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Abstract

Context: Exploring intermediate phenotypes within the human brain’s functional and structural circuitry is a promising
approach to explain the relative contributions of genetics, complex behaviors and neural mechanisms in the development
of major depressive disorder (MDD). The polymorphic region 5-HTTLPR in the serotonin transporter gene (SLC6A4) has been
shown to modulate MDD risk, but the neural underpinnings are incompletely understood.

Objective: 37 right handed healthy women between 21 and 61 years of age were invited to participate in an fMRI modified
n-back study. The functional polymorphism 5-HTTLPR located in the promoter region of the SLC6A4 gene was genotyped
using polymerase chain reaction (PCR).

Results: Short 5-HTTLPR allele carriers showed more blood-oxygen-level-dependent (BOLD) bilateral prefrontal cortex
activation in the right [F(2, 30) = 4.8, g2 = .25, p = .026] and left [F(2, 30) = 4.1, g2 = .22, p = .015] inferior frontal gyrus pars
triangularis with increasing n-back task difficulty relative to long 5-HTTLPR allele carriers. Short 5-HTTLPR allele carriers had
inferior task performance on the most difficult n-back condition [F(2, 30) = 4.9, g2 = .26, p = .014].

Conclusions: This activation pattern found in healthy at risk individuals resembles an activation pattern that is typically
found in patients suffering from acute MDD. Altered function in these areas may reflect intermediate phenotypes and may
help explain the increased risk of depression in short 5-HTTLPR allele carriers.
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Introduction

Altered lateral prefrontal cortex function is one of the most

consistently reported findings in major depressive disorder (MDD)

[1]. Both increased and decreased functioning in the medial- and

lateral prefrontal cortex during working memory related tasks

have been demonstrated in MDD relative to healthy control

subjects [2], and these activation patterns appear to contribute to

the development and progression of MDD. It is unclear, however,

if these alterations represent a vulnerability factor that increases

the risk for developing MDD, or rather develops as a consequence

of MDD. The serotonin transporter polymorphism (5-HTTLPR),

with a variable number of DNA sequence repeats (short and long

alleles) located in the regulatory region of the gene, has repeatedly

been shown to moderate MDD risk [3]. Several studies have

demonstrated that short 5-HTTLPR carriers, particularly women

[4], have increased vulnerability for the development of MDD in

the context of stressful life events [5]. Cognitive control is a key

process in an integrated cognitive-biological model of depression

[6], but 5-HTTLPR influence on this top-down part of the system

has not been systematically investigated. This is in contrast to a

number of studies on the limbic system based bottom-up pathway.

In particular, the amygdala’s role in the perception of emotional

valence has led to a series of studies to determine the role of the 5-

HTTLPR in processing emotionally salient information in MDD

[7]. Short 5-HTTLPR carriers have shown highly significant

reduction of amygdala-anterior cingulate cortex connectivity in

comparison to homozygote long 5-HTTLPR carriers [8]. Short 5-

HTTLPR carriers have also shown more functional coupling

between the amygdala and the ventromedial prefrontal cortex,

compared to long 5-HTTLPR carriers [9]. There is also evidence

of 5-HTTLPR-dependent structural variability in the MDD

circuit that provides cognitive control of emotion (11). However,

functional imaging studies on cognitive control are sparse.

Cognitive control of emotion plays an important role in emotion

downregulation when emotion activation is no longer adaptive
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[10]. Therefore, individual differences in the ability to perform

emotion downregulation may contribute in an important way to

the risk for developing MDD.

Herein, we determine intermediate endophenotypes in a circuit

that has been consistently implicated in MDD [11] in healthy

women at increased risk for developing MDD [4]. We used fMRI

and an n-back task to unmask altered brain function in healthy

women who were grouped by 5-HTTLPR genotypes. We tested

the hypothesis that short 5-HTTLPR allele carriers, but not long

5-HTTLPR carriers may be normal under resting conditions but

show altered brain function while performing the n-back task as

expressed by elevated activation within the lateral prefrontal

cortex. Subregions within the ventrolateral prefrontal cortex were

predefined based on its role in conscious emotion regulation

[12,13]. The activation pattern would be similar to what has been

shown in individuals during a MDD episode [2]. We also

predicted that short 5-HTTLPR carriers would have weaker

performance on the n-back task and that performancewill be

inversely associated with lateral PFC activation.

Material and Methods

Ethics Statement
All data, including blood samples, were collected, stored and

treated according to the principles expressed in the Declaration of

Helsinki [14]. All participants provided written informed consent.

The project was approved by the Regional Ethics Committee for

Medical Research, North Norway.

