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Abstract

Malaria has had the largest impact of any infectious disease on shaping the human genome, exerting enormous selective
pressure on genes that improve survival in severe malaria infections. Modern humans originated in Africa and lost skin
melanization as they migrated to temperate regions of the globe. Although it is well documented that loss of melanization
improved cutaneous Vitamin D synthesis, melanin plays an evolutionary ancient role in insect immunity to malaria and in
some instances melanin has been implicated to play an immunoregulatory role in vertebrates. Thus, we tested the
hypothesis that melanization may be protective in malaria infections using mouse models. Congenic C57BL/6 mice that
differed only in the gene encoding tyrosinase, a key enzyme in the synthesis of melanin, showed no difference in the clinical
course of infection by Plasmodium yoelii 17XL, that causes severe anemia, Plasmodium berghei ANKA, that causes severe
cerebral malaria or Plasmodium chabaudi AS that causes uncomplicated chronic disease. Moreover, neither genetic
deficiencies in vitamin D synthesis nor vitamin D supplementation had an effect on survival in cerebral malaria. Taken
together, these results indicate that neither melanin nor vitamin D production improve survival in severe malaria.
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Introduction

Melanins are pigments that have evolved over 500 million

years and that are present in animals, microorganisms and

plants. In flies and mosquitoes melanization of pathogens is part

of the innate immune response and it is correlated with

resistance to infection [1,2]. In animals, melanin is produced

by melanocytes, that are present in a variety of tissues, including

skin, uveal tract, brain and the peritoneum [3]. The low level of

melanization in the skin of humans living in temperate climates

of the globe is in large part due to the fact that melanin pigments

absorb and scatter the UVB wavelengths that catalyze the

conversion of 7-dehydrocholesterol to pre-Vitamin D3, the

precursor of Vitamin D3 in the skin [4,5]. In fact, individuals

with marked skin melanization frequently require 10–20 times

longer exposure to sunlight than those of lighter pigmentation to

promote adequate synthesis of vitamin D3 [4,6]. Vitamin D

deficiency can exert strong selective pressure by causing severe

deformation of the pelvis in women, leading to increased

perinatal morbidity and mortality, or increasing the susceptibility

to infections and death in children [7]. The pressure for skin

melanization in tropical regions, on the other hand, can be

explained by the advantage of melanized individuals to

withstand prolonged sun exposure, although a rigorous link of

melanization with an increase in fitness in mammals has not

been established [3]. Interestingly, dark colors are attractive to

Aedes aegyptii, the mosquito vector of dengue and yellow fever,

and Culex fatigans, the mosquito vector of filarial worms, but not

for anopheline mosquitoes, the mosquito vectors of malaria,

which find light colors more attractive [8]. In this regard skin

melanization can be either advantageous or detrimental,

depending on the disease.

In addition, both melanin and vitamin D have been suggested

to have potential immunoregulatory functions. Melanin has been

shown in some circumstances to have antioxidant [9,10], anti-

inflammatory [11], and immunoregulatory functions in innate

immune responses, with melanocytes participating in phagocyto-

sis [12] and inflammation [13,14,15]. This observation led to the

suggestion that an additional function of melanin in the skin is to

promote immune responses to infections [3,16,17]. In birds,

melanin levels have been shown to influence the magnitude of

antibody and cellular responses [18]. In addition, vitamin D

deficiencies have been reported to increase [19,20] and to

decrease resistance to infection [21,22]. Although in experiments

vitamin D inhibits plasmodium growth in vitro [23], in malaria

infections neither VDR gene polymorphisms or vitamin D levels

correlate with infection [24]. On the other hand, vitamin D

deficiency has been shown to be a risk factor for the development

of autoimmune diseases including multiple sclerosis [25,26,27,28]

