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Abstract

In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate
both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the
development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents
a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model)
which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we
demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a ‘‘learning signal’’ to remote
synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and
subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that
bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters.
Although our composite AN model is presently applied to simplified neural structures and limited to coordination between
localized neurons, the principle (which embodies structural, functional and dynamic complexity), and the modeling strategy
may be extended to coordination among remote neuron clusters.
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Introduction

For many years, astrocytes, a subgroup of glial cells found in

the brain, have been thought to support neurons by providing

them with vital elements needed for their survival [1–3]. In

recent years, several new discoveries have revealed that

astrocytes can encapsulate ,105 synapses and can connect to

multiple neighboring neurons [4,5]. Although astrocytes cannot

elicit propagating action potentials (APs) like neurons do, they

can communicate in a bidirectional manner with neurons and

other astrocytes by release of transmitters (which include

glutamate and adenosine triphosphate (ATP) referred to as

gliotransmitters) and propagating calcium (Ca2+) waves. In

particular, the interaction of glutamate with astrocytic receptors

leads to transient elevation in astrocytic intracellular Ca2+ levels

[6–9], which represent a fundamental mode of excitation in

astrocytes. In response to these Ca2+ transients, astrocytes

release gliotransmitters which in turn modulate synaptic

transmission by acting both on pre- and post-synaptic receptors.

As well as intracellular communication, astrocytes communicate

with each other through the propagation of Ca2+ waves, a

process which is thought to be mediated via extracellular ATP

diffusion and the transmission of inosotil 1, 4, 5-trisphosphate

(IP3) through gap junctions. However, the exact nature of this

process is still unclear [10–14].

Traditionally, communication and information transfer within

the brain have been the sole province of pre- and post-synaptic

coupling between neurons. However, recent research has extended

if not challenged this view of synaptic physiology. The coupling of

astrocytes and neurons results in an intimate connection which

provides a pathway for chemical communication between the

cells: a synapse actually exchanges signals at three terminals, hence

the name tripartite synapse [15]. Neuron to astrocyte communication

is promoted by glutamate which is released across the synaptic

cleft upon arrival of a presynaptic AP. Some of the released

glutamate binds to metabotropic glutamate receptors (mGluRs) of

the connected astrocyte resulting in an astrocytic intracellular

release of IP3. This in turn regulates the release of Ca2+ from

internal stores, creating a transient increase in Ca2+ (for a detailed

review see [10,16]). Moreover, the intracellular Ca2+ increase has

also been shown to propagate intracellularly in a process which is

believed to be promoted by the propagation of signaling proteins

between neighboring microdomain clusters of IP3 receptors

[17,18].

Astrocytes also communicate in a feedback mode with neurons

and have been found to play key roles in Long Term Potentiation/
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Depression (LTP/LTD) [19,20] and neuronal synchrony [21]. In

response to elevated levels of Ca2+, gliotransmitters such as

glutamate are released, leading to activation of extrasynaptic

glutamate receptors (NR2B subunits of N-methyl-D-asparate

receptors or NMDARs) on the postsynaptic neuron, mainly

located at dendritic spines [22]. This NMDAR-activation brings

about the characteristic hallmark of astrocyte-neuron signaling, i.e.

a slow inward current (SIC), which has a rise time of ,60 ms and

a decay time of ,600 ms, and is thus very different from the

classical excitatory postsynaptic current (EPSC) (,6.4 ms and

,10 ms rise and decay time respectively) elicited by glutamate

released from the presynaptic neuron [21,23]. As well as

producing local SICs, it has been found that glutamate release

also acts on neighboring neurons and produces synchronized SICs

[21]. Astrocytes can also release glutamate spontaneously in the

absence of synaptic activity [24] supporting a role for astrocytic

glutamate release in the synchronization of neighboring neurons

[25,26]. One explanation for synchrony is that neighboring

neurons can sense astrocyte related glutamate release in the

extracellular space. Another hypothesis is that a pair of

synchronized releases occurs from two distinct sites of the same

or different astrocytes [21]. Since an astrocyte interacts directly

with an average of six neurons and can associate with between 300

and 600 dendrites with no overlap of astrocyte territories, it is

unlikely that synchronization is due to different astrocytes

connected to neurons. A more likely explanation is that

neighboring synapses are coordinated by signals from a single

astrocyte [4,5]. Furthermore, the degree of synchrony precision

rules out the spread of Ca2+ waves throughout a glial network [26].