Participants
37 healthy, women free from drugs were recruited at the Center

for the Study of Human Cognition, UiO to participate in an fMRI

study and an n-back task. All participants underwent medical and

psychiatric evaluations including the Diagnostic Interview for

Genetic Studies [15], the Structural Clinical Interview for DSM-

IV, Axis I and II disorders (SCID I and SCID II). Depression and

anxiety symptoms were assessed using the Beck Depression

Inventory (BDI) and the Beck Anxiety Inventory (BAI), respec-

tively. The SCID interviews were collected and recorded by

trained clinicians and were subjected to consensus diagnoses.

Education level was classified by means of the International

Standard Classification of Education [16]. General cognitive

functioning was estimated from scaled scores from two subtests of

the WAIS-III, Picture Completion and Similarities [17].

Genotyping
Genotyping the biallelic 5-HTTLPR polymorphism, located in

the regulatory region of the serotonin transporter gene (SLC6A4),

was performed essentially as described in detail elsewhere [18]. A

real-time fluorescence LightCycler instrument was used to amplify

genomic DNA by polymerase chain reaction (PCR) in a final

volume of 20 ul using LightCycler Faststart DNA SYBR Green kit

(Roche cat no 12239264001) with specific primers (0.5 uM) [19]

generating a long (L) 419 base pair (bp) or a short (S) 375 bp PCR

product. Differences in product length depend on the variable

number of a 22 bp tandem repeat (VNTR) sequence in the

promoter region. Cycle conditions were initiated by 10 min

denaturation (95uC) followed by 45 cycles at 95uC (10 s), 66uC
(10 s) and 72uC (10 s). Based on the identification of a single

nucleotide polymorphism (SNP) within the long variant, sugges-

tions have been put forward that this is a triallelic functional

polymorphism [20]. For the detection of the additional A.G SNP

(rs25531), the PCR fragments were digested with 1 U MspI

restriction enzyme (New England Biolabs, Beverly, Massachusetts)

for 2 hour at 37uC. The PCR fragments contain two obligatory

MspI sites, whereas the A.G substitution creates an additional

MspI site. The PCR reaction followed by restriction digestion and

gel electrophoreses provides classification of the S, LA and LG

alleles. The triallelic classification was then reclassified into a

biallelic functional model, based on the 5-HTTLPR-directed level

Figure 1. The fMRI modified n-back procedure. The n-back conditions were contrasted in a parametric block design.
doi:10.1371/journal.pone.0030564.g001
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of transcriptional activity of the transporter gene as follows: LG/S,

LG/LG and S/S genotypes were classified as S/S (low leveled

RNA transcription); LA/S and LA/LG genotypes were classified as

L/S (intermediate leveled); and LA/LA genotype was classified as

L/L (high leveled). The three groups were analyzed separately

without dichotomized genotype factors.

fMRI acquisition and analysis
In a working memory functional MRI paradigm, participants

were instructed to monitor a series of stimuli and to respond

whenever a stimulus was presented that was the same as the one

presented n- trials previously. The increase in cognitive load is

based on the parametric increase between the different n-backs.

The paradigm was constructed in E-prime 2.0 studio software.

The stimuli were a series of 2 times 12 small and large centred

letters in 16 randomized blocks. Stimulus duration time was set to

300 ms with inter-stimulus interval fixation points of 1650 ms.

Four types of stimulus procedures were randomized, two types

containing 2 n-backs and two types containing 4 n-backs, giving a

total of 48 events and 144 non events in each run (64/128 in the 0-

back condition). Each of the 16 series had a total duration of

23,4 s. An 8000 ms resting condition was presented between series

in the form of a centred exclamation point. Behavioural measures

for group comparison were accuracy and reaction time. Outcome

measures used in the fMRI analysis were onset time and duration

in the n-back series compared to the 8000 ms resting conditions in

a block related design (Figure 1).

BOLD imaging data were acquired on a Philips Archieva 3T

MR scanner using gradient echo EPI 34 transverse 3 mm slices

(no gap), parallel to the AC- PC line. Repetition time

(TR) = 2000 ms, slice echo time (TE) = 30 ms. Flip angle = 80%,

field of view 24062406102 mm. 3D structural images were 170

T1 weighted sagittal slices. FEAT, a part of the FSL software, was

used in the model based fMRI analysis [21]. Data preprocessing

included motion correction, first-level FILM GLM time series

analysis and higher level FLAME Bayesian mixed effects analysis.