and systemic lupus erythematosus (SLE) [29,30,31]. SLE is eight

to ten times more prevalent in women of African as compared to

European descent and recently, we provided evidence in a mouse

model of SLE that SLE susceptibility genes that result in

hyperimmune activation are protective in cerebral malaria but

not against severe anemia [32]. These results suggested that the

higher incidence of SLE in African Americans may be a

consequence of the beneficial effects of SLE susceptibility genes

in malaria-endemic areas.
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The possibility that melanin and vitamin D may play

immunoregulatory roles led us to the hypothesis that melanin

or vitamin D production may have been selected for in Africans

in part due to a protective role in malaria. To test this hypothesis,

we compared the course of malaria infections in wild type and

albino B6(Cg)-Tyrc-2J/J mice (B6.Tyr2/2 mice) that have

mutations in the Tyr gene, that encodes tyrosinase, the same

gene that is mutated in type I human oculocutaneous albinism.

Tyrosinase is the key enzyme in mammalian melanin biosyn-

thesis that catalyzes the conversion of tyrosine to dopa, the

dehydrogenation of dopa to dopaquinone, and the conversion of

5,6-dihidroxyindile to melanochrome, which is the direct

precursor of melanin [33]. Consequently, the absence of

tyrosinase ablates completely the synthesis of the major body

melanins, pheomelanin and eumelanin. We also tested whether

vitamin D had an effect on the course of malaria infections in

mice.

Results

Melanization does not protect against malaria-induced
severe anemia

C57BL/6 (B6) mice and tyrosinase deficient B6 (B6.Tyr2/2)

mice were infected with the lethal strain P. yoelii 17XL by injection

of 104 infected red blood cells i.p. Mice were followed daily to

evaluate parasitemia, body weight, temperature, clinical status,

hemoglobin concentration and survival (Figure 1). We also

determined the hematocrit, white blood cell differential count

and platelets count, on day 0 and day 3 following infection (Figure

S1). Infected B6.Tyr2/2 mice had higher white blood cell counts,

less anemia and higher lymphocyte counts on day 3 as compared

to B6 mice. Despite these differences, we observed no difference in

the survival of the B6 and B6.Tyr2/2 mice following P. yoelii 17XL

infections. The majority of B6 and B6.Tyr2/2 mice died of the

infection within 8–9 days and mice from the two groups showed a

Figure 1. Effect of melanization in severe malaria anemia. (A) The percent of B6.Tyr2/2 and B6 P. yoelii 17XL infected mice that survived
over time is given in Kaplan-Meier curves. Death was defined as a parasitemia $60%, moribundity or death (P = 0.64). (B) Parasitemias, determined
by GIEMSA stained smears of tail blood, are given for B6.Tyr2/2 and B6 infected mice over time. (C) Clinical scores determined by the modified
SNAP scoring system are given. (D) Hemoglobin concentrations of B6.Tyr2/2 and B6 infected mice are given. (E) Body temperature determined at
the tail skin for both B6.Tyr2/2 and B6 infected mice over time are given. Data showed represents the mean of 10 animals and bars represent the
SEM.
doi:10.1371/journal.pone.0029493.g001
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similar course of infection for all parameters analyzed. The levels

of parasitemia appear different between the two groups after day 7

but these differences are not statistically significant as only one

mouse in each group survived beyond day 7.

Melanization does not protect against cerebral malaria
P. berghei ANKA is an established model of mouse cerebral

malaria (CM) that reproduces reasonably well the pathological

features of human CM. P. berghei infections are lethal in mice

resulting in early death (by day 6–12) in susceptible B6 strains due

to CM or, in late death (between days 14 and 21) in resistant

strains due to severe anemia [34,35]. B6 and B6.Tyr2/2 mice

were infected with P. berghei ANKA by injection of 106 infected red

blood cells, i.p. All mice, both B6 and B6.Tyr2/2, died before day

10 and developed signs of CM (Figure 2). No differences in

survival were observed between the groups. In addition, B6 and

B6.Tyr2/2 mice showed no significant differences in parasitemia,

hemoglobin levels, body temperature or cytokine levels (Figure S2)

during the course of the infection. Thus, it appears that the ability

to produce melanin is not protective against severe CM.

Melanization does not protect against chronic malaria
infection

To determine the effect of melanin deficiency on the course of a

chronic malarial infection we infected B6 and B6.Tyr2/2 mice

with P. chabaudi AS by injection of mice with 106 infected red blood

cells. P. chabaudi AS causes a biphasic infection characterized

initially by acute parasitemia that peaks around day 7, followed by

Figure 2. Effect of melanization on cerebral malaria. (A) The percent of B6.Tyr2/2 and B6 P. berghei ANKA infected mice that survived over
time is given in Kaplan-Meier curves. Death was defined as a parasitemia $60%, moribundity or death (P = 0.71). (B) Parasitemias, determined by
GIEMSA stained smears of tail blood, are given for B6.Tyr2/2 and B6 infected mice over time. (C) Clinical scores determined by the modified SNAP
scoring system are given. (D) Hemoglobin concentrations of B6.Tyr2/2 and B6 infected mice are given. (E) Body temperature determined at the tail
skin for both B6.Tyr2/2 and B6 infected mice over time are given. Data showed represents the mean of 10 animals and bars represent the SEM.
doi:10.1371/journal.pone.0029493.g002
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chronic low-level infection. The immune response during the first

phase is controlled both by an innate system response as well as a

Th1 response [36,37] while the control and clearance of the

chronic blood infection during the second phase requires both

TH1 and TH2 CD4+ cells and B cells [36,38]. We followed the P.

chabaudi infected mice for 21 days and observed no difference

between B6 and B6.Tyr2/2 mice in all parameters analyzed

including survival, parasitemia, clinical score, hemoglobin levels,

body temperature and leukocyte, neutrophil and lymphocyte

numbers. (Figure 3, Figure S3). Thus, we concluded that the

ability to produce melanin did not affect the course of chronic

malaria infections.

Melanin treatment decreases parasitemia but does not
protect against cerebral malaria

Previous studies have shown that melanin in high doses can

affect the secretion of multiple cytokines, including TNF-a, IL-1b,

IL-6 and GM-CSF [39]. To investigate the effects of high doses of

melanin on the course of malaria CM infections, we treated P.

berghei ANKA infected B6.Tyr2/2 mice with daily doses of melanin

(25 mg/kg) in saline i.p. or with saline alone. B6.Tyr2/2 mice

receiving melanin showed a delayed increased in parasitemia

(P,0.05) and better clinical scores but did not better survive the

infection as compared to controls B6.Tyr2/2 mice receiving saline

(P = 0.58) (Figure 4). On day five post-infection, melanin treated

mice had higher platelet counts than controls (P,0.001) (Figure

S4), and the number of platelets correlated positively with survival

(Spearman Rho = 0.64, p = 0.002). On the other hand, melanin

treatment caused animals to have a steeper decrease in

hemoglobin levels, especially from day 3 to day 5 post-infection

(P,0.05). The fact that melanin treated mice did not survive the

infection any better than control B6 mice suggests that, albeit

somewhat beneficial, melanin treatment is not sufficient to change

the course of the disease in mice (Figure 4).

Vitamin D does not protect against cerebral malaria
Because skin melanization is an important factor in cutaneous

vitamin D biosynthesis, we tested if vitamin D deficiency

influenced the pathogenesis of cerebral malaria. We also

supplemented the diets of mice with vitamin D injections i.p.

every other day (0.5 mg/kg), starting 3 days before infection with P.

berghei ANKA. We did not observe any difference in survival

between treated and untreated mice with all mice dying by day 8

(Figure 5A). Also, we did not observe any differences in

parasitemia or body temperature during the course of infection

suggesting that vitamin D, at the levels used in this study, does not

influence the immune response to malaria (Figure 5B and 5E).

Animals receiving vitamin D injections had better clinical scores at

days 6 and 7 post infection and had higher hemoglobin levels than

controls but this effect was apparently not enough to reduce

mortality (P = 0.76).

We also followed the course of P. berghei ANKA infections in

wild type B6 mice and in mice deficient in the vitamin D receptor

(VDR) and B6.VDR2/2 mice. Because B6.VDR2/2 knockout

Figure 3. Effect of melanization on chronic malaria infection. (A) Parasitemias, determined by GIEMSA stained smears of tail blood, are given
for B6.Tyr2/2 and B6 P. chabaudi AS infected mice over time. (B) Clinical scores determined by the modified SNAP scoring system, are given.
(C) Hemoglobin concentrations of B6.Tyr2/2 and B6 infected mice are given. (D) Body temperature determined at the tail skin for both B6.Tyr2/2
and B6 infected mice over time are given. Data showed represents the mean of 10 animals and bars represent the SEM.
doi:10.1371/journal.pone.0029493.g003
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mice require a special diet to prevent severe osteoporosis and

death, we kept wild type B6 mice on the same diet. We observed

no difference in the course of disease in B6 and B6.VDR2/2 mice

(Figure 6). Most B6 and B6.VDR2/2 mice died within 9–10 days

of infection and showed similar parasitemias, clinical scores,

hemoglobin levels and body temperatures.

Discussion

Our results provide evidence that melanization does not

improve survival in severe malaria. Melanization did not improve

survival against parasites that cause either CM or severe anemia

and does not affect the course of chronic infections. Our data also

suggests that neither vitamin D treatment nor vitamin D receptor

deficiency affect the progression of cerebral malaria caused by P.

berghei ANKA infections. Therefore the data suggest that melanin,

neither directly nor through its indirect effect on vitamin D

synthesis, improves survival in severe malaria in mice. High doses

of vitamin D have been reported to decreased parasite growth and

survival in vitro [40] but we did not observe similar effects when

treating animals with lower doses. This is in agreement with

previous studies in humans showing a lack of association between

polymorphisms on the VDR gene and malaria infection [19].

Nevertheless, because we only tested the effects of one dose of

vitamin D3 (and not of other forms) one cannot exclude

completely an effect of vitamin D on malaria.

We also tested the effect of high doses of melanin on the

progression of CM. Although the dose used was previously shown

to reduce LPS induced TNF-a production [39] and we showed

that high doses of melanin delayed increases in parasitemia and

improved clinical scores, melanin treatment was not sufficient to

increase survival in CM. The effect in parasitemia and clinical

scores can be potentially explained by direct anti-parasite effect of

melanin (as observed in mosquitoes) or by its free radical

scavenging properties. CM is a complex disease caused in part

by excessive free radicals generated as a response to free iron and

hemoglobin [41,42,43] and, under certain conditions, free radical

scavengers can block some of the deleterious effects of malaria

[44,45]. Interestingly, melanin treatment prevented the thrombo-

cytopenia that was observed in B6 mice by day 5 post-infection.

Changes in platelet counts are also common in human malaria

infection, and the extent of reduction is a predictor of clinical

outcome and severity of malarial infection in children [46].

Platelets are involved in the pathogenesis of cerebral malaria as

Figure 4. Effect of melanin treatment on cerebral malaria. (A) The percent of melanin treated and untreated B6.Tyr2/2 P. berghei ANKA
infected mice that survived over time is given in Kaplan-Meier curves. Death was defined as a parasitemia $60%, moribundity or death (P = 0.33). (B)
Parasitemias, determined by GIEMSA stained smears of tail blood, are given for B6.Tyr2/2 treated and untreated infected mice over time. (C) Clinical
scores determined by the modified SNAP scoring system are given. (D) Hemoglobin concentrations of B6. Tyr2/2 treated and untreated infected
mice are given. (E) Body temperature determined at the tail skin for B6.Tyr2/2 treated and untreated infected mice over time are given. Data
showed represents the mean of 10 animals and bars represent the SEM.
doi:10.1371/journal.pone.0029493.g004
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they encourage the sequestration of infected red blood cells in the

cerebral vasculature and in the innate response to the parasite

[47,48] and, in agreement with the literature, our data showed a

positive correlation between platelet count and survival. Last, we

have shown that melanin treatment does not affect survival in P.

