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Abstract

Alzheimer’s disease (AD) is a complex neurodegenerative disorder that diverges from the process of normal brain aging by
unknown mechanisms. We analyzed the global structure of age- and disease-dependent gene expression patterns in three
regions from more than 600 brains. Gene expression variation could be almost completely explained by four transcriptional
biomarkers that we named BioAge (biological age), Alz (Alzheimer), Inflame (inflammation), and NdStress (neurodegen-
erative stress). BioAge captures the first principal component of variation and includes genes statistically associated with
neuronal loss, glial activation, and lipid metabolism. Normally BioAge increases with chronological age, but in AD it is
prematurely expressed as if some of the subjects were 140 years old. A component of BioAge, Lipa, contains the AD risk
factor APOE and reflects an apparent early disturbance in lipid metabolism. The rate of biological aging in AD patients,
which cannot be explained by BioAge, is associated instead with NdStress, which includes genes related to protein folding
and metabolism. Inflame, comprised of inflammatory cytokines and microglial genes, is broadly activated and appears early
in the disease process. In contrast, the disease-specific biomarker Alz was selectively present only in the affected areas of the
AD brain, appears later in pathogenesis, and is enriched in genes associated with the signaling and cell adhesion changes
during the epithelial to mesenchymal (EMT) transition. Together these biomarkers provide detailed description of the aging
process and its contribution to Alzheimer’s disease progression.
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Introduction

During normal aging the brain undergoes many changes

resulting in a gradual but detectable cognitive decline that is

associated with limited neuronal loss, glial proliferation in the

cortex, and gross weight decrease of 2–3% per decade [1,2]. On

the molecular level, the mechanisms driving aging of the brain are

not yet understood, but likely include mitochondrial DNA damage

[3] and chronic oxidative stress [4]. This slow decline in cognitive

ability does not interfere with normal function through at least 100

years of life. In contrast, Alzheimer’s disease (AD) is a debilitating

neurodegenerative disorder associated with a rapid cognitive

decline with an average survival of 5–10 years after the diagnosis

[5,6,7]. Age is the main AD risk factor with almost half of the

population over age 85 affected. AD, however, clearly differs from

the normal aging in that it causes dramatic loss of synapses,

neurons and brain activity in specific anatomical regions, and

results in massive atrophy and gliosis [1,8].

The factors that cause some individuals to depart from the

relatively benign process of normal brain aging and instead

undergo the pathological cascade that leads to AD are unknown.

A number of genetic risk factors for AD have been proposed

[9,10,11,12], however only the apolipoprotein E (APOE) e4-allele,

which lowers the age of onset and accelerates the cognitive decline,

has a large effect [13,14]. Pathologically AD is characterized by

the presence of two insoluble protein aggregates, senile plaques

formed from the peptide b-amyloid (Ab) and neurofibrillary

tangles composed of hyperphosphorylated tau protein [15]. In rare

familial AD, the cause of disease is autosomal dominant mutations

in Ab precursor protein (APP) or the Ab-producing enzymes

presenilins (PSEN1 or PSEN2), which are all thought to lead to

increased levels of aggregated Ab [9,10,16]. Likewise, mutations in

tau (MAPT) that predispose it to aggregation can cause specific

diseases that involve profound neurodegeneration and dementia

[17,18]. Thus, like in other neurodegenerative diseases such as

Huntington’s disease (HD) and Parkinson’s disease, the formation

of toxic insoluble aggregates seems to be a key pathogenic step.

However, it is not known why these Ab and tau aggregates

accumulate in AD patients nor how they contribute to neuronal

dysfunction, particularly for Ab deposits, which can often be found

in the brains of elderly non-demented subjects [19].

An important goal of AD research is to identify interventions

that maintain brain function, potentially by inhibiting the

formation or improving the clearance of neurotoxic aggregates,
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or by promoting resistance to, or recovery from, damage. A

number of biological processes have been associated with AD,

including cholesterol metabolism, inflammation, and response to

misfolded proteins such as increased expression of heat shock

proteins [20]. The link with lipid metabolism is supported for

example by the essential role of APOE in lipid transport in the

brain [13,14]. However, these processes have not been unequiv-

ocally ordered into a pathogenic cascade, and the molecular

mediators and correlates of each are largely unknown. Microarray

gene expression profiling provides an opportunity to observe

processes that are common for normal aging, AD, and other

neurodegenerative diseases, as well as to detect the differences

between these conditions and disentangle their relationships. We

profiled over six hundred postmortem samples assembled in the

Harvard Brain Tissue Resource Center (HBTRC, McLean

Hospital, Belmont, MA). We used metagene (factor) analysis

[21,22,23,24,25] to distinguish several major gene expression

patterns involved in brain aging and disease and to quantitatively

define the corresponding biomarker scores. The correlation

analysis of the biomarker scores between three profiled brain

regions revealed systemic effects of the same disease processes on

different brain regions. We also propose a model of Alzheimer’s

disease progression that specifies the complex sequence of

molecular pathological events associated with the disease that

are driven by aging, which appears as the main factor in the

disease initiation and progression [1,8].