It is interesting to note that the astrocyte-elicited SICs are often

much larger than synaptic NMDA currents, i.e. ,100 pA [23,26],

and therefore are an ideal candidate for the synchronization of

neural activity.

In this paper, we model neuron-astrocyte interaction and

provide evidence which shows that astrocytes have a role to play in

LTP/LTD where neuron-astrocyte interactions at a synaptic site

can cause plasticity at other remote sites via SICs. Also we show

how an astrocytic induced signal can cause dynamic synchroni-

zation between neurons. Much evidence indicates that cognitive

and behavioral functions rely on flexible coordination among

distributed neural activities within and between cortical areas (see

[27,28] for reviews). However, although several mechanisms have

been proposed for synchronization, its physical basis remains

obscure. Our model shows how dynamic coordination in the brain

may emerge from bidirectional communication between neurons

and astrocytes.

Materials and Methods

A feature of the present modeling approach is its constructive

nature: it combines and constructs multiple detailed models in

order to reveal the regulatory dynamics of astrocytes at a network

level. In this it contrasts to larger-scale network approaches in

which statistical descriptions of neural populations allow one to

derive generic differential equations that describe the evolution of

the averaged activity of pools of equivalent neurons (see [29] for

review). The present work builds on two biophysically motivated

models which describe the interactions between astrocytes and

neurons in a tripartite synapse: the gatekeeper model [30] and the

Nadkarni and Jung model [31,32]. Both of these models use Li

and Rinzel Ca2+ dynamics [33] to describe the evolution of

synaptically driven Ca2+ transients in the astrocyte, which in turn

modulates synaptic transmission via the release of astrocytic

glutamate that binds to presynaptic receptors. However, no

attempt has been made to investigate how the binding of astrocytic

glutamate to the postsynaptic neuron affects long/short term

synaptic coupling. Our extended Astrocyte Neuron (AN) model

uses astrocyte-driven SICs (i.e. extrasynaptic NMDA NR2B

mediated neuronal currents) to provide a teaching signal for

learning and to synchronize neural activity between neurons.

Astrocyte – Neuron Interactions
Both the gatekeeper [30] and Nadkarni and Jung [31,32]

models describe the interaction of astrocytes and neurons via the

tripartite synapse. In a tripartite synapse an astrocyte process

connects with the axon and dendrite of the pre- and post-synaptic

neurons and is sensitive to the neurotransmitters within the

extracellular fluid in the synaptic cleft [15]. Figure 1 illustrates a

tripartite synapse. When neurotransmitter, e.g. glutamate, is

released into the synaptic cleft by the presynaptic terminal, some

of it interacts with glutamate receptors (mostly mGluRs) on the

astrocyte. This then initiates the creation and release of IP3 into

the astrocytic cytoplasm. IP3 subsequently binds to IP3 receptors

(IP3Rs) on the Endoplasmic Reticulum (ER), a long network of

tubes and vesicles used to store Ca2+ within the cell [34]. The

binding of IP3 with IP3Rs opens channels that allow the release of

Ca2+ from the ER in to the cytoplasm (so-called Ca2+ puff).

Whereas individual Ca2+ puffs are incapable of propagating

intracellularly, several puffs can raise Ca2+ levels in the cytoplasm

beyond a threshold (believed to be of the order 0.2–0.4 mM [35])

and an oscillating Calcium Induced Calcium Release (CICR)

propagation may be observed [36]. The increase in cytosolic

Ca2+ then causes the release of transmitter, more commonly

called gliotransmitter, back into the synaptic cleft. Therefore, the

astrocyte can modulate synaptic transmission between pre- and

post-synaptic neurons based on the previous activity of the

synapse and the type of inhibitory or excitatory transmitter

released.

The binding of glutamate to their related receptors on the

astrocyte process and generation/evolution of IP3 within the

gatekeeper model [30] is assumed to be dependent on the amount

of neurotransmitter released, and is given by:

dIP3

dt
~

IP�3{IP3

tip3
zrip3y ð1Þ

where IP3 is the amount of IP3 in the cytoplasm. IP�3 is the baseline

level of IP3 within the cytoplasm when the cell is in a steady state

and receiving no input, rip3 is the rate at which IP3 is produced, tip3

is the IP3 decay rate and y is the amount of neurotransmitter

released into the cleft (as later described in equations (12–14)).