The individual T1 weighted structural images were manually and

individually prepared based on regions of interest (removing non

brain regions such as neck, ears and nose), and scull stripped to

remove non brain tissue. The linear registrations tool, FLIRT,

was used for registration in 7 degrees of freedom from the

individual functional images to T1 weighted images. Registra-

Figure 3. Location of BOLD contrast activation across the whole sample (n = 33). Z-threshold = 2.3 (p = .05). Clusters with Z-Max = .5.0 are
displayed in the activation images.
doi:10.1371/journal.pone.0030564.g003

Figure 2. The two regions of interest masked based on the
Harvard-Oxford Cortical atlas. All ROIs’ intensity thresholds were
set to 50–100 based on the probability maps for each label.
Red = inferior frontal gyrus, pars opercularis. Yellow = inferior frontal
gyrus, pars triangularis.
doi:10.1371/journal.pone.0030564.g002
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tions from the individual T1 weighted images to standard MNI

space were linear registrations [22]. The block related contrast

was first included in a whole brain analysis for the whole sample

to validate the fMRI modified n-back procedure and further

included in ROI group (5-HTTLPR genotype) analyses based on

the general linear model. ROIs were chosen a- priori and

restricted to subdivisions within the prefrontal cortex that are

involved in conscious downregulation of emotion [11]. The ROIs

were defined based on the Harvard-Oxford Cortical Structure

Atlas [23]. Two subregions of the VLPF, the inferior frontal

gyrus, pars trinagualris and pars opercularis, were binary masked

(threshold 50–100). The two subregions were further lateralized

for the right and left hemisphere giving a total of 4 ROI’s

(Figure 2).

Two way ANOVAs were conducted to explore potential group

differences in age, education level, Beck Depression Inventory,

Beck Anxiety Inventory, WAIS III; Similarities and Picture

Completion, and the fMRI data processing was carried out using

FEAT (FMRI Expert Analysis Tool) version 5.98, a part of FSL

(FMRIB’s Software Library). Z (Gaussianised T/F) statistics were

Figure 4. Box plots show the left and right Inferior Frontal Gyrus, pars triangularis interquartile range (50 percent of cases), median
and range. Y-axis = percentage signal change, X-axis = 5-HTTLPR genotype (L = long, S = short).
doi:10.1371/journal.pone.0030564.g004

Table 1. Participant descriptive statistics.

LL (n = 10) LS (n = 11) SS (n = 12) Total (n = 33)

Means6SD Range Mean6SD Range Means6SD Range Means6SD Range

Age 33.5613.2 38 33.9610.8 35 42.9614.0 35 37.0613.1 40

ISCED level 4.56.8 2 4. 86.8 3 5.16.7 2 4.86.8 3

WAIS III PC 13.062.3 8 14. 864.0 10 12. 763.0 10 13.563.2 10

WAIS III SI 11.163.0 10 10.562.3 9 11.263.4 13 11.062.9 13

BDI 2.062.4 8 1.362.1 7 1.562.5 9 1.662.3 9

BAI 1.761.3 4 .961.2 4 .76.7 2 1.061.1 4

This table display mean, standard deviation and rage for 5-HTTLPR genotypes. LL = homozygous long carriers, LS = heterozygous carriers and SS = homozygous short
carriers.
doi:10.1371/journal.pone.0030564.t001
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determined by Z.2.3 and (corrected) cluster significance was

thresholded using significance threshold of p = .05. Mid level

analysis was carried out using a fixed effects model, by forcing the

random effects variance to zero. Contrast parameter estimates

(COPE’s) were contrasted for each mask based on the parametric

increase from the four n-back runs. Whole brain analysis was

conducted to validate the n-back task. The BOLD activation

across the whole sample resembled activation patterns reported

from similar n-back designs [24]. The strongest activation was

found within the lateral prefrontal cortex, the occipital cortex, the

anterior cingulate cortex, and the basal ganglia. Location of the

peak voxel was within the left lateral prefrontal cortex (Figure 3).

Post hoc comparisons were conducted to explore the patterns of 5-

HTTLPR x n-back condition.

Percentage signal change based on median COPE per non zero

voxels was collected for each ROI. Two way ANOVAs were

conducted using PASW Statistics 18 to explore potential effects of

genotype within the 4 ROIs. Given the large age span, variance

associated with age was accounted for by adding age as covariate

in all analyzes. The behavioural measure of accuracy from events

was reaction time corrected to prevent potential speed accuracy

effects and separately analyzed for each n-back condition using

two way ANOVA’s.

Results

Of the 37 women that were recruited into the study, one

participant was excluded due to anxiety in the fMRI scanner

and three participants were excluded based on low quality

functional images. Data from 33 healthy women were used for

the statistical analyses. The 5-HTTLPR genotypes did not differ

in age, ISCED level, the two WAIS III scores, BDI or BAI

(Table 1).

Differences in BOLD contrast between 5-HTTLPR
genotypes

The parametric contrast between n-back conditions revealed

statistically significant age corrected main effects of 5-HTTLPR

genotype for the right [F(2, 30) = 4.8, g2 = .25, p = .026] and left

[F(2, 30) = 4.1, g2 = .22, p = .015] Inferior frontal gyrus, pars

triangularis. No statistically significant effects were found within

the left or right inferior frontal gyrus pars opercularis by applying

the 5-HTTLPR genotype (Figure 4.).

