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Abstract

Threats to biodiversity resulting from habitat destruction and deterioration have been documented for many species, whilst
climate change is regarded as increasingly impacting upon species’ distribution and abundance. However, few studies have
disentangled the relative importance of these two drivers in causing recent population declines. We quantify the relative
importance of both processes by modelling annual variation in population growth of 18 farmland bird species in the UK as a
function of measures of land-use intensity and weather. Modelled together, both had similar explanatory power in
accounting for annual fluctuations in population growth. When these models were used to retrodict population trends for
each species as a function of annual variation in land-use intensity and weather combined, and separately, retrodictions
incorporating land-use intensity were more closely linked to observed population trends than retrodictions based only on
weather, and closely matched the UK farmland bird index from 1970 onwards. Despite more stable land-use intensity in
recent years, climate change (inferred from weather trends) has not overtaken land-use intensity as the dominant driver of
bird populations.
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Introduction

Global biodiversity faces many threats and population declines

have been documented across a wide-range of taxa [1,2]. Habitat

destruction and management intensification have been responsible

for substantial population declines, range contractions and species’

extinctions [3–5]. These pressures are projected to worsen during

the course of the next century [6] and be exacerbated by

increasing effects of anthropogenic climate change [7]. Indeed,

there is increasing evidence that recent climatic change is already

impacting upon species’ distribution and abundance [8–10],

although few studies have attempted to quantitatively disentangle

the relative importance of these two drivers in causing recent

population declines [11,12].

Some 12% of all bird species are classified as threatened, and

therefore at risk of extinction over the next 100 years, of which,

85% are at risk from habitat destruction or deterioration [13].

One of the best documented examples of how such changes may

drive rapid population declines has been the decline of farmland

birds across Europe as a result of land-use and management

changes associated with increased agricultural intensification [14–

16]. However, recent analyses indicate an increasing effect of

climate change on common European bird populations and

communities, with populations of species associated with warmer

conditions having stable or increasing populations, whilst those

associated with cool climates are declining [17–21].

Whilst the inference from these studies is that climate change

has overtaken land-use intensity as a driver of common European

bird populations [19–21], this has not specifically been tested.

Indeed, between-habitat differences in species sensitivity to

temperature may confound the detectability of climate change

and land-use change impacts using such large-scale analyses [22].

Given the considerable scientific and policy interest in this topic, it

is vital to properly attribute recent population changes to these

different potential causes, to then inform appropriate policy and

management responses. Existing analyses do not however,

examine the relative importance of climate change and land-use

management change in driving recent population trends; the aim

of this paper. To examine this, we use forty-year time-series of

national trends in the abundance of farmland birds in the UK to

firstly quantify the relative importance of both processes in

determining the population growth of 18 farmland bird species

that contribute to the composite farmland bird index [16].

Secondly, we use these species-specific models to retrodict recent

population trends for each species and infer the relative

importance of land-use intensity and climate change (inferred

from trends in the weather) in driving long-term population trends

from the match between modelled and observed trends.
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Methods

Bird data
Data from the British Trust for Ornithology’s (BTO) Common

Bird Census (CBC) and the BTO/Joint Nature Conservation

Committee/Royal Society for the Protection of Birds Breeding

Bird Survey (BBS) were used to generate annual indices of

population change for 18 species making up the UK farmland bird

index [23]. The CBC provided data from 1966 until 2000. The

BBS survey provided data from 1994 to 2008, with seven-years of

overlap between the two surveys in order to enable their

combination. Full details of the survey design can be found

elsewhere [24,25]. Despite the switch in methodology, the data

from the two surveys can be combined for most farmland birds to

produce joint trends of national population size [26] which

underpin the UK farmland bird index [23].

In this paper, we used the annual index values from joint UK

trends for 18 of the 19 farmland bird species listed by Gregory et al.

[16], excluding only rook Corvus frugilegus because it was recorded

on relatively few (,15 per annum) CBC plots, reducing the

precision of the early trend. The species included were grey

partridge Perdix perdix, common kestrel Falco tinnunculus, northern

lapwing Vanellus vanellus, stock dove Columba oenas, common wood

pigeon Columba palumbus, European turtle dove Streptopelia turtur,

western jackdaw Corvus monedula, skylark Alauda arvensis, common

whitethroat Sylvia communis, common starling Sturnus vulgaris,

Eurasian tree sparrow Passer montanus, yellow wagtail Motacilla

flava, European greenfinch Carduelis chloris, European goldfinch

Carduelis carduelis, common linnet Carduelis cannabina, yellowham-

mer Emberiza citrinella, common reed bunting Emberiza schoeniclus

and corn bunting Emberiza calandra. For each species, annual

estimates of abundance from 1966–2008 were produced using

standard methods [27].

Land-use data
A wide-range of aspects of farmland management have changed

over recent decades (see Wilson et al [28] for a review). These can

be measured using a wide-variety of metrics, pointing to a general

trend towards a loss of semi-natural habitat and increasing

intensification during the 1970s and 1980s [14] to produce

increased agricultural yields. Whilst some habitat loss may be

detectable using remote sensing [29,30], detecting important

changes on farmland associated with altered cropping, the

intensity of management, or relatively subtle habitat conversion,

such as from wet to dry grassland across large-scales, may be

difficult. We therefore follow Donald et al. [15] and use the annual

yield of wheat and barley in the UK as a measure of arable

intensification [31]. Applying the same logic to pastoral systems,

we used separate annual estimates of the size of the national cattle

herd and sheep flock from June census data [32] as indices of the

intensification of livestock-husbandry. Usefully, these measures

combine the consequences of changes in both land-cover and

land-use intensity.

Weather data
Temperature data were obtained from the Central England

Temperature (HadCET) dataset for a roughly triangular area

enclosed by Lancashire, London and Bristol [33]. Rainfall data

were taken from the England and Wales Precipitation (EWP)

Series [34]. These data therefore match the area from which most

of the bird data are derived, particularly for the CBC period. The

survival rates of a range of farmland birds are known to correlate

with the severity of winter weather [35], whilst breeding success

may vary annually in relation to conditions during the breeding

season [36]. We therefore used the mean minimum temperature of

the coldest month as a measure of winter severity and mean

monthly mean temperature and mean monthly precipitation

during the bird breeding season (April–July) as measures of annual

variation in breeding conditions. For three long-distance migrants,

which winter in the semi-arid Sahelian zone south of the Sahara,

we replaced minimum temperature with Sahel rainfall, an

appropriate measure of weather conditions on the African

wintering grounds known to affect survival rates in these species

[37]. Total wet season Sahel rainfall (May–October) was derived

annually from the 0.560.5 degree cell gridded data TS3.0 (http://

badc.nerc.ac.uk:80/browse/badc/cru/data), from the Climate

Research Unit at UEA via British Atmospheric Data Centre

(BADC).

Statistical analysis
The selection of variables outlined above provided a balanced

design of three national land-use time-series to be compared

against three national weather time-series, allowing analysis of the

impacts of these factors on population growth. The three land-use

variables were significantly correlated, meaning that disentangling

the relative importance of each of these was difficult, but given the

low degree of correlation between the weather variables and land-

use variables, this should not affect our assessment of the relative

importance of each in driving farmland bird populations (Table 1).

i Relative importance of weather and land-use in driving
population growth

We used hierarchical partitioning (HP) to determine the

independent contribution of these explanatory variables to each

bird population trend [38]. HP addresses the presence of

collinearity by determining the independent contribution of each

explanatory variable to the response variable and separates it from

the joint contribution, resulting from correlation with other

variables [39]. The Hier.part macro [40] was run in SAS v.9.2

[41] on each of the 18 species. We therefore modelled annual

variation in population growth (ln(nt+1/nt)) as a function of the

index (n) in yeart (to account for density dependence), three

weather (W) variables; previous annual minimum temperature or

Sahel rainfall (Wt), previous breeding season temperature (Wb) and

rainfall (Wr), and three land-use (L) variables from the previous

year; cereal yield (Ly), size of the national cattle herd (Lc) and

sheep flock size (Ls). Variables were related to the previous year as

these were most likely to influence population change through

productivity in the previous breeding season and over-winter

survival. Terms a and bn describe the intercept and model

coefficients respectively, whilst e represents residual error.

ln
ntz1

nt

� �
~azb0 ln(nt)zb1Wtzb2Wbzb3Wr

zb4Lyzb5Lczb6Lsz[

ð1Þ

ii Relative importance of climate and land-use in driving
population trends

We used the models from i to retrodict the species-specific

population trends from 1966–2008 on the basis of annual

variation in weather (which through time describe effects of

climate change) and land-use, starting from an initial population

value of 1 in 1966, but replacing the observed index (nt) with that

predicted from the model. The model was therefore free-running

from the first year, with annual variation predicted only from

variation in the six predictor variables, enabling the ability of each
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model to track the observed fluctuations in species abundance to

be tested. To separate the effects of climate change and land-use

intensity, this process was repeated, but fixing the values for either

the weather or land-use variables to the mean of the first six years

(1965–1970), prior to the major change in agricultural practices in

the 1970s [14] or recent climate change [20]. This produced two

restricted models where predicted variation in each species trend

resulted from either land-use intensity or weather variation only,

plus the potential effect of density-dependence.

In order to summarise these models across all species, we

replicated the production of the farmland bird indicator, which is a

geometric mean of the population trends, but used each of the

modelled species trends from ii, instead of the observed trends. Thus,

we produced a modelled indicator based on land-use and weather, or

the restricted land-use only or weather only models, and compared

the fit of these to the real indicator, which runs from 1970.

To test how the relative importance of climate change and land-

use intensity has changed through time, the fit (r) of each restricted

species model to the observed population trend was assessed for

sequential 10-year time-slices through the entire population time-

series and averaged across the 18-species. We expect a closer fit

between the predictions from the land-use only models and

population trends than the weather only models at the start of the

time-series and through the period of farmland bird decline [14],

but if climate change has now become the dominant driver of

farmland bird populations we expect that the performance of the

weather-only models will have increased through time and now

have greater predictive ability in describing recent population

trends than the land-use only models.

Results

i Patterns of change in environmental drivers
There have been significant increases in minimum temperature

(r = 0.31, n = 43, P = 0.04) and breeding season temperature

(r = 0.61, n = 43, P,0.0001) from 1966–2008, but not breeding

season rainfall (r = 0.07, n = 43, P = 0.64) or Sahel rainfall (r = 0.06,

n = 43, P = 0.71). Strong trends in land-use variables were for

increases in cereal yield (r = 0.94, n = 43, P,0.0001) and the size of

the sheep flock (r = 0.67, n = 43, P,0.0001), although with a recent

decline post the food-and-mouth disease outbreak in 2001, and

reductions in the size of the cattle herd (r = 20.81, n = 43,

P,0.0001) from 1975. These trends are illustrated in Figure 1.

ii Relative importance of weather and land-use in driving
population growth

There was a largely even split in the partitioning of variation in

population growth between count in the previous year (32%),

weather (36%) and land-use (32%). Thus weather and land-use

were approximately equally important in determining annual

variation in population growth rates of farmland birds (Figure 2).

Given that the models accounted for an average of 4063% of the

variation in population growth, about 14% of the annual variation

in farmland bird populations was driven by weather and 13% by

land-use change.

iii Relative importance of climate and land-use in driving
population trends

Models of population growth (Table S1) had good explanatory

power in retrodicting observed population trends of farmland birds

(Figure S1), with a mean coefficient of determination between

observed and expected index values of r2 = 0.8860.03. The mean

coefficient of determination of the land-use only models was

r2 = 0.7960.06 and the weather only models r2 = 0.3460.08.

Population trends of the majority of species were therefore much

more closely related to land-use change than climate change, with

weather only models producing a better fit to the observed trend

than land-use only models in only two species. The importance of

land-use intensity in explaining the observed farmland bird decline

is indicated by the close-fit of the modelled trend in the indicator

when based upon both land-use intensity and weather (r2 = 0.99),

or just land-use intensity (r2 = 0.98). In the absence of land-use

change the coefficient of determination was weak at r2 = 0.19 with

only a 7% population decline predicted, rather than the observed

50% (Figure 3). At the start of the time-series, weather only models

provided a better fit to the farmland bird population trends than

land-use only models, but this switched in 1981 (reflecting

correlations from 1976–1985, the period of major population

decline). During the 1990s, observed trends were strongly driven

by land-use intensity rather than weather (Figure 4). However, in

recent years, the gap has narrowed, although contrary to our

predictions, climate change has not exceeded land-use intensity as

the main driver of farmland bird population trends. The relative

performance of both models is now lower than previously, which

reflects the recent stability and reduced variation in farmland bird

abundance (Figure 3, Figure S1).

Discussion

Farmland bird populations have fluctuated as a result of annual

variation in both land-use intensity and weather. Whilst a wide-

range of previous studies have documented declines in farmland

birds as a result of agricultural intensification [e.g.14,15], and the

importance of weather in determining fluctuations of these bird

populations [42], this is the first time the relative importance of

particular facets of both have been quantified, and related to long-

Table 1. Pearson correlation coefficients between all climate and land-use variables.

Min temp Sahel rain Breed temp Breed rain Cereal yield Sheep

Sahel rain 0.25

Breed temp 0.39 0.21

Breed rain 0.21 0.09 20.16

Cereal yield 0.18 20.05 0.48 20.07

Sheep 0.15 20.06 0.29 20.11 0.78

Cattle 20.25 20.30 20.54 20.27 20.76 20.52

Pearson correlation coefficients between all climate and land-use variables. Variables in bold indicate correlation coefficients of r.0.5. For a description of the variables,
refer to methods.
doi:10.1371/journal.pone.0030407.t001
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term trends. When modelled together, both were found to have

similar explanatory power in accounting for annual changes in

population growth. Annual changes in 10 of the 18 species

included in this analysis were significantly correlated with at least

one of the three land-use variables, of which the main driver

appeared to be increasing intensification of arable systems. Annual

changes in populations of 9 species were significantly related to

weather variables, of which minimum temperature was the most

important. Thus, the year to year changes in farmland bird

populations observed in the UK may be equally a result of weather

or agricultural management during the previous year, which

combined with density-dependence, account for 40% of the

variation in annual population fluctuations.

Despite the similarity in the annual population fluctuations

explained by land-use intensity or weather, modelled population

trends incorporating land-use intensity were much more closely

linked to observed farmland bird population trends than models

based only on weather variables, describing the effects of climate

change through time. The importance of land-use intensity results

from the strong directional trends in farmland intensification [14],

which have exceed the pace of climate change (Figure 1). It is these

strong directional trends in land-use intensity which therefore explain

Figure 1. Temporal trends in land-use and weather variables. Temporal trends in a) the total cereal yield (solid line), cattle herd (dotted line)
and sheep herd (dashed line) in the UK. Cereal yield (millions tonnes) and cattle herd (millions adults) units given by the left (y)-axis and sheep herd
(millions adults) by the right (z)-axis, and b) Mean minimum temperature of the coldest month (solid black line), mean monthly temperature during
the breeding season (dashed line), total rainfall during the breeding season (open squares, dotted line), and Sahelian rain (mm/10) (filled circles,
dotted line).
doi:10.1371/journal.pone.0030407.g001

Climate Change, Land-Use and Birds
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why farmland bird populations have declined so precipitously [15],

and also suggests that the recent levelling of farmland bird population

trends is largely a function of more stable agricultural production,

potentially associated with increased uptake of agri-environment

schemes aimed at benefiting wildlife [43], although the evidence for

beneficial effects of such schemes is as yet equivocal [21]. Whilst it is

possible that other, untested factors may also be important, the

strength of the relationships identified in our analysis, and the existing

literature, suggests we have considered the most important factors

which influence farmland bird populations. For example, increasing

predator populations, another potential driver of change, have been

shown to have little impact on most of the species considered [44].

There is increasing evidence for climate change impacting upon

European bird populations, with a general trend towards stable or

Figure 2. The mean variance (± se) of population growth attributable to each variable. Results of hierarchical partitioning, showing the
mean variance (6 se) of population growth attributable to each variable across all species. Variances sum to 100%. Log Index t-1 (Index) is included to
account for potential density-dependence, winter weather (W weath, combining the effects of minimum temperature for residents and Sahel rainfall
for migrants), breeding season temperature (B temp) and breeding season rainfall (B rain) are weather variables, and Cereal, Cattle and Sheep
describe land-use intensity.
doi:10.1371/journal.pone.0030407.g002

Figure 3. Modelled UK farmland bird indicator based on land-use intensity and weather. Modelled UK farmland bird indicator based on
land-use intensity and weather (black solid line), or the restricted land-use intensity only (black dotted line) or weather only (black dashed line)
models, compared to the real indicator (grey solid line), which runs from 1970 [25].
doi:10.1371/journal.pone.0030407.g003

Climate Change, Land-Use and Birds
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increasing populations in species associated with warm climates

and declines in populations of species associated with cool climates

[17,18]. Our results suggest that for farmland birds, the suite of

European bird species most strongly affected by land-use intensity,

climate change has been a relatively unimportant driver of long-

term trends, even in recent years. We might have expected climate

to have become an increasingly important driver of bird

populations since the mid-1980s as a result of recent warming

[20,45], but this was not the case, with land-use intensity

remaining the dominant driver of farmland bird trends during

the 1990s (Figure 3), and no evidence of a recent switch to climate

becoming more important. Although annual variation in individ-

ual population trends and the farmland bird indicator may be

related to weather, such as population increases in the mid-1970s

and more rapid declines in the mid-1980s than expected from

land-use, our results suggest that apart from one or two exceptions,

any impact of climate change on farmland birds has been

exceeded by the strong directional shift in land-use intensity. This

suggests that the patterns outlined by country- or continent-wide

analyses of recent changes in bird communities in response to

increases in temperature do not necessarily apply to all

environments and have not been reflected in recent changes to

the UK farmland bird community. Recent reductions in the

community specialisation of birds on farmland [21] may therefore

have been largely driven by land-use rather than climate change.

Looking forward, our models suggest that if climate change

becomes more severe, we would expect more significant changes

to occur, with likely recoveries (or continued recoveries) in corn

bunting, European goldfinch, common linnet, common reed

bunting and skylark populations as a result of increased survival in

milder winters, and increases in grey partridge, yellow wagtail and

potentially western jackdaw populations as a result of increased

productivity in warmer, drier summers (Table S1). However, given

likely further significant shifts in agricultural practices either in

response to climate change [46] or other social, political and

economic drivers in Europe, the experience of the last forty years

of farmland bird monitoring in the UK suggests that it will be

changes in land-use intensification which will continue to be the

major driver of population change in these species. Given the

likely magnitude of future land-use change elsewhere in the globe

anticipated as a result of increased requirements for food

production and increased effects of climate change [47],

understanding the relationship between land-use intensity and

bird populations will continue to be a high priority, even during a

period of changing climate. On this basis, effects of climate change

on biodiversity may therefore be most detectable and important in

environments where the level of human exploitation and

management is relatively low. Importantly, the fact that the

impacts of land-use change can exceed climate change impacts on

species, at least in some circumstances, provides evidence that

improving land-use practices for bird populations may provide an

opportunity to counter negative climate change impacts, and

therefore deliver effective climate change adaptation for biodiver-

sity. Testing this further should be a high priority [48].

Supporting Information

Figure S1 Modelled population trends of each farmland
bird species compared to observed population trends.
Modelled population trends of each farmland bird species

compared to observed population trends. Modelled trends were

retrodicted from the model of annual variation in population

growth (Table S1) applied to the observed index in the first year.

Subsequent predicted index values were modelled sequentially

from the prediction of population growth applied to the previous

predicted index value. Black line = species-specific index of

abundance, red line = modelled index (land-use intensity and

weather), blue line = restricted model (weather only), green

line = restricted model (land-use intensity only). The gap in the

index of abundance in 2001 is due a lack of data collected as a

result of the food-and-mouth disease outbreak.

(DOC)

Figure 4. Changes in importance of land-use intensity and climate change in driving farmland bird population growth. Changes in
the relative importance of land-use intensity and climate change in driving farmland bird population growth. The graph shows the fit of the land-use
(open circles) and weather (black circles) only models to the observed population trend, as assessed from the correlation coefficients between
observed and predicted populations for sequential 10-year time-slices, and plotted against the central year.
doi:10.1371/journal.pone.0030407.g004
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Table S1 Summary of the relationship between predic-
tor variables and population growth for 18 farmland
birds. Summary of the relationship between predictor variables

and population growth for 18 farmland birds. For a description of

the variables, refer to methods. The number of symbols indicate

statistical significance as follows: 1, P.0.06; (1), 0.05,P,0.06; 2,

0.01,P,0.05; 3, 0.001,P,0.01; 4, 0.0001,P,0.001. The

number of significant (P,0.05) positive and negative relationships

with each predictor variable are given in the last row.

(DOC)
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