From equation (1) it is clear that IP3 levels will be maintained as

long as there is an input stimulus to the synapse. Furthermore, IP3

levels will reach a steady state based on the maintained input

stimulus frequency, i.e. the higher the input stimulus frequency,

the higher the level of IP3 (see Figure S1).

Astrocyte Ca2+ Dynamics
To describe the Ca2+ dynamics within an astrocyte, the

gatekeeper [30] and the Nadkarni and Jung models [31,32]

employed the Li-Rinzel model [33]. Although a number of

computational models may describe cellular Ca2+ dynamics (see

[37,38] for review), it has been shown that the Li-Rinzel model

can exhibit Amplitude Modulation (AM) and Frequency Modu-

lation (FM) encoding of the cellular IP3 levels, as well as a mixture

of AM and FM (AM-FM), via the adjustment of different model

parameters [39]. Therefore we use the Li-Rinzel model to explore

Bidirectional Coupling: Astrocytes and Neurons
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the effects of different encoding schemes on astrocyte-neural

communication.

Ca2+ dynamics within the Li-Rinzel model are described by

three channels. Jpump which models how Ca2+ is stored within the

ER by pumping Ca2+ out of the cytoplasm into the ER via Sarco-

Endoplasmic-Reticulum Ca2+-ATPase (SERCA) pumps, Jleak

which describes the amount of Ca2+ released by leakage through

the ER membrane and Jchan which models the opening of Ca2+

channels by the mutual gating of Ca2+ and IP3 concentrations.

Since the model only considers the case of a single cell which exists

in a Ca2+-free extracellular environment, no account is taken of

any Ca2+ flux across the cell membrane [40]. The Li-Rinzel model

is described using the following equations (a full derivation of these

equations is provided in [39]):

dCa2z

dt
~Jchan Ca2z,h,IP3

� �
zJleak Ca2z

� �
{Jpump Ca2z

� �
ð2Þ

dh

dt
~

h?{h

th

ð3Þ

where Jchan is the IP3 and Ca2+ dependent Ca2+ release, Jpump is the

amount of Ca2+ pumped from the cytoplasm into the ER via the

SERCA pumps, Jleak is the Ca2+ which leaks out of the ER and h is

considered to be the fraction of activated IP3Rs. The parameters

h? and th are given by:

h?~
Q2

Q2zCa2z
ð4Þ

and

th~
1

a2 Q2zCa2zð Þ ð5Þ

where

Q2~d2
IP3zd1

IP3zd3
ð6Þ

Figure 1. A Tripartite Synapse. The axon and dendrite, which are
involved with the release and postsynaptic action of neurotransmitter
respectively, are also connected to an astrocyte process which is
sensitive to neurotransmitter. In response to neuronal neurotransmitter
release the astrocyte can release further neurotransmitter (called
gliotransmitter) which regulates the Excitatory Post-Synaptic Current
(EPSC) generated by the postsynaptic neuron.
doi:10.1371/journal.pone.0029445.g001

Table 1. Astrocyte Parameters.

Astrocyte Parameter Parameter Description Value

IP*
3 Baseline value of IP3 0.16 mM

rIP3 rate of IP3 production 7.2 mM s21

tIP3 IP3 degradation time constant 7 s

tCa Decay rate of f controlled by level of Cytosolic Ca2+ 4 s

rC Maximum rate of CICR 6 s21

rL Ca2+ leakage rate from ER 0.11 s21

vER Maximum rate of SERCA uptake 0.9 mM s21

c0 Total free Ca2+ cytosol concentration AM, AM-FM = 2 mM
FM = 4 mM

kER SERCA pump activation constant AM = 0.1 mM
AM, AM-FM = 0.051 mM

c1 Ratio of ER volume to cytosol volume 0.185

d1 IP3 dissociation constant 0.13 mM

d2 Ca2+ inactivation dissociation constant 1.049 mM

d3 IP3 dissociation constant 0.9434 mM

d5 Ca2+ activation dissociation constant 0.08234 mM

a2 IP3R Ca2+ inactivation binding rate. 0.2 mM s21

Note: these parameters are taken from [30,39]. All parameter values are for AM mode unless otherwise stated.
doi:10.1371/journal.pone.0029445.t001

Bidirectional Coupling: Astrocytes and Neurons
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The description of the Jchan channel is given by:

