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Abstract

Background: Polyglutamine expansion is responsible for several neurodegenerative disorders, among which Huntington
disease is the most well-known. Studies in the yeast model demonstrated that both aggregation and toxicity of a huntingtin
(htt) protein with an expanded polyglutamine region strictly depend on the presence of the prion form of Rnq1 protein
([PIN+]), which has a glutamine/asparagine-rich domain.

Principal Findings: Here, we showed that aggregation and toxicity of mutant htt depended on [PIN+] only quantitatively:
the presence of [PIN+] elevated the toxicity and the levels of htt detergent-insoluble polymers. In cells lacking [PIN+], toxicity
of mutant htt was due to the polymerization and inactivation of the essential glutamine/asparagine-rich Sup35 protein and
related inactivation of another essential protein, Sup45, most probably via its sequestration into Sup35 aggregates.
However, inhibition of growth of [PIN+] cells depended on Sup35/Sup45 depletion only partially, suggesting that there are
other sources of mutant htt toxicity in yeast.

Conclusions: The obtained data suggest that induced polymerization of essential glutamine/asparagine-rich proteins and
related sequestration of other proteins which interact with these polymers represent an essential source of htt toxicity.

Citation: Kochneva-Pervukhova NV, Alexandrov AI, Ter-Avanesyan MD (2012) Amyloid-Mediated Sequestration of Essential Proteins Contributes to Mutant
Huntingtin Toxicity in Yeast. PLoS ONE 7(1): e29832. doi:10.1371/journal.pone.0029832

Editor: Mick F. Tuite, University of Kent, United Kingdom

Received June 29, 2011; Accepted December 6, 2011; Published January 11, 2012

Copyright: � 2012 Kochneva-Pervukhova et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant from the Russian Foundation for Basic Research (#11-04-00442), www.rfbr.ru, and by the Ministry of Education and
Science of the Russian Federation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mdter@inbi.ras.ru

. These authors contributed equally to this work.

Introduction

Expansion of polyglutamine (polyQ) stretches in nine otherwise

unrelated human proteins causes neurodegenerative diseases

accompanied by deposition of amyloid protein aggregates formed

by these proteins. One of the most common polyQ disorders,

Huntington disease, is caused by exon I IT15 mutations that

increase the number of CAG triplets, coding for Q in the

huntingtin (htt) protein and develops at a probability proportional

to the number of these repeats. Htt with expanded N-terminal

polyQ can aggregate and form insoluble intracellular inclusions

which appear mostly in the nucleus and, to a lesser extent, in the

cytoplasm [1]. Despite extensive studies, the molecular bases of

polyQ diseases are still unclear, though it was shown that the toxic

effect of expanded polyQ proteins is related to interference with

the normal function of cellular proteins thus affecting various

cellular processes. Indeed, pathological htt impairs gene transcrip-

tion, ubiquitin-proteasome system, causes mitochondrial dysfunc-

tion, dysregulation of Ca2+ homeostasis, impairment of axonal

transport and genotoxic stress (see [2] for a review).

PolyQ disorders and Huntington disease in particular are

especially attractive for modeling in yeast, because, similar to

them, yeast prions rely on domains enriched with Q. As in

humans, in yeast aggregation and toxicity of htt increase with

polyQ length and targeting of mutant htt into the nucleus alters

transcription of a subset of genes and decreases cell viability [3].

Besides glutamine, prion domains of yeast proteins are also rich in

asparagine residues (N). Importantly, expanded polyN stretches

are similar to polyQ in their propensity to form aggregates in yeast

and were also used to model polyQ disorders since nuclear

localization of such proteins also causes transcriptional abnormal-

ities and cell death [4]. Cytoplasmically expressed htt with an

expanded polyQ region was also shown to be toxic, although its

toxicity and aggregation depended on the presence of [PIN+], the

prion form of the QN-rich protein Rnq1, known to facilitate the de

novo appearance of other yeast prions [5,6]. Besides, toxicity of

expanded htt in yeast cytoplasm is modulated by the sequences

flanking the polyQ stretch [7]. Use of the yeast model revealed

that polyQ aggregation results in endocytosis impairment,

suggesting that this is one of the causes of cellular toxicity [8].