berghei ANKA infections, suggesting again that melanin does not

affect the progression of murine CM. Taken together, our data

suggests that melanization was not selected by malaria. In spite of

that, one cannot exclude completely the role of melanin on the

response to malaria, for the mouse and human immune system

and skin are considerably different. For instance, human

melanocytes are mainly found at the basal layer of the epidermis

while mouse melanocytes reside in the hair follicle and the dermis

[49,50], pelage density is much higher in rodents than humans,

and the stratum corneum of rodents is generally more permeable

and fragile [51]. Furthermore mice are nocturnal animals with

very small vitamin D needs, suggesting that melanin must play a

different role in vitamin D metabolism in mice. Humans, on the

other hand, are considered diurnal animals that synthesize vitamin

D in the skin on exposure to UV light [52].

Figure 5. Effect of vitamin D3 treatment on cerebral malaria. (A) The percent of treated and control P. berghei ANKA infected B6 mice that
survived over time is given in Kaplan-Meier curves. Death was defined as a parasitemia $60%, moribundity or death (P = 0.76). (B) Parasitemias,
determined by GIEMSA stained smears of tail blood, are given for treated and control B6 mice over time. (C) Clinical scores determined by the
modified SNAP scoring system are given. (D) Hemoglobin concentrations determined on tail blood are given. (E) Body temperature determined at
the tail skin for treated and control B6 mice over time are given. Data showed represents the mean of 10 animals and bars represent the SEM.
doi:10.1371/journal.pone.0029493.g005
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Methods

Ethics statement
All experiments were approved by the National Institute of

Allergy and Infectious Diseases Animal Care and Use Committee.

Animals
Male 8–10 week old C57BL/6, B6.VDR[KO] (strain

B6.129S4-Vdrtm1Mbd/J, stock number 006133) and B6.TYR[KO]

(strain B6(Cg)-Tyrc-2J/J, stock number 000058) mice were

obtained from The Jackson Laboratories and allowed to acclimate

in the animal facility until the experiment was performed.

B6.VDR[KO] mice were maintained constantly on a 20% lactose

diet (TD 96348, Harlan) to prevent the development of

osteoporosis.

Malaria infections and treatments
Mice were infected with 16106 P. berghei ANKA, 16106 P.

chabaudi AS or 16104 P. yoelii 17XL infected red blood cells

(iRBCs) i.p. Parasites were obtained from donor mice that were

Figure 6. Effect of VDR knockout on cerebral malaria. (A) The percent of B6 and B6.VDR2/2 P. berghei ANKA infected mice that survived over
time is given in Kaplan-Meier curves. Death was defined as a parasitemia $60%, moribundity or death (P = 0.38). (B) Parasitemias, determined by
GIEMSA stained smears of tail blood, are given for B6.VDR2/2 and B6 infected mice over time. (C) Clinical scores determined by the modified SNAP
scoring system are given. (D) Hemoglobin concentrations of B6.VDR2/2 and B6 infected mice are given. (E) Body temperature determined at the tail
skin for both B6.VDR2/2 and B6 infected mice over time are given. Data showed represents the mean of 10 animals and bars represent the SEM.
doi:10.1371/journal.pone.0029493.g006
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infected with thawed parasite stocks. Synthetic melanin was