Methods

Study Population and Sample Collection
The dataset comprises gene expression data from brain tissues

that were posthumously collected from more than 600 individuals

with AD diagnosis, HD diagnosis, or with normal non-demented

brains. All brains were obtained from individuals for whom both the

donor and the next of kin had completed the Harvard Brain Tissue

Resource Center Informed Consent (form available at: http://

www.brainbank.mclean.org/PDF files/Consent.pdf). All tissue and

research were conducted according to the Harvard Brain Tissue

Resource Center Guidelines (including: HUMAN TISSUE HAN-

DLING RISKS & SAFETY PRECAUTIONS agreement; HU-

MAN TISSUE SINGLE USER agreement, and HBTRC

ACKNOWLEDGMENT agreement, available at http://www.

brainbank.mclean.org/PDF files/TissueRequest.PDF). The study

was approved by McLean Hospital Institutional Review Board.

Braak stage [26] and atrophy were assessed by pathologists at

McLean Hospital (Belmont, MA). Only neuropathologically

confirmed AD subjects with Braak .3 were included in this

profiling experiment. The profiled brain regions included

dorsolateral prefrontal cortex (PFC, Brodmann area 9), visual

cortex (VC, Brodmann area 17), and cerebellum (CR). These

regions were chosen because PFC is impacted by the AD

pathology while the latter two regions remain largely intact

throughout most of the disease [26]. The tissue samples from

subjects with HD diagnosis, while not the main focus of this work,

were included to compare the two neurodegenerative diseases.

The samples were flash frozen in liquid nitrogen vapor with an

average postmortem interval (PMI) of about 18 hours. The clinical

and demographic information for this study, including diagnosis,

gender, age at the time of death, PMI, and Braak stage, is

summarized in Table S1.

Gene Expression Profiling
A total of 1 mg of mRNA extracted from each tissue sample was

amplified to fluorescently labeled cRNA, and profiled by the

Rosetta Gene Expression Laboratory in two phases using the

Rosetta/Merck 44k 1.1 microarray (GPL4372) (Agilent Technol-

ogies, Santa Clara, CA) [27]. The average RNA integrity number

of 6.81 was sufficiently high for the microarray experiment

monitoring 40,638 transcripts representing more than 31,000

unique genes. The expression levels were processed and

normalized to the average of all samples in the batch from the

same region using Rosetta Resolver (Rosetta Biosoftware, Seattle,

WA).

We refer to each batch of tissue samples using the abbreviated

brain region and the phase of the experiment (e.g., PFC2 refers to

prefrontal cortex samples profiled in phase 2). Table S1

summarizes the number of samples in each category. All

microarray data generated in this study are available through

the National Brain Databank at the Harvard Brain Tissue

Resource Center (http://national_databank.mclean.harvard.

edu/brainbank/Main). Any researcher wishing to obtain the de-

identified dataset can do so by contacting the National Brain

Databank at McLean Hospital, Harvard Medical School.

This microarray dataset is MIAME compliant. The raw and

final processed data for each hybridization are available to any

researcher upon request. The essential sample annotation

including experimental factors and their values (e.g., gender,

age, PMI, pH) is available and summarized in Table S1. The study

utilized a standard annotated microarray (GPL4372) and standard

pipeline of data processing for this array.

Data Analysis
We used the log10-ratio of the individual microarray intensities

to the average intensities of all samples from the same brain region

profiled in the same phase as the primary measure of gene

expression. Quality control of gene expression data was performed

by principal component analysis using MATLAB R2007a (Math-

works Inc., Natick, MA). Outlier samples (less than 2%) were

removed from the data set based on extreme standardized values

of the first, second, or third principal components, with absolute z-

scores more than 3.

The first principal component (PC1) was used to assess the

major pattern of gene expression variability in the dataset. Genes

that were highly correlated with PC1 were used to build a

surrogate biomarker. Throughout this work we used Pearson

correlation coefficients, r, and assessed their significance, p,

assuming normal distribution for Fisher z-transformed values,

atanh r [28]. Significant differential expression for each gene was

evaluated using t-test p-values [28]. Multiple-testing correction of

p-values was done according to Benjamini-Hochberg procedure to

obtain false-discovery rates (FDR) [29]. These analyses were

performed using Statistical Toolbox of MATLAB R2007a

(Mathworks Inc. Natick, MA).

Gene expression changes associated with aging and disease were

characterized by metagenes combining sets of genes with

significant association with a disease trait and a very strong

Pearson correlation with each other. We utilized a procedure of

exploring covariance structure of the gene expression data similar

to metagene identification [22], factor analysis of gene expression

[23], and supervised gene module discovery [21,24,25]. Instead of

genome-wide search for metagenes followed by analysis of

associations between metagenes and disease traits, we used a

supervised approach. After selecting genes significantly associated

with the disease, we agglomeratively clustered them using Pearson

correlation as a distance measure. Especially tight and large

clusters in the dendrogram were then assigned to metagenes, i.e.,

the dendrogram was cut so that several hundred genes in a branch

qualified for a metagene and the average of their correlations to
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the mean (coherence) was not weaker than 0.75. We recognized

that some metagenes could have two anti-correlated arms

representing opposite trends in the gene expression (e.g., genes

that are up- and downregulated with the end point).

The biological nature of the metagenes was assessed using the

gene set overlap analysis with known biological processes

described in GeneGo or Ingenuity. Significance of the overlaps

between the lists was assessed using Bonferroni-corrected p-values

[28], using Merck’s proprietary Target and Gene Information

system.