Post hoc comparision between n-back conditions showed a

linear trend (5-HTTLPR x n-back) in both the left [F(2, 30) = 3.9,

p = .031] and right [F(2, 30) = 3.7, p = .036] IFGpt. The ratio

between activation and deactivation within ROIs was larger for

the left hemisphere compared to the right hemisphere. Differnces

between 5-HTTLPR are most pronounced in the most difficult

condition in both hemispheres (Figure 5.).

Differences Associated with fMRI Behavioral Measures
Age and reaction time corrected two way ANOVAs revealed a

statistically significant difference between genotypes on accuracy

for the 3-back condition [F(2, 30) = 4.9, g2 = .26, p = .014].

Applying a polynomial contrast revealed a statistically significant

linear relationship [CE = 2.123, p = .005] between number of

short alleles and accuracy for the 3-back condition (Figure 6).

There were no associations between genotype and n-back

conditions for the 2-back (88610.4) 1-back (9668.6) and 0-back

(9863.4), which revealed gradually less inter subject variance

compared to the 3-back condition (79613.2).

Figure 5. Percentage signal change per n-back condition for 5-HTTLPR genotypes. 0, 1, 2 = number of short alleles. Error bars show 95%
confidence interval.
doi:10.1371/journal.pone.0030564.g005
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Discussion

The 5-HTTLPR polymorphism influences task performance

and VLPFC activation pattern in healthy women during an n-

back procedure. The fMRI modified n-back paradigm revealed a

main effect of genotype within both the right and left VLPFC.

Short 5-HTTLPR carriers showed higher percentage signal

change within these subregions of the LPFC. Post hoc

comparisons between n-back conditions revealed a linear trend,

but the differences between genotypes were clearly most

pronounced in the most difficult condition. Short 5-HTTLPR

carriers compared to the long 5-HTTLPR carriers showed lesser

reaction time corrected accuracy from events. This behavioral

and neural pattern resembles impaired cognitive performance

and exaggerated VLPFC activation in patients during a

depressive episode [1].

The LPFC is important for maintaining and manipulating

information in working memory. The VLPFC has shown robust

activation in tasks that require cognitive control functions such as

selection, comparison, and judgment of stimuli held in short- and

long-term memory [24]. The increased activation within the

VLPFC, combined with inferior performance on the n-back task

in short 5-HTTLPR carriers suggests a relatively exaggerated

cognitive load that may overwhelm an individual’s ability to

perform these cognitive control functions if needed, for example

during stressful life events. Impaired function of these neural

circuits are believed to contribute to the development of

symptoms characteristic for MDD, such as systematic negative

attention and recall biases [10]. The combined results suggest

that the VLPFC responds in a modality-independent manner to a

variety of explicit task demands. Functional imaging evidence

indicates that left VLPFC is more active during conditions

requiring goal-directed access to semantic knowledge [12].

Selecting among competing representations of task-appropriate

knowledge is probably a substantial part of conscious emotion

regulation [13]. Some authors have suggested that the well

documented enhanced amygdala reactivity in short 5-HTTLPR

carriers may lead to greater regulatory demands [25]. Lower

functional connectivity between cortical regions that are critical

to cognitive control of emotional responses to stimuli has been

demonstrated [9], but does not explain what factors might

contribute to these differences, neither how this may be linked to

the serotonin system and the 5-HTTLPR. Individual differences

in ones genetic make up may have equipped short 5-HTTLPR

carriers with inferior cognitive control functioning compared to

long 5-HTTLPR carriers.

Several limitations of this study should be noted. The decision to

include only women in this study was based on the widely reported

increased depression risk in women [26] and data showing a

stronger association between short 5-HTTLPR and depression in

the context of stressful life events seen in women [4]. Therefore,

future studies need to determine whether our results are relevant

for men. The sample consists of exclusively Norwegian partici-

pants and future studies should determine the generalizability of

the results from this study involving other ethnic groups [27].

Finally, the limited sample size do not permit analyzes of

gene6gene interactions. Studies on larger samples would also

permit analyses of how the observed results relate to 5-HTTLPR

variability reported in structural imaging studies, such as white

matter integrity [28] and frontal gray matter volume [29].

Figure 6. Boxplot shows the linear decrease in 3-back accuracy in short 5-HTTLPR carriers.
doi:10.1371/journal.pone.0030564.g006
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The present study demonstrates impaired cognitive control and

its neural correlate in healthy women carrying the short 5-

HTTLPR allele. Our data may help explain the increased risk for

depression in women carrying the short 5-HTTLPR allele.
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