Jchan~rCm3
?n3

?h3 C0{ 1zc1ð ÞCa2z
� �

ð7Þ

where rC is the maximal CICR rate, C0 is the total free Ca2+

cytosolic concentration, C1 is the ER/cytoplasm volume ratio and

m‘ and n‘ are the IP3 Induced Calcium Release (IICR) and CICR

channels respectively and are given by:

m?~
IP3

IP3zd1

ð8Þ

and

n?~
Ca2z

Ca2zzd5
ð9Þ

The remaining channels are given by:

Jleak~rL C0{ 1zc1ð ÞCa2z
� �

ð10Þ
and

Jpump~vER

Ca2z
� �2

k2
ERz Ca2zð Þ2

ð11Þ

Figure 2. AN Model Block Diagram showing interactions between an astrocyte and neuron cell.
doi:10.1371/journal.pone.0029445.g002

Table 2. Neuron and Synapse Parameters.

Neuron Parameter Parameter Description Value

vth Firing Threshold Voltage 9 mv

Rm Membrane Resistance 1.2 Gv

tmem Membrane time constant 60 ms

Note: vth is a typical firing threshold level of a neuron and Rm and tmem have
been adapted from [46] and tuned to give the desired response.
doi:10.1371/journal.pone.0029445.t002

Table 3. Synapse Parameters.

Synapse Parameter Parameter Description Value

tin Synapse inactivation time constant 3 ms

trec Synapse recovery time constant 100 ms

t+ STDP potentiation decay time constant 16.8 ms

t2 STDP depression decay time constant 33.7 ms

tdec SIC decay time constant 37.5 ms

ts SIC stimulus current decay time constant 100 ms

mA Magnitude of SIC constant 20

ms Magnitude of SIC stimulus constant 20

u Utilization of synaptic efficacy 0.1

Ase Synaptic weight 460–660

A+ Maximal STDP potentiation update 5

A2 Maximal STDP depression update 2.25

K Maps Ase (weight) into pA scale 10212

Note: tin, trec and u are taken from [30], t+ and t2 are taken from [68], ASE is set
so that the neuron fires at a very low frequency for the given input and is
dependent on the input stimuli to the neuron. The ratio of A+ to A2 are set in
accordance with [68].
doi:10.1371/journal.pone.0029445.t003

Bidirectional Coupling: Astrocytes and Neurons
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where rL is the Ca2+ leakage rate, vER is the maximum SERCA

pump uptake rate and kER is the SERCA pump activation

constant. Table 1 provides a full description of all parameters.

Note that by adjusting C0 and kER as described by [39], it is

possible for the AN model to operate in three different modes i.e.

AM, FM and AM-FM.

Synapse model and astrocyte feedback
Synaptic information transfer is considered to be probabilistic:

on arrival of an AP a vesicle is either released or it is not [41].

However, modeling a synapse in this way requires an extreme

amount of computational time because of the probabilistic nature

of synaptic transmission. Although many probabilistic models exist

for the release mechanism of synapses [42–45], here we use a

deterministic dynamic synapse model developed by Tsodyks et al.

[46]. The evolving state of the synapse in this model is described

by:

dx

dt
~

z

trec

{Usexd t{tsp

� �
ð12Þ

dy

dt
~{

y

tin

zUsexd t{tsp

� �
ð13Þ

dz

dt
~

y

tin

{
z

trec

ð14Þ

where x, y, and z are the fractions of resources in the recovered,

active, and inactive states of the synapse respectively, trec and tin

are the recovery and inactive state time constants respectively, tsp is

the time series of presynaptic action potentials, d is the Dirac delta

function and Use is the utilization of synaptic efficacy. In the case of

an excitatory synapse, which releases glutamate, these variables

can be equated to the dynamics of glutamate release; y can be

considered to be the amount of released glutamate while x can be

equated to the amount of glutamate stored in the presynaptic

vesicle pool ready for transmission. The EPSC that is received by a

neuron from synapse i is proportional to the fraction of resources

remaining in the active state and is given by:

I i
syn~Aseyi tð Þ ð15Þ

where I i
syn is the current supplied to the neuron from synapse i, Ase

is the absolute synaptic efficacy and yi(t) is the amount of

neurotransmitter released by the synapse at time t.