Another reason for toxicity of proteins with expanded polyQ can

be interactions with certain genome-encoded Q/N-rich proteins

whose lack or overproduction can cause or abolish polyQ toxicity

[6].

Previously we have shown that aggregation of proteins with

expanded polyQ, including mutant htt, in the cytoplasm of yeast

cells caused polymerization of chromosomally-encoded Q/N-rich

proteins [9]. Since there are a large number of proteins with long

Q/N-rich stretches in both humans and yeast [10,11], it is likely

that at least some of them would efficiently polymerize in response
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to the accumulation of polyQ amyloids, which may cause

depletion of their functional soluble form and, as a result, cell

death, if these proteins are essential. Here, we used the yeast model

of Huntington disease to confirm this suggestion for the essential

Q/N-rich protein, translation termination factor eRF3, which is

usually designated in yeast as Sup35.

Results

[PIN+]-independent polymerization of 103Q-GFP
In yeast, aggregation and toxicity of overproduced htt with

expanded polyQ requires the presence of either [PIN+] or [PSI+]

prions [5,6]. This was shown for htt with a polyQ stretch

consisting of 103 Q (103Q) fused to the green fluorescent protein

(GFP), which allows monitoring of 103Q-GFP aggregation

microscopically, as distinct fluorescent foci. However, as we have

shown previously, polyQ proteins could also form SDS-insoluble

polymers in cells lacking these prions ([psi2] [pin2] cells) [9,12].

This prompted us to study the dependence of 103Q-GFP

polymerization on the [PIN+] prion. In agreement with published

data, the ability of 103Q-GFP to form fluorescent foci depended

on [PIN+]: in the absence of this prion 103Q-GFP aggregates

were rarely found, while the same protein but with a stretch of 25

Q, 25Q-GFP, did not form aggregates neither in [PIN+] nor

[pin2] (data not shown). However, SDD-AGE analysis showed

that overproduced 103Q-GFP formed polymers in [pin2] cells,

though approximately 3-fold less efficiently than in [PIN+] cells

(Fig. 1).

The difference in the 103Q-GFP polymer abundance in [PIN+]

and [pin2] cells could be due to the influence of [PIN+] on the

levels of this protein (Fig. 2). Most likely this was not due to

increased expression of 103Q-GFP, since [PIN+] did not affect the

levels of 25Q-GFP, which did not form SDS-insoluble polymers in

either [PIN+] or [pin2] cells (data not shown), despite the 25Q-

GFP-encoding gene being under the control of the same promoter

as that of 103Q-GFP. Therefore, one can suggest that higher levels

of 103Q-GFP in [PIN+] cells compared with [pin2] were due to

accelerated accumulation of its polymers (Fig. 1) which are less

susceptible to proteolysis than the soluble form of this protein.

Interestingly, 25Q-GFP levels in both [PIN+] and [pin2] cells were

higher than those of 103Q-GFP in [PIN+], which could reflect a

lesser stability of 103Q-GFP.

Effect of [PIN+] on 103Q-GFP-induced polymerization of
Rnq1 and Sup35

Previously we have demonstrated that SDS-insoluble polymers

of 103Q-GFP can seed polymerization of Sup35 in [PIN+] cells

[9]. Here we showed that polymers of 103Q-GFP also seeded

Sup35 (Fig. 3A) and Rnq1 polymerization (data not shown) in

[pin2] cells. The amount of Sup35 polymers correlated with the

levels of 103Q-GFP polymers and was approximately 3-fold

Figure 1. Time-dependent appearance of the 103Q-GFP SDS-insoluble polymers. (A) Cells of the [psi2] [PIN+] or [psi2] [pin2] transformants
of the strain 74-D694 with the multicopy p103Q-GFP plasmid were grown in liquid SC-Ura glucose-containing medium (Glc), then in the same
selective raffinose-containing (Raf) and galactose-containing (Gal) media, as described in Materials and Methods, and incubated in the latter medium
for 1, 2, 4, 6 and 9 h. (B) 1:3, 1:9, 1:27 and 1:81, dilutions of the sample taken after 9 h incubation. Polymers of 103Q-GFP were visualized by SDD-AGE.
Blots were stained with the monoclonal anti-GFP antibody.
doi:10.1371/journal.pone.0029832.g001
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higher in [PIN+] as compared to [pin2] cells. Correspondingly, the