obtained from Sigma (M0418) and it was initially dissolved in 0.1

NaOH to solubilize it. The solution pH was adjusted to 7.0, it was

centrifuged and then filtered through a 0.45 mM filter before

injection. Animals were injected i.p. daily with 25 mg/kg of

melanin solution or saline. Vitamin D was obtained from Sigma

(Supelco Cholecalciferol (D3) Cat#47763) and it was first

dissolved in 10 mL of 100% ethanol to make a stock solution

(10 mg/mL). The stock was further diluted in 0.02% Tween 80 to

make a working solution (0.1 mg/mL). Animals were injected with

0.5 mg/kg every other day, starting 3 days before infection. A

similar dose of 1,25-dihydroxivitamin D3 was previously shown

not to cause hypercalcemia but to induce splenocyte apoptosis and

enhance sensitivity to other parasites [53]. For the experiment

investigating the role of the vitamin D receptor (VDR) on the

response to cerebral malaria, VDR knockout mice were kept on a

rescue diet rich in calcium, phosphorus and lactose (Harlan

laboratories, stock #TD.96348) to avoid osteoporosis. 10 animals

were used per group in all experiments. In all cases, parasitemia in

infected mice was quantified by examining Giemsa stained thin

blood smears. Hemoglobin concentration was measured daily with

a HemoCue Hb 201+ using blood from the tail tip (,10 mL/day).

Mice that reached 60% parasitemia or that become moribund

were euthanized. All mice were evaluated daily for the presence of

clinical signs of severe malaria using a simple scoring adapted from

the SNAP scoring system [54]. Animals were scored by evaluating

5 categories: interactions/reflex, cage grasp, visual placing, gait/

posture/appearance, and capacity to hold their body weight on a

baton. Each category was divided in 3 levels, varying from 0 to 2,

where 0 represented normal individuals and 2 the worst case for

that particular parameter. Hematology parameters were deter-

mined on day 0 and 5 using a Hemavet 950 FS system (Drew

Scientific).

Statistics
When applicable, statistical analysis of survival was by Log-rank

(Mantel-Cox) test. The survival curves were calculated using the

Kaplan-Meier estimates and the survival curves were compared by

the log-rank test. Continuous variables were analyzed with the

two-sample t-test, where the Bartlett’s test for equal variances was

used to determine whether the use of a pooled variance or unequal

variances was appropriate. Two-sided P values were reported in

the text. P values were considered significant if P,0.05.

Cytokine Quantification
The levels of cytokines in serum samples were quantified using

the Q-Plex Mouse Cytokine Kit (Quansys Biosciences) according

to manufacturer’s instructions.

Supporting Information

Figure S1 Melanization does not change blood compo-
sition in response to severe malaria anemia. Animals were

infected with 16104 P. yoelii 17XL iRBCs on day 0. Hematological

parameters were determined in whole blood. White blood cells

(WBC), Red Blood Cells (RBC), Hemoglobin (Hb), Platelets,

Neutrophils, Lymphocytes and Hematocrit are shown. Data

showed represents the mean of 10 animals and bars represent

the SD of the mean.

(TIF)

Figure S2 Melanin does not alter the cytokine profile in
response to cerebral malaria. Cytokine levels before (day 0)

and 5 days after infection using 16106 P. berghei ANKA iRBCs are

shown. Data showed represents the mean of 10 animals and bars

represent the SD of the mean.

(TIF)

Figure S3 Melanization does not alter blood composi-
tion in response to chronic malaria. Animals were infected

with 16106 P. chabaudi iRBCs on day 0. White blood cells (WBC),

Red Blood Cells (RBC), Hemoglobin (Hb), Platelets, Neutrophils,

Lymphocytes and Hematocrit are shown. Data showed represents

the mean of 10 animals and bars represent the SD of the mean.

(TIF)

Figure S4 Effect of melanin injections on blood compo-
sition in B6.Tyr2/2 animals. Animals were infected with

16106 P. berghei ANKA iRBCs on day 0. White blood cells (WBC),

Red Blood Cells (RBC), Hemoglobin (Hb), Platelets, Lympho-

cytes, Neutrophils, Hematocrit and the linear regression of survival

on platelet counts are given. The dashed lines represent the 95%

confidence interval about the regression line. Data showed

represents the mean of 10 animals and bars represent the SD of

the mean.

(TIF)
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