Astrocytes influence synaptic transmission/modulation based on

levels of intracellular Ca2+. Rather than describe this mechanism

in a biophysical manner, the gatekeeper model [30] uses a

phenomenological gating variable f. When Ca2+ levels within the

cytoplasm exceed a set threshold (Ca2z
thresh), the astrocyte process

releases a finite amount of gliotransmitter (glutamate) into the cleft

Figure 3. Network consists of presynaptic neuron A, postsyn-
aptic neuron B and an interconnecting tripartite synapse. AN
model is used for signaling between the tripartite synapse and
astrocyte.
doi:10.1371/journal.pone.0029445.g003

Figure 4. Range of input frequencies producing Ca2+ oscilla-
tions for each mode of operation. The valid ranges of input
stimulus frequency which result in sustained Ca2+ oscillations are 5–
17 Hz for AM, 9–35 Hz for FM and 1–10 Hz for AM-FM.
doi:10.1371/journal.pone.0029445.g004

Figure 5. Supervised learning at S2. Network consists of pre-
synaptic neurons N1 and N3, post-synaptic neurons N2 and N4 and the
interconnecting astrocyte. S1 communicates bi-directionally by releas-
ing neurotransmitter (NT) and receiving gliotransmitter (GT) while S2
only receives GT from the astrocyte.
doi:10.1371/journal.pone.0029445.g005

Bidirectional Coupling: Astrocytes and Neurons
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which binds to presynaptic receptors; in doing so the transmission

properties of the synapse may be changed based on astrocytic

feedback. The gating variable f is given by:

df

dt
~

{f

t
Ca2z

z(1{f )kH Ca2z{Ca2z
thresh

� �
ð16Þ

where t
Ca2z is the Ca2+ time constant, k is a constant, Ca2z

thresh is

the Ca2+ threshold value, H denotes the Heaviside function and

1{fð Þ is a saturation term that reflects the fact that astrocytes

have a limited amount of neurotransmitter (see [47] for detailed

review of exocytosis by astrocytes). As f results in the release of

excitatory glutamate, we would expect this to strengthen the ESPC

in the postsynaptic neuron. However, it has been shown that

astrocyte synaptic stimulation reduces the size of EPSCs and

Inhibitory Post-Synaptic Currents (IPSCs) [48]. This is due to the

fact that presynaptic mGluRs regulate the presynaptic Ca2+

channels which in turn reduces the flux of Ca2+ during incoming

spike trains, therefore reducing the amplitude of EPSCs. The

gatekeeper model [30] used this phenomenon as the main role of f,

subsequently controlling the amount of neurotransmitter released

into the cleft during activity. To model the effects of the glutamate

released by the astrocyte in the tripartite synapse the following

modifications to equations (12) and (13) are made:

dx

dt
~

z

trec

{ 1{fð Þuxd t{tsp

� �
ð17Þ

Figure 6. Synaptic Plasticity in the AN Model. (A) Ca2+ oscillation resulting from pre-synaptic stimulation of S1 by N1, including the gating
function f (red) and Ca2+ threshold (dashed). (B) neurotransmitter (y) released by S2 as a result of pre-synaptic stimulation by N2. Note how y is
modulated by f due to glutamate release by the astrocyte when Ca2+ levels cross the threshold from below, targeting and binding with presynaptic
mGluRs. (C) NMDA-mediated SICs induced by the release of glutamate from the astrocyte when Ca2+ levels cross the Ca2+ threshold. (D) PSC (Post-
Synaptic Currents) comprising EPSCs and SICs). The EPSCs in S2 are generated as a result of the neurotransmitter released by S2 scaled by the weight
of the synapse (v) (see F). (E) N4 output firing activity (o/p). As long as the weight of S2 remains too low, N4 is only capable of firing when the
astrocyte induces an NMDA current driven by the ‘supervisory’ input of N1. However this firing promotes STDP by allowing N4 to fire and therefore S2
is potentiated (see F). From ,45 s onward the synapse is strong enough to cause firing also as a result of the pre-synaptic activity of N3. At ,115 s
the weight quickly grows uncontrollably and the neuron begins to fire rapidly.
doi:10.1371/journal.pone.0029445.g006

Bidirectional Coupling: Astrocytes and Neurons
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dy

dt
~{

y

tin

z 1{fð Þuxd t{tsp

� �
ð18Þ

From equation 18 we can see that the amount of neurotransmitter

release across the cleft is proportional to (1{f ).

Extrasynaptic NMDA feedback
Evidence suggests that astrocytic released glutamate acts upon

extrasynaptic NMDARs on the postsynaptic neuron to produce

large SICs [23,26]. However, the biophysical mechanