of

goat anti-rabbit AF568 and chicken anti-mouse AF488, and 1:1000

dilution of DAPI for 30 minutes at room temperature in the dark.

The cells were then washed three times with PBS, mounted, and

imaged with the Zeiss LSM-510 confocal microscope.

Co-immunoprecipitation (Co-IP) analysis
HEK293T cells were seeded on 100-mm dishes at a density of

16106 cells/dish. 12 hours later, cells were transiently transfected

with a total of 10 mg of empty plasmid or indicated expression

plasmids using Lipofectamine 2000 (Invitrogen). At 28 hours after

transfection, cells were lysed in buffer containing 0.5% Triton-X-

100, 150 mM NaCl, 12.5 mM b-glycerolphosphate, 1.5 mM

MgCl2, 2 mM EGTA, 10 mM NaF, 1 mM Na3VO4, 2 mM

DTT plus protease inhibitor cocktail (Sigma). The cell extracts

were spun down at 50006 g for 10 minutes at 4uC. The protein

concentration of each lysate was determined using the BCA

Protein Assay (Bio-Rad) and the concentration was adjusted to

1 mg/ml, with 500 ml of lysate used for each IP. The lysates were

precleared by adding 20 ml protein A+G Agarose (Beyotime

Institute of Biotechnology, China) and 1 mg of normal IgG and

incubating for 2 hours at 4uC, followed by spinning down the

beads. The precleared supernatant was incubated with the

designated antibody [Anti-Flag (Sigma) or anti-HA (MBL)/anti-

Myc (MBL)] with rocking overnight at 4uC. The beads-antibody-

antigen complex was spun down and washed 3 times with 1 ml of

lysis buffer. The proteins were eluted from the beads in 30 ml of

26SDS-PAGE sample buffer subjected to boiling for 10 min. The

sample was separated by SDS-PAGE and transferred to PVDF

membrane for western blotting.

Assessing ubiquitination of signaling molecules in
cultured cells

The effect of HCoV-NL63 PLP2-TM on ubiquitinated proteins

in cultured cells was assessed as described previously [53,55].

Briefly, Flag-tagged RIG-I, TBK1, STING, IRF-3 were co-

transfected into HEK293T cells together with pcDNA3.1-HA-Ub,

plus wild type or catalytic mutant PLP2-TM DNA using

Lipofectamine 2000 according to the manufacturer’s instructions.

Empty vector pcDNA3.1/V5-HisB was used to standardize the

total amount of DNA used for transfection. 24 post-transfection,

cells were incubated with 25 mM MG132 for 4 hours, and then

lysed in 300 ml of RIPA buffer (50 mM Tris-HCl pH 7.4,

150 mM NaCl, 2 mM EDTA, 1% NP-40, 0.1% SDS) containing

protease inhibitor cocktail (1 mM, Roche) and 10 mM NEM, Non-

covalently bound proteins were dissociated by boiling in 1% SDS,

and samples diluted 1:10 in lysis buffer (50 mM Tris-HCl pH 7.4,

150 mM NaCl, 2 mM EDTA, 1% NP-40) containing protease

inhibitor cocktail and 10 mM NEM. The soluble lysates were then

immunoprecipitated with anti-Flag antibody followed by washing

with RIPA buffer for three times. Flag-tagged proteins were

resolved by SDS-PAGE and sequentially blotted with anti-HA and

anti-Flag antibodies. 150 ml of lysate was used for each

immunoprecipitation reaction. To confirm the PLP and the

catalytic mutant expression level, western blotting with anti-V5

antibody (Invitrogen) was used to detect wild type and catalytic

mutant PLP2-TM-V5 protein expression.

Detection of STING dimers
To assess STING dimers, HEK293T cells were transfected with

STING-HA or STING-Flag (0.5 mg per 100 mm dish) and lysates

subjected to immunoprecipitation and western blotting as

described [9] with the indicated antibodies. To detect STING

dimers induced by Sendai Virus (SeV) infection, HEK293T cells

were transfected with STING-Flag and then infected with SeV

(HAU = 100). 24 hours later, cells were lysed and immunoblotted

with anti-Flag antibodies. To assess STING dimers in transfected

and SARS-CoV- or Sendai Virus (SeV)- infected cells, HEK293-

ACE2 cells were seeded at 105 cells/well in twelve well plates.

24 hours later, cells were transfected with either 0.5 mg of

mSTING-HA expressing plasmid DNA or 0.5 mg pcDNA3.1V5-

HisB vector DNA (Invitrogen). Following six hours of incubation,

the cells were infected with either SARS-CoV Urbani (MOI = 0.1)
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or SeV (HAU = 100). 24 hours later, the cells were lysed in 300 ml

of lysis buffer containing 0.5% Triton-X-100, 150 mM NaCl,

12.5 mM b-glycerolphosphate, 1.5 mM MgCl2, 2 mM EGTA,

10 mM NaF, 1 mM Na3VO4, 2 mM DTT plus protease inhibitor

cocktail (Sigma). 150 ml of lysate was used for each immunopre-

cipitation reaction. After preclearing the lysate with protein G

magnetic beads (Millipore), 0.5 mg of rabbit anti-HA antibodies

(Invitrogen) was incubated with the lysate overnight at 4uC. 25 ml

protein G magnetic beads was added to the immunoprecipitation

reactions and incubated for 2 hours at 4uC. Protein G magnetic

beads were precipitated and washed 3 times with 1 ml lysis buffer.

80 ml of 26 sample buffer containing 10% glycerol, 5% -

mercaptoethanol, 3% SDS, 12.5% upper buffer (0.5 M Trizma

base and 0.4% SDS), and 0.01 mg bromophenol blue was added

to the beads, and protein-antibody complexes were eluted by

incubating at 37uC for 30 min. Samples were separated on SDS-

PAGE gel and transferred to a PVDF membrane. Blots were

incubated with mouse anti-HA antibody (Sigma) or anti-nsp3

antisera [17] at 0.5 mg/ml and 0.125 mg/ml concentrations,

respectively. After washing three times in TBS-T buffer, blots

were subsequently incubated with either goat-anti-mouse-HRP or

donkey-anti-rabbit-HRP (Southern Biotech). Antibody-antigen

reactions were detected using the Western Lighting Plus-ECL

chemiluminescence reagents from Perkin Elmer.

Supporting Information

Figure S1 (A) Schematic diagram of SARS-CoV illustrating the

processing of replicase polyproteins to generate nonstructural

proteins (nsp’s). The papain-like protease domains, the catalytic

residues, and the transmembrane (TM) domain within nsp3 are

indicated. (B) Western blot detection of STING-V5 and dose

response of PLP2-TM-V5 and PLpro-TM-V5.

(TIF)

Figure S2 SARS-CoV PLpro-TM associates with STING.

HEK293T cells were cotransfected with plasmid DNAs expressing

STING-Flag and either wild type or catalytic mutants of PLpro-

TM-V5. Cell lysates were prepared at 28 hrs post-transfection and

subjected to immunoprecipitation (IP) with anti-Flag antibody.

The products of the immunoprecipitation were separated by SDS-

PAGE and subjected to immunoblotting (IB). STING-Flag,

PLpro-TM-V5 and the catalytic mutant expression were selec-

tively detected from whole cell lysates (WCL) using anti-Flag and

anti-V5 antibodies.

(TIF)

Figure S3 SARS-CoV PLpro-TM interacts with STING and

disrupts STING dimers. HEK293T cells were co-transfected with

plasmid DNAs expressing STING-HA, and/or PLpro-TM and/or

GFP-V5 as indicated above. At 24 hrs post-transfection, cell

lysates were subjected to immunoprecipitation with the indicated

antibody and the products were separated by SDS-PAGE and

subjected to immunoblotting to detect STING monomer and

dimer (upper panel). Whole cell lysates (WCL) were immuno-

blotted to detected expression of STING-HA, PLpro-TM-V5, and

GFP-V5 (lower panel).

(TIF)
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