Biomarker Scoring
Throughout this work we adopted the term biomarker to refer to

a metagene together with associated score that quantifies it in each

brain tissue sample. The biomarker score for each sample was

calculated as the mean expression levels of the comprising gene

probes or as the arithmetic difference between the means in the

positive and negative arms of the metagene when both arms were

specified.

Score~ log
I

I0 UP

{ log
I

I0 DOWN

where I/I0 is normalized intensity of the metagene probes. To

produce a robust score, all samples have to be normalized to the

same reference. The reference intensity I0 for each gene

corresponded to the average intensity in the cohort. Importantly,

averaging genes that correlate with each other produced a

measure that is more accurate than individual genes. For all

metagenes identified in this work, the biomarker score represented

a quantitative measure of a particular disease aspect in each brain

sample. To evaluate the performance of the biomarker score as a

classifier between diseased and normal samples, we used the area

under the curve for the receiver operating characteristic (AUROC)

[30].

In Silico Experiments
To validate biomarkers identified in this work, we tested their

coherence and predictive power in the context of independent

gene expression dataset, GSE1572 [3]. This data set contained

gene expression data from PFC samples of 30 non-demented

subjects, aged 26–106. These samples were profiled on Affymetrix

Human Genome U95 Version 2 Array (GPL8300). To select the

probes and calculate the biomarker score, we matched the

biomarker gene symbols to those represented on the HG-

U95Av2 array. We calculated the correlation of the expression

level of each selected probeset with the composite biomarker score

(see above) and refined the selection by dropping probes that

demonstrated opposite regulation according to the sign of the

correlation coefficient. Finally, we correlated the biomarker scores

with the subject age.

An additional set of public gene expression data used to validate

the coherence and predictive power of the biomarkers was

obtained from hippocampus samples from elderly control and AD

subjects, GSE1297 [31,32]. These 31 samples were profiled using

Affymetrix Human Genome U133A Array (HG-U133A). To

select the probes and calculate the biomarker score, we matched

the biomarker gene symbols to those represented on the array,

refined them as described above, and averaged the gene

expression values according to the equation in the previous

subsection. The biomarker scores were then correlated with

MMSE (MiniMental State Examination) as an available measure

of AD severity.

Results

Biological Age
Analysis of differential gene expression in prefrontal cortex

samples between non-demented individuals and AD patients

revealed massive changes, with more than 18,000 transcripts

significantly regulated (ANOVA p,1E–6) by more than 28% (see

Fig. S1). Much of this differential expression was due to a single

gene expression pattern that defined the first principal component

(PC1) in both AD and normal samples. PC1 explained 45% of

variance in the upregulated genes and 60% of variance in the

downregulated genes. As shown on the heat map in Figure 1, AD

and normal samples dominated the opposite ends of this gene

expression pattern, with some subjects from each group in the

intermediate range. When normal and AD subjects were

considered separately, it was largely the same genes that

contributed to the PC1 pattern in both AD and normal samples

as shown by correlation analysis in Figure S1. This analysis

indicated that the same major biological process reflected in the

gene expression started in normal brains and continued develop-

ing in AD brains. We found a significant correlation of PC1 with

chronological age in non-demented individuals (r= 0.58, p = 9E–

13) and concluded that this gene expression pattern captures

normal aging processes in prefrontal cortex. Interestingly, this

correlation did not exist in AD patients (r= 0.10, p = 0.17). Table

S2 contains the lists of genes that were most up- and

downregulated with age and were selected based on the strongest

absolute correlations with PC1.

It is useful to ascribe a score based on average expression levels

of all included genes as a composite measure (see Methods). We

refer to the PC1 biomarker score as BioAge (biological age) based

on the hypothesis that the BioAge score for an individual is a more

precise and objective measure of the progression of age-related

changes than chronological age. Overall, most AD samples

attained much larger values of BioAge than normal samples

(AUROC = 0.92). See also Table 1 for other characteristics of this

biomarker. Comparison of BioAge in AD and non-demented

individuals at different chronological age groups revealed a very

significant difference at younger ages which decreased in

chronologically older age groups. While BioAge of non-demented

individuals gradually increased with age, AD patients showed

consistently high levels of BioAge regardless of chronological age

(Fig. 2A). The extrapolated BioAge of normal subjects would reach

average AD levels at the age of 100 years. The most advanced AD

brains correspond to an extrapolated age of 140 years in non-

demented subjects.

As an independent test of the power of BioAge to predict

normal chronological age, we applied this biomarker to an

independent cohort of prefrontal cortex samples from non-

demented individuals (GSE1572). This gene expression data were

used to qualitatively describe aging in an earlier study [3]. BioAge

score in these samples strongly and significantly correlated with

chronological age of the subjects in the range from 26 to 106 years

(r= 0.75, p = 8E–7) (Fig. 2B). In addition, BioAge corresponded to

the second principal component in the GSE1572 dataset (r= 0.90,

p = 4E–11), validating that aging is a major reproducible source of

variance in gene expression in PFC. Similar prediction of

chronological age using gene expression was recently proposed

[33].

We performed another validation of BioAge as a predictive

biomarker of the brain condition in elderly subjects both with and

without AD using publicly available gene expression data from

hippocampus samples (GSE1297). These data were used in prior

research to qualitatively describe AD progression based on gene
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expression correlation with the disease severity, from control group

through severe AD [31,32]. We found that BioAge score

calculated in these samples strongly and significantly correlated

with the MiniMental Status Examination (MMSE) (r= 20.59,

p = 4E–4). Figure S2A demonstrates the association between

BioAge and AD severity. BioAge corresponded to the first

principal component in this data set (r= 0.70, p = 1E–5), capturing

a major source of gene expression variance and an overall brain

condition.