amount of soluble Sup35 was inversely proportional to the levels of

its polymerized form being approximately 3-fold higher in [pin2]

than in [PIN+] cells (Fig. 3B), which caused a detectable increase of

nonsense codon readthrough (Fig S1). In contrast to 103Q-GFP,

overproduction of non-polymerizing 25Q-GFP neither inhibited

growth of [PIN+] and [pin2] strains (Fig. 4) nor caused appearance

of Sup35 polymers in [PIN+] and [pin2] cells (Fig. 3A and data not

shown).

103Q-GFP toxicity partially depends on depletion of
Sup35 and Sup45

Unlike Rnq1, Sup35 is an essential protein and therefore

depletion of its functional, soluble form should be deleterious for

the cell. In agreement with this, though overproduction of 103Q-

GFP caused growth inhibition of both [PIN+] and [pin2] strains,

this effect was more pronounced in a [PIN+] background (Fig. 4) in

which both 103Q-GFP and Sup35 polymerized most efficiently

(Fig. 1 and 3). Expression of the non-aggregating form of Sup35,

which lacked the NM region (Sup35C), instead of the full-length

protein, alleviated the toxic effect of 103Q-GFP in [PIN+] cells and

completely abolished it in [pin2] cells (Fig. 4). This suggested that

Q103-GFP toxicity was due to depletion of soluble Sup35.

Alternatively, it was possible that this effect was due to the

influence of Sup35C on the levels of 103Q-GFP and Rnq1

polymers or due to effects of Sup35C on cell growth irrespective of

the presence of these polymers. However since neither the levels

nor size distributions of Rnq1 and 103Q-GFP polymers did not

depend on the presence of the NM region in Sup35 (Fig. S2), and

Sup35C did not affect growth of cells not expressing 103Q-GFP

(Fig. S3), these possibilities seemed unlikely. Importantly, there

were also other causes for toxicity of 103Q-GFP in [PIN+] cells,

Figure 2. Semi-quantitative dot-blot analysis of 103Q-GFP and
25Q-GFP. Transformants of 74-D694 [psi2] [PIN+] or [psi2] [pin2] with
the multicopy p103Q-GFP or p25Q-GFP plasmids were grown as
described in Materials and Methods with incubation in SC-Ura Gal
medium for indicated time. Equal amounts of total protein (confirmed
by staining the same membranes by Ponceau S, a non-specific protein
stain) from each lysate were serially diluted in four-fold increments and
applied to a nitrocellulose membrane. Blots were probed with the
monoclonal anti-GFP antibody.
doi:10.1371/journal.pone.0029832.g002

Figure 3. 103Q-GFP-dependent polymerization of Sup35. (A) Polymers of Sup35 visualized by SDD-AGE. 74-D694 [psi2] [PIN+] and [psi2]
[pin2] transformants with the p103Q-GFP plasmid were grown as described in Materials and Methods. After incubation in SC-Ura Gal medium for 9 h,
cells were harvested and their lysates were used to analyze the amount of SDS-insoluble polymers of Sup35. (B) The levels of Sup35 monomer, SDS-
PAGE analysis. Lysates were obtained from cells grown as described above. The samples were not boiled before loading onto the gel which only
allowed SDS-soluble Sup35 to enter the gel [34]. Lower bands represent a Sup35 degradation product, characteristic of the non-prion/amyloid form
of Sup35 [36]. Total lysates (T) and their serial dilutions are indicated. 74-D694 [psi2] [pin2] expressing 25Q-GFP and 74-D694 [PSI+], respectively, are
shown for comparison. Blots were stained with anti-Sup35NM antibody. Quantification of Sup35 by densitometric analysis demonstrated that upon
expression of 103Q-GFP the levels of soluble Sup35 were approximately 3-fold lower in [PIN+] than in [pin2] cells.
doi:10.1371/journal.pone.0029832.g003
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since a [PIN+] strain expressing the non-polymerizing Sup35C

protein still manifested a slight growth defect.

It is known that Sup35 prion aggregates may include different

proteins able to interact with Sup35 [13,14] in an SDS-sensitive

manner. Sequestration of Sup45 (translation termination factor

eRF1) into Sup35 prion aggregates can cause growth inhibition,

and this defect can be alleviated by increasing Sup45 levels

[15,16]. Similarly to prion polymers of Sup35, non-prion polymers

of this protein also contained Sup45, since centrifugation of lysates

of [PIN+] cells overproducing 103Q-GFP revealed appearance of

Sup45 in the pellet fraction and a related 2-fold decrease of the

levels of its soluble form, while in cells expressing non-aggregating

25Q-GFP Sup45 was primarily soluble (Fig. 5). Introduction of a

centromeric plasmid with SUP45 into [PIN+] and [pin2] cells

expressing 103Q-GFP partially alleviated the toxic effects of

103Q-GFP (Fig. 6), which could be related to increased levels of

soluble Sup45 (Fig. 5).

Discussion

Earlier it was reported that in contrast to [PIN+] cells, cells lacking

this prion rarely possess fluorescently detectable aggregates of

overproduced 103Q-GFP and exhibit no decreased viability, while

protein with a shorter polyQ stretch, 25Q-GFP, does not form

aggregates and manifest toxicity in ether [PIN+] or [pin2] cells [7,8].

This indicated that the aggregation and toxicity of htt in yeast

depends both on the polyQ expansion and the presence of the

[PIN+] prion. We also observed that 103Q-GFP in [pin2] cells and

25Q-GFP in both [pin2] and [PIN+] cells formed bright fluorescent

foci only occasionally, while 103Q-GFP formed numerous visible

aggregates in a large proportion of [PIN+] cells. However, SDD-

AGE polymer analysis led us to another conclusion. While this

analysis confirmed the inability of overproduced 25Q-GFP to

polymerize in both [pin2] and [PIN+] cells, 103Q-GFP was shown to

form polymers irrespective of the [PIN+] state, albeit more polymers

were observed in [PIN+] than in [pin2] cells. In agreement with this,

the GFPN104 protein (N-terminal fusion of GFP to the sequence of

104 N) formed SDS-insoluble aggregates in the cytoplasm of [pin2]

cells, which could not be visualized microscopically [4]. Thus,

despite the convenience of the GFP test for aggregate detection, to

avoid misinterpretations, it should be supported by alternative

approaches.

Contrary to earlier studies, we observed that overproduced

103Q-GFP inhibited growth of both [PIN+] and [pin2] cells,

though this effect was more pronounced in [PIN+] cells, in which

103Q-GFP polymerized most efficiently. Importantly, the toxic

effect of overproduced 103Q-GFP was related to Sup35

polymerization, since expression of a non-aggregating Sup35C

variant of this protein abolished 103Q-GFP toxicity in [pin2] cells

and reduced it in isogenic [PIN+] cells. Finally, the toxicity of

103Q-GFP also depended on sequestration of Sup45 into Sup35

aggregates. The critical role of Sup35 in 103Q-GFP toxicity may

seem surprising, since it is just one of more than a hundred of yeast

Q/N-rich proteins, many of which are essential [10,11]. However,

it is necessary to stress that among essential Q/N-rich proteins,

Sup35 has one of the highest expression levels [17] and that its

polymerization caused aggregation and inactivation of another

essential protein, Sup45. It is also necessary to take into account

that 103Q-GFP may seed polymerization of different cellular Q/

N-rich proteins with varying efficiency and Sup35 may be among

Figure 4. PolyQ toxicity depends on [PIN+] and Sup35. The [psi2] [PIN+] and [psi2] [pin2] transformants of the 74-D694 strain (SUP35) or its 74-
D694 DS35 derivative disrupted for chromosomal SUP35 and carrying SUP35-C on a centromeric plasmid (SUP35-C), both expressing either 103Q-GFP
or 25Q-GFP, were grown at 30uC in liquid SC-Ura medium with glucose resuspended in the same medium but with raffinose instead of glucose and
after 12 h incubation, cell suspensions were diluted to an OD600 of 1.0, and then spotted onto SC-Ura plates with galactose as a sole carbon source
(Gal) and incubated for 4 days. Equal spotting was controlled by spotting the cells onto SC-Ura plates containing glucose as carbon source (Glc) in
parallel. Five serial 5-fold dilutions of cell suspensions are shown.
doi:10.1371/journal.pone.0029832.g004
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those whose polymerization is seeded most efficiently. At last,

proteins enriched in Q and N may differ from each other by their

intrinsic propensity to polymerize and Sup35 may be among those

which are most prone to polymerization. The contribution of

Sup45 depletion to 103Q-GFP toxicity is not surprising, because

sequestration of this protein into [PSI+] aggregates, but not of

other essential proteins able to interact with Sup35, was

responsible for growth inhibition of [PSI+] cells overproducing

Sup35 [14]. Notably sequestration of the translation termination

factors could not completely account for 103Q-GFP toxicity,

because overproduction of the 103Q-GFP protein also manifested

toxicity in the [PIN+] strain expressing Sup35C which is unable to

form SDS-insoluble polymers.

At present it is believed that microscopically visible protein

aggregates, which are frequently associated with neurodegenera-

tive diseases, in fact play a cytoprotective role, while toxicity of

amyloidogenic proteins is related to accumulation of their

oligomeric species [18,19]. In this work we observed that in

Figure 6. PolyQ toxicity is modulated by the levels of Sup45. Growth of the [psi2] [PIN+] and [psi2] [pin2] transformants of the 74-D694 strain
carrying either a centromeric plasmid with SUP45 or an empty vector as a control and expressing either 103Q-GFP or 25Q-GFP, was analyzed as
described in the legend to Fig. 4.
doi:10.1371/journal.pone.0029832.g006

Figure 5. Centrifugation analysis of aggregation of Sup35 and Sup45 in the presence of 103Q-GFP or 25Q-GFP. Transformants of the
strain 74-D694 [psi2] [PIN+] with plasmids expressing 103Q-GFP or 25Q-GFP were grown as described in Materials and Methods. After incubation in
SC-Ura Gal medium for 9 h, cells were harvested. Cell lysates were fractionated by centrifugation and fractions were analyzed by Western blotting:
staining with either anti-Sup35NM (Sup35) or anti-Sup45 (Sup45) polyclonal antibodies. The lower bands in the Sup35 image represent a degradation
product (see legend to Fig. 3); the lower bands in the Sup45 image are nonspecific protein staining [20]. T, total protein; S, soluble fraction (1:2 and
1:4, dilutions); P, pellet. CEN-SUP45, the centromeric plasmid pRS315-SUP45; empty vector, pRS315. Quantitative data on Sup45 levels obtained by
densitometric analysis demonstrated that expression of Q103-GFP caused an approximately 2-fold depletion of the soluble fraction of Sup45, with
the remaining portion of the protein being relocated into the pellet fraction. Presence of pRS315-SUP45 caused an approximately 4-fold increase in
the level of soluble Sup45 in Q103-GFP expressing cells as compared with the same cells with an empty vector.
doi:10.1371/journal.pone.0029832.g005
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[pin2] cells, lacking microscopically visible 103Q-GFP aggregates,

toxicity was related to SDS-insoluble aggregates of this protein,

which may correspond to toxic oligomers in mammals. At the

same time, overproduced 103Q-GFP was more toxic in [PIN+]

than [pin2] cells, which correlated with increased formation of its

fluorescently detectable aggregates. However, [PIN+] cells also

contain more SDS-insoluble polymers not detectable microscop-

ically on their own, which did not allow us to make conclusions

about the role of microscopically detectable aggregates of this

protein in toxicity.

Notably, depletion of Sup35 and Sup45 induced by 103Q-GFP

may impair not only translation termination, but also other

processes, since both termination factors have essential non-

translational functions, being important for cytoskeleton organi-

zation, cytokinesis, cell cycle regulation [20,21] and probably for

other processes [22,23], such as coupling termination and

initiation steps of translation [24,25] and regulation of mRNA

deadenylation and decay [26], which are mediated by interaction

of the N-terminal region of Sup35 with poly(A)+ binding protein

PABP. Modeling of htt toxicity in yeast showed that polymeriza-

tion of expanded polyQ caused polymerization of cellular Q/N-

rich proteins and related sequestration of other proteins able to

interact with these Q/N-rich proteins. If such proteins are

essential, depletion of their soluble and functional form may be

deleterious to the cell. Thus, though there may be different sources

of polyQ toxicity in eukaryotes, this mechanism can explain why a

wide variety of different processes, including translation, were

found to be altered in the yeast model of Huntington disease [27].

It is also likely that a similar mechanism underlies depletion of

transcription factors possessing polyQ repeats in mammalian cells

expressing proteins with expanded polyQ [28–30].

Materials and Methods

Plasmids, strains and growth conditions
The strain 74-D694 [psi2] [pin2] and its [psi2] [PIN+] derivative

[31], as well as 74-D694 DS35 [psi2] [PIN+] and [psi2] [pin2] with

SUP35 disrupted by the insertion of TRP1 [12] were used. The

plasmids used in this study are described in Table 1. Yeast were

grown at 30uC in rich (YPD, 1% yeast extract, 2% peptone, 2%

glucose) or synthetic (SC, 0.67% yeast nitrogen base, 2% glucose

supplemented with the required amino acids) media. To induce

the synthesis of 103Q-GFP and 25Q-GFP chimeric proteins, cell

cultures with corresponding plasmids were transferred to liquid

selective media with 2% raffinose as a sole carbon source and

grown until mid-log phase. Then cultures were transferred to of

the same medium with galactose instead of raffinose and cells were

grown for the indicated time. The final concentration of galactose

in the medium was 2%.

Preparation of yeast cell lysates
Yeast cultures grown in liquid selective media were harvested,

washed in water and lyzed by beating with glass beads (Bullet

Blender, Next Advance) in buffer A: 30 mM Tris-HCl, pH 7.4,

150 mM NaCl, 1 mM dithiothreitol and 1% Triton X-100. To

prevent proteolytic degradation, 10 mM phenylmethylsulfonyl

fluoride and CompleteTM protease inhibitor cocktail (Roche

Applied Science) were added. Cell debris was removed by

centrifugation at 1500 g for 4 min.

Centrifugation
To separate Sup35 and Sup45 polymer and monomer fractions,

500 ml of yeast cell lysates were centrifuged at 100,000 g

(48,000 rpm in a Ti75 rotor, Beckman Optima TL ultracentrifuge)

for 1 h at 4uC.

Electrophoresis and blotting
These were performed as described previously [32–34]. Protein

loads were equalized for each gel. For analysis of amyloid

polymers we used horizontal 1.8% agarose gels in the Tris-

Acetate-EDTA (TAE) buffer with 0.1% SDS. Lysates were

incubated in the sample buffer (0.56TAE, 2% SDS, 5% glycerol

and 0.05% Bromophenol Blue) for 5 min at 37uC. After the

electrophoresis, proteins were transferred from gels to nitrocellu-

lose membrane sheets (ThermoScientific, USA) by vacuum-

assisted capillary blotting for 5 h (agarose gels), or electrophoret-

ically (polyacrylamide gels). Bound antibody was detected using

the ECL West Dura system (Thermo Scientific). It should be noted

that detergents (SDS or sarcosyl) in non-boiled samples increase

degradation of Sup35 monomers. This can result in the absence of

Sup35 monomer bands in SDD-AGE gels. Rabbit polyclonal

antibodies against Sup35 and Sup45 were used. Anti-GFP

monoclonal antibody was obtained from Rusbiolink (Russia).

Estimation of relative amount of 103Q-GFP or 25Q-GFP in

lysates was performed as described in [35], with minor

modifications. Densitometry measurements were performed using

ImageJ software.

Supporting Information

Figure S1 Polymerization of 103Q-GFP causes an in-
crease in nonsense codon readthrough. The strain 74-D694

[psi2][PIN+] carrying the URA3 p25Q-GFP (25Q) or p103Q-GFP

(103Q) plasmids was transformed with either the LEU2 plasmid

pUKC815-L (encodes a PGK1-lacZ gene fusion) or pUKC817-L

(encodes the same gene fusion but with in frame UAA at the

junction of the PGK1 and lacZ genes) (Stansfield I, Jones KM,

Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paush-

kin SV, Nierras CP, Cox BS, Ter-Avanesyan MD, Tuite MF

(1995) The products of the SUP45 (eRF1) and SUP35 genes

interact to mediate translation termination in Saccharomyces

cerevisiae. EMBO J 14: 4365–4373). Transformants were grown

consecutively in liquid glucose-, raffinose- and galactose-contain-

ing media selective for the plasmids, and after a 9 h incubation in

SC-Ura -Leu Gal medium appropriate aliquots of yeast culture

were taken and b-galactosidase activity was assayed. All data

represent an average of at least three independent experiments.

The nonsense readthrough levels were determined as ratio of b-

galactosidase activities in the cells transformed with the plasmid

pUKC817-L to that of the transformant with pUKC815-L.

(TIF)

Table 1. Plasmids used in this study.

Plasmid Characteristics Reference

pRS315 Centromeric LEU2 vector [37]

pRS315-SUP45 Same as pRS315, but with SUP45 [21]

pRS315-SUP35C Same as pRS315, but with SUP35-C [22]

p103Q-GFP Multicopy URA3 pYES2 plasmid,
encoding fusion of 103Q with GFP
under the control of GAL1 promoter

[5]

p25Q-GFP Multicopy URA3 pYES2 plasmid,
encoding fusion of 25Q with GFP
under the control of GAL1 promoter

[5]

doi:10.1371/journal.pone.0029832.t001

Huntingtin Toxicity in Yeast

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e29832



Figure S2 The levels of Rnq1 and 103Q-GFP polymers
do not depend on the presence of the Sup35 NM region.
The 74-D694 [psi2] [PIN+] strain (SUP35) or its 74-D694 DS35

derivative disrupted for the chromosomal SUP35 gene and

carrying SUP35-C on a centromeric plasmid (SUP35-C), both

expressing 103Q-GFP, were grown as described in Materials and

Methods. After incubation in SC-Ura Gal medium for 9 h cells

were harvested and their lysates were used to estimate the amount

of Q103-GFP and Rnq1 SDS-insoluble polymers by SDD-AGE

analysis. Blots were stained with anti-Rnq1 polyclonal antibody (A)

or anti-GFP monoclonal antibody (B).

(TIF)

Figure S3 Sup35C does not affect growth of cells not
expressing 103Q-GFP. The [psi2] [PIN+] and [psi2] [pin2]

transformants of the 74-D694 strain (SUP35) or its 74-D694 DS35

derivative with disruption of chromosomal SUP35 carrying the

centromeric pRS315-SUP35C plasmid (SUP35-C), were grown as

described in the legend to Fig. 4. Cell suspensions were diluted to

an OD600 of 1.0, spotted onto Gal and Glc plates and incubated

for 4 days. Five serial 5-fold dilutions of cell suspensions are shown.

(TIF)
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