The massive gene expression changes associated with aging that

we detected involved a constellation of biological processes. A gene

set annotation analysis revealed that the genes downregulated with

increasing BioAge showed significant enrichment for neuronal and

synaptic processes, possibly reflecting neuronal depletion or loss of

plasticity (Table S3). The upregulated processes include lipid

metabolism, FAK signaling and axon guidance as well as the glial

marker, GFAP (Table S3). In agreement with an earlier analysis of

aging signatures observed in normal brains [2,3], the upregulated

genes contain several oncogenes (TP53, PI3K, PTEN, etc.), shown

to be strongly correlated with BioAge in Figure S3.

We also noticed that the genes upregulated with age in normal

samples could be further dissected using a metagene discovery

approach (see Methods). We focused on the normal samples with

relatively low BioAge (BioAge,0) and found a large metagene

with exceptionally high mutual correlation between the genes. We

named this metagene Lipa because it included APOE, PPARA, c-

protocadherins, and other genes involved in lipid metabolism,

amino acid metabolism and cell adhesion. Other notable Lipa

genes included HES1, TGFB2, NTRK2, and WIF1. This metagene

was much more coherent in normal samples than in AD samples.

The corresponding Lipa biomarker indicated an average 3-fold

upregulation of these genes early in the aging process. Figure S4

further illustrates the relationships between metagene-based

biomarkers and selected component genes mentioned in the text.

Figure 1. Gene expression in PFC1. The heat map shows hierarchical clustering of the 4000 most variable genes. The samples (rows) are sorted
according to the values of the first principal component of the complete dataset and labeled according to diagnosis (normal samples in black, AD
samples in red on the right).
doi:10.1371/journal.pone.0029610.g001

Table 1. Biomarker Characteristics.

Biomarker BioAge Inflame NdStress Alz

Differential variance explained, all samples 0.42 0.23 0.29 0.17

Differential variance explained, BioAge-matched samples 0.09 0.11 0.22 0.06

Coherence in normal samples 0.80 0.80 0.57 0.64

Coherence in AD samples 0.84 0.82 0.76 0.81

AUROC, all samples 0.92 0.88 0.89 0.81

AUROC, BioAge-matched samples 0.69 0.72 0.75 0.69

AUROC, normal and AD samples from PFC2 0.94 0.89 0.87 0.84

The reported values were obtained using PFC1 samples unless otherwise noted.
doi:10.1371/journal.pone.0029610.t001
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Disease-Specific Biomarkers
Higher BioAge of AD patients explained more than 50% of the

differential expression between normal and AD cohorts. In the

range of BioAge scores in which AD and normal individuals

overlap, there was a significant residual differential expression,

composed of several distinct subpatterns that explain a large

fraction of the normal-to-AD variance. We focused on 88 AD and

43 normal brain samples with matched moderate levels of BioAge

between 20.1 and 0.3. We identified 625 genes that are

differentially expressed between the two cohorts (ANOVA

p,0.005, absolute fold change .25%, FDR,0.1). Figure 3A

shows the supervised metagene analysis of these genes based on

clustering using gene-gene correlation as a distance measure (see

Methods). In this analysis we identified the 3 most regulated

metagenes responsible for the majority of the gene expression

differences associated with the disease.

The first and the largest group of about 2000 genes, further

referred to as NdStress, was associated with various metabolic

disruptions. This metagene contained some genes that were

upregulated and others that were downregulated in AD samples.

In normal brain samples with BioAge,0, the expression of these

genes was maintained in a relatively stable narrow range with

relatively low coherence. In AD samples, however, the expression of

these genes varied dramatically and was highly correlated (Fig. 3).

Although the plethora of biological pathways reflected in this large

metagene precluded significant enrichment of an individual

pathway after correcting for multiple testing, the upregulated arm

of this metagene contains multiple heatshock and proteosome

proteins such as HSP1A1, STIP1, HSP1B1, PSMB1/D6, and the

TGFb signaling proteins SMAD2 and SMAD4. The downregulated

arm of NdStress is enriched in genes involved in folate metabolism,

such as DHFRL1, MTR and FPGS, possibly related to the alterations

in folate and homocysteine observed in AD patients [34,35,36]

(Table 2, S2, Fig. S4). Figure 4 includes the relationship between

NdStress and BioAge, which moderately correlated in AD samples

(r= 0.53, p,1E–13). At the same time, NdStress and chronological

age correlated negatively (r= 20.14, p = 0.05). This biomarker

score explained 22% of variance in differentially expressed genes

and demonstrated AUROC of 0.75 in separating AD and normal

samples. See Table 1 for other biomarker characteristics.

The second metagene, further referred to as Alz, consisted of

about 200 genes upregulated in AD (Fig. 3). This metagene is

enriched in genes involved in cell communication/adhesion, fibrosis,

mesoderm development and ossification such as numerous collagen

genes, BMP genes, CTSK, MFAP2/4, FN1, VIM, WNT6 and

TWIST1 (Table 2, S2, Fig. S4). This metagene also contained several

prostaglandin synthases and receptors. Alz positively correlated with

both BioAge (r= 0.40, p,1E–7) and chronological age (r= 0.23,

p = 0.002), see also Figure 4. This biomarker score explained 6% of

variance in differentially expressed genes and demonstrated

AUROC of 0.69 in separating AD and normal samples (Table 1).

Finally, a small but exceptionally tightly correlated metagene,

called Inflame (Fig. 3), contained about 250 genes upregulated

with AD, including many inflammation markers, such as IL1B,

IL10, IL16, IL18, and HLA genes, as well as markers of

macrophages, such as VSIG4, SLC11A1, and apoptosis, such as

CASP1/4, TNFRSF1B (p75 death receptor) (Table 2, S2, Fig. S4).

Inflame score explained 11% of variance in differentially expressed

genes and positively correlated with BioAge (r= 0.47, p = 1E–10)

and chronological age (r= 0.28, p,0.001) in AD samples. When

used as a classifier, the Inflame score was capable of discriminating

AD and normal brain with AUROC of 0.69. These genes

maintained their mutual correlation in both normal and AD

samples but reached significantly higher levels in AD (Table 1).

Figure 4 shows the interplay between the biomarkers discussed

above and the complex causal relationships between them. For

example, the elevation of Inflame preceded the elevation of

NdStress because there are no samples with high NdStress but low

Inflame. The correlation between NdStress and Inflame is,

however, low in AD samples where NdStress is active (r= 0.21,

p = 0.004). We also observed a low correlation between NdStress

and Alz (r= 0.21, p = 0.004) and moderate correlation between

Alz and Inflame (r= 0.47, p = 1E–11) in AD samples.

We tested performance of these biomarkers in the public gene

expression data from hippocampus samples from elder non-

demented and AD subjects (GSE1297). We found that at least half

of genes in each of the biomarkers preserved their coherence. In

addition, we found that Alz was strongly elevated in 5 out of 7

severe cases of AD and correlated with MMSE (r= 20.37,

p = 0.04). Figure S2B shows the distribution of Alz scores among

Figure 2. Aging score versus chronological age in PFC1. The box plots (A) demonstrate the distribution of BioAge in different 5-year long age
segments and list the ANOVA p-values for the BioAge separation between normal and AD subjects in each chronological age segment. (B) Prediction
of chronological age in the independent normal cohort using BioAge. The postmortem prefrontal cortex samples from individual of different age
were profiled in an earlier study (GSE1572) [3]. BioAge was calculated based on average expression of several hundred genes from Table S2 (see
Methods).
doi:10.1371/journal.pone.0029610.g002
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different severity groups. Other biomarkers did not show any

significant association with MMSE.

Systemic and Localized Brain Changes
A unique feature of the HBTRC dataset is the availability of

tissue samples from different brain regions from the same

individual. All biomarkers in PFC were tested for coherence in

visual cortex (VC) and cerebellum (CR). We confirmed that

BioAge and the disease-specific biomarkers were also expressed

coherently and differentially between normal and AD samples. We

then performed direct correlation analysis between the biomarker

scores in these regions. BioAge demonstrated relatively high

correlations of 0.81 between VC1 and PFC1, with residual

differences possibly reflecting different levels of aging between the

brain regions. The Lipa biomarker also demonstrated high

correlation of 0.80 between these regions. We determined that

correlation between Inflame scores in PFC1 and VC1 was equal to

0.83. The highest correlation of 0.93 between PFC1 and VC1 was

observed in the NdStress biomarker. These results are also shown

in Figure 5, whereas similar observations for PFC1 and CR1 are

shown in Figure S5. This exceptionally high level of correlation

between the regions is likely explained by the systemic nature of

inflammation and metabolic regulation that span diverse brain

regions.

Alz scores, on the other hand, did not show any significant

correlations between regions in AD samples suggesting that this

biomarker is confined to affected brain regions [26] and more

specifically related to AD pathogenesis (Fig. 5, S5). Furthermore,

Figure 3. Disease-specific metagenes. (A) Clustered gene-gene correlation matrix demonstrating strong mutual correlations between genes that
were differentially expressed between AD and non-demented samples from PFC1. Three outlined clusters correspond to NdStress, Alz, and Inflame.
The coregulation of these genes is also shown in the panel (B). Each colored line represents expression levels of individual genes in 55 PFC1 samples
from non-demented and AD subjects sorted in the order of increasing BioAge. Only representative samples that scored in the top or bottom 3% for
any of the biomarkers were selected for this figure to improve visualization.
doi:10.1371/journal.pone.0029610.g003

Table 2. Selected pathways that are enriched in metagenes.

Biomarker Selected enriched pathways

Lipa Cell adhesion**; RXR function**; fatty acid metabolism**; amino acid metabolism**

(+) BioAge Molecular mechanisms of cancer*; lipid metabolism*; FAK signaling*; axon guidance*

(2) BioAge Neuronal activities**, synaptic transmission**; axonal guidance*; long term potentiation/depression**; molecular mechanisms of cancer*; Ca/
Glutamate/MAPK signaling*

Inflame Innate immune response**, apoptosis**, macrophage**

(+) NdStress Stress response#; PPAR RXR acivation#, glucocorticoid signaling#

(2) NdStress Metabolic pathways**; folate metabolism#

Alz Cell communication**; fibrosis**; mesoderm development**; cell adhesion**; ossification*

**Bonferroni corrected Hypergeometric p-value,0.05.
*Bonferroni corrected Hypergeometric p-value,0.1.
#Bonferroni corrected Hypergeometric p-value,0.5.
Up- and down regulated arms of metagenes are denoted as (+) and (2). Complete analysis is shown in Table S3.
doi:10.1371/journal.pone.0029610.t002
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the disease biomarkers were fully validated in a hold-out set of

samples (Phase 2), which in addition contained some Huntington

disease (HD) samples. As shown in Figure S6, BioAge, NdStress,

and Inflame were significantly elevated in both AD and HD

samples (p,1E–6). In general, these biomarkers reached similar

average levels in AD and HD samples in all profiled brain regions.

In PFC2, however, the average BioAge reached in HD samples

was significantly lower than that of AD samples (p = 1E–17). These

biomarkers, therefore, seemed to capture general systemic

neurodegenerative processes rather than being specific to AD.

The most striking difference between AD and HD samples was

reflected in the Alz biomarker, which again was specific to the

presence of AD was not significantly elevated in any brain region

in HD samples (Fig. 6).

Comparison with Brain Transcriptome Modules
Consistent patterns of gene coexpression were recently observed

in several large cohorts of brain samples from non-demented

individuals [24]. The authors discovered several reproducible

modules, which they called brain transcriptome modules, and

associated some of them with specific brain cell types. Particularly,

modules M4/5, M9, M15, and M16 were associated with

microglia, oligodendrocytes, astrocytes, and neurons, respectively.

We validated the coherence of these modules in the present

HBTRC dataset, and found that more than 90% of genes

comprising these modules strongly correlated with each other

(r.0.7) in non-demented subjects. This analysis supports the

finding that the latent structure of gene expression in cortex was

preserved in our dataset.

In addition, we compared the gene expression profiling

captured by the brain transcriptome modules with BioAge and

the other disease-specific biomarkers discovered here. We found a

strong correlation between M4/5, associated with microglia, and

our Inflame biomarker (r= 0.92). In addition, ‘‘astrocytic’’ M15

positively correlates with BioAge (r= 0.83) and ‘‘neuronal’’ M16

negatively correlates with it (r= 20.93). We also found that none

of the major brain transcriptome modules strongly correlated with

either the neurodegenerative NdStress or AD-specific Alz

biomarkers. This confirms that these expression patterns are novel

patterns that can only be detected in brains affected by disease.

Discussion

Summary of Molecular Changes in AD
This genome-wide gene expression profiling study of a large

cohort of AD and normal aging brains revealed large groups of

genes that vary as a function of age and disease status. When the

hundreds of gene expression values contained in each of these sets

are converted into a single quantitative trait, new molecular

biomarkers of biological aging and disease progression emerge.

The transcriptional profiles of AD brains were profoundly

different from those in non-demented individuals, with thousands

of genes differing in their levels of expression between the two

cohorts. To reduce the complexity of the observed changes, we

focused on key gene expression patterns that explained the most

variability across the cohorts. We demonstrated that the most

significant pattern in terms of variance explained both within and

between AD and non-demented cohorts was BioAge, a biomarker

of the level of biological aging in the brain. BioAge captured the

extent of gradual molecular changes in the normal aging brain by

averaging the gene expression changes associated with a multitude

of synchronous physiological events. BioAge can be accurately and

reliably assigned to each brain tissue sample in the dataset and

used to describe the molecular state of the brain in the same way as

we use other clinical and physiological measurements.

Genes upregulated with BioAge point to activation of cell cycle

regulation pathways, lipid metabolism and axon guidance

pathways (Table S3). Misexpression of cell cycle genes in post-

mitotic neurons has been observed in aging and in AD and is

postulated to be an important mechanism of neurodegeneration

Figure 4. Plot matrix of mutual relationships between key aging and disease-specific biomarkers as well as chronological age. Each
biomarker is represented by its score in each sample based on the average gene expression of contributing genes (see Methods). Non-demented
PFC1 samples are shown by black dots. AD samples are shown by red dots. All pairwise relationships between the biomarkers and with chronological
age are shown.
doi:10.1371/journal.pone.0029610.g004
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[37,38]. The enrichment for oncogenes within this set is consistent

with biological responses to genotoxic stress activated during aging

in an increasingly larger population of brain cells. Genes

downregulated with BioAge were associated with a decrease in

neuronal activity. Most of these genes maintained a strong

correlation (connectivity) with BioAge throughout the entire range

of the biomarker. This implies that the core of biological aging is

one gradual change rather than several distinct transitions.

Contrary to most aging patterns, a significant loss of

connectivity with aging was observed for the Lipa metagene that

included APOE, HES1, and TGFB2 (Fig. S4). APOE and most of

the other Lipa genes were expressed at high levels in all AD

patients and some normal individuals. This suggests that

upregulation of lipid metabolism happens sometime early in the

aging process and that activation of APOE and changes in lipid

metabolism are early precursors of disease possibly related to

engagement of protection mechanisms.

We also describe three other distinct disease-specific patterns.

The NdStress biomarker, which contained both up- and

downregulated genes, dominated differential expression between

AD and non-demented brains matched for BioAge score. The

upregulated genes contained multiple heatshock and proteasome

proteins. Activation of these pathways may reflect the response to

disease-related stress. Another set of genes in this module are cell

cycle genes indicative of cell cycle arrest or apoptosis. The

downregulated arm of NdStress is enriched in one-carbon/folate

metabolism genes and could underlay the perturbations in these

metabolic pathways, which are among the earliest biomarkers

associated with neurodegenerative disorders including AD

[34,35,36].

Figure 5. Correlation between biomarker scores in PFC1 and VC1 of the same individuals. Each plot shows relationships between the
biomarker values in PFC1 and VC1. Samples from non-demented and AD subjects are shown in black and red respectively.
doi:10.1371/journal.pone.0029610.g005

Figure 6. Comparison of NdStress and Alz in AD and HD. AD
samples of PFC2 are colored in red. HD samples are colored in
green. The reference biomarker scores corresponding to non demented
individuals are represented by dashed lines.
doi:10.1371/journal.pone.0029610.g006
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The second largest disease-specific pattern (Alz) contained genes

associated with cell adhesion, migration, and morphogenesis. This

metagene prominently featured genes characteristic of epithelial-

to-mesenchymal transition (EMT), such as VIM, TWIST1, and

FN1 [39], (Fig. S4). The connection of Alz with EMT suggests a

major transformation in brain tissue physiology including changes

in receptor signaling, growth factor dependence, and cell adhesion

during the disease. Considering that the third disease-specific

biomarker, Inflame, reflects chronic neuroinflammation [7,40], it

is hard to ignore the similarity between AD with other examples of

EMT type 2, such as tissue fibrosis, where chronic inflammation

and upregulation of TGFB2 contribute to pathogenesis [39]. The

levels of Alz in AD are much higher than in unaffected brain

regions or in the PFC in HD, suggesting that these gene expression

changes are not generally reflecting neurodegeneration, but relate

to AD pathology.

Finally, BioAge and Inflame are consistent with published

analysis of the healthy brain transcriptome and are associated with

neuronal, astrocytic, and microglial modules [24]. Importantly, we

found that NdStress and Inflame have virtually identical scores in

different regions from the same individual. It suggests they

measure systemic changes in brain tissue that happen across

multiple cell types and layers and are independent of the diverse

morphology and makeup of different brain regions. Alz scores, on

the other hand, are not the same across all brain regions and had

the highest levels in prefrontal cortex, indicating a local rather

than systemic nature of EMT.

Alzheimer Disease Progression Model
Our analysis of gene expression changes in the brains of

Alzheimer’s patients confirms that AD is both similar and distinct

from the process of normal aging. Although each brain was

captured only in a particular (postmortem) state and was not

studied longitudinally, we can assemble these data as a function of

time to propose a few generalized aging trajectories. BioAge and

chronological age showed a significant association in non-

demented individuals and no association in AD patients, who

had consistently high BioAge scores regardless of their chrono-

logical age. We attribute this observation to a difference in the

strength of the aging drivers, distribution of the aging rates, and

different causes of death in the two cohorts. In non-demented

individuals, the drivers of aging were weak; the rates of aging were

relatively slow and consistent across the population; and, in the

absence of unnatural causes, death was likely related to aging

issues other than the health of the brain. Since non-demented

individuals likely died from causes largely unrelated to neurode-

generation, each individual death is conceptually a random event

along the generalized brain aging trajectory. In AD patients, the

drivers of aging were stronger and variable across the cohort; and

death was generally related to the health of the brain that became

incompatible with life regardless of the chronological age. The

extrapolated BioAge of normal patients would not reach the

highest AD levels until the age of 140 years. Thus, AD can be

viewed as an aberrant aging of the brain, which retains the gene

expression hallmarks of normal aging combined with additional

patterns associated with pathological drivers of the disease and

response of the brain tissue to disease-related processes.

For AD patients, we are missing early stages of the aging

trajectory and observe only late stages with terminally high

BioAge. Unlike the normal cohort that can be represented by a

single trajectory, the AD cohort covers a family of trajectories with

different rates of biological aging. Patients with a fast rate of

biological aging would succumb to disease at younger ages and

generally would have higher levels of BioAge relative to their

chronological age in the early phases of disease. However, since we

do not have longitudinal specimens from subjects before they

develop the disease, a second biomarker is required to explain

disease progression rates after BioAge is maximal. The expression

profile of NdStress fits the properties expected of this progression

rate biomarker: it is highest in chronologically young AD patients,

and it significantly correlates with (+) BioAge and (2) chronolog-

ical age. Alz, on the other hand, is the highest in chronologically

older patients and does not correlate with BioAge. Thus, patients

with high NdStress likely have more accelerated aging trajectories

than patients with high Alz. The older chronological age of Alz

onset may suggest that the acceleration of BioAge due to Alz does

not occur until the level of BioAge of the brain reaches a certain

threshold. The quantitative assessment of the brain biological age

in terms of BioAge and the rate of its disease-related acceleration

in terms of NdStress are two critical hypotheses proposed in this

work.

Another way to look at the aging trajectory is to model it as a set

of molecular transitions that lead to changes in BioAge.

Examination of biomarker scores for BioAge-low brains in

Figure 4 suggests that upregulation and disruption of Lipa

biomarker happens very early in the aging process because most

of these samples have the lowest Lipa scores in the cohort.

Comparing Inflame with Lipa and BioAge shows that activation of

the inflammation biomarker also happens early in the aging

process, but not as early as Lipa activation, because there are

BioAge-young patients with high Lipa score yet low Inflame.

These and other observations can be summarized in the form of a

state transition model shown in Figure 7. Aging starts with

upregulation of APOE and other lipid metabolic genes together

with Notch and TGFb signaling, signifying the transition from N0

to N1. The following upregulation of the Inflame biomarker is

associated with transition from N1 to N2. The brains in these

states were diagnosed as normal because the subjects did not yet

exhibit any cognitive impairment associated with AD. The next

transition, from N2 to A1, is associated with massive disruptions in

metabolic pathways and marked acceleration of aging follows.

Some brains, however, avoid transitioning to A1 and continue to

age into N3. Another transition to AD state A2 can happen later,

since we observe brains with high scores for both NdStress and

Alz, which may be associated with a different path to AD.

Alternatively, A2 is possibly localized to a brain region not covered

in the dataset. This transition may, therefore, appear later than A1

in a particular brain region and happen much earlier in some

other brain region.

The proposed model is most consistent with an age-based

hypothesis of Alzheimer’s disease that postulates three fundamen-

tal steps: initial injury aggravated by age, chronic neuroinflamma-

tion, and transition of most brain cells to a new state [8]. These key

stages of the disease were independently observed and associated

with transcriptional changes in our analysis of the brain

transcriptome. We also identified a striking resemblance of the

biological processes behind the disease progression biomarkers

with epithelial-to-mesenchymal transition (EMT) [39]. The AD

processes are most similar to EMT type 2, which is dependent on

inflammation-inducing injuries for initiation and continued

occurrence. Associated with tissue regeneration and organ fibrosis

in kidney, lung, and liver, EMT type 2 generates mesenchymal

cells that produce excessive amounts of extracellular matrix

(ECM). Similarly, a transition of AD brain into a tissue enriched

with mesenchymal cells produces a large amount of ECM

containing b-amyloid. This model of the disease implies that

multiple independent genetic factors, as well as infections and/or

injuries may accelerate consecutive transitions leading to the
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disease. It also suggests different therapeutic strategies for early

and late disease stages. Therapies targeting lipid metabolism and

inflammation may be more effective in the early stages. In the late

stages, when the brain becomes enriched in mesenchymal-like

signaling and adhesion processes, novel approaches that support

the survival of the new state of the brain tissue should be

considered.

Supporting Information

Figure S1 Differential gene expression and variance in
PFC1. (A) Cumulative p-value distribution in the t-test between AD

and normal samples. The blue line shows the number of sequences

that can be detected for a given p-value cutoff. For example, at

p,1E–6, about 18,000 genes can be detected. The green line shows

the level of false positives due to multiple testing. (B) Pareto diagram

of variance explained by the first 10 principal components. The first

principal component dominates the distribution explaining 33% of

the data variance. (C) Comparison of correlations between PC1 and

individual genes in normal and AD samples. Related to Figure 1.

(PDF)

Figure S2 Validation of BioAge and Alz biomarkers in
GSE1297. Panel (A) demonstrates the relationships between

projected BioAge score and the disease severity as MMSE. The

points are colored according to the assigned severity level. The box

plots represent the distribution of the biomarker scores in the

hippocampus samples from non-demented control subjects and

subjects with AD of different severity. Panel (B) shows the same

analysis for the Alz biomarker.

(PDF)

Figure S3 Regulation of selected sell cycle regulation
genes with BioAge. The heat map shows hierarchical clustering

of selected 17 genes involved in cell cycle regulation and DNA

repair. The samples (rows) are sorted according to the values of the

first principal component of the complete dataset and labeled

according to diagnosis (normal samples in black, AD samples in

red on the right). Related to Figure 2.

(PDF)

Figure S4 Expression of selected genes and their
relationships with biomarkers. The heat map shows

hierarchical clustering of 17 selected genes and 5 biomarkers

developed in this work. The samples (rows) are sorted according to

the values of the first principal component of the complete dataset

and labeled according to diagnosis (normal samples in black, AD

samples in red on the right). Only samples with BioAge,0.4 are

shown. Related to Figure 3.

(PDF)

Figure S5 Correlation between biomarker scores be-
tween PFC1 and CR1 of the same individuals. Each plot

shows relationships between the biomarker values in PFC1 and

CR1. Samples from non-demented and AD subjects are shown in

black and red respectively. Related to Figure 5.

(PDF)

Figure S6 Validation of mutual relationships between
key biomarkers in PFC2 cohort, which contained non-
demented (black), AD (red), and HD (green) samples.
Compare with Figure 6.

(PDF)

Table S1 Demographic, clinical, and experimental
composition of the HBTRC gene expression dataset.

(PDF)

Table S2 Gene sets that comprise gene expression
biomarkers of aging and AD progression.

(XLS)

Table S3 Functional annotations of the biomarker gene
sets based on pathway enrichment. The abridged
summary of this analysis is provided in Table 2.

(XLS)
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Figure 7. Disease progression model. The trajectories of BioAge changes as a function of time reflect the relatively constant rate of aging in non-
demented subjects (black), and acceleration of the rate of aging in AD (red). The dots represent the postmortem state of the brain captured by gene
expression profiling. The state transition model defines several broad categories for normal brains N0–N3 and for diseased states A1 and A2. The
sequence of transitions and associated gene expression biomarkers are shown by arrows.
doi:10.1371/journal.pone.0029610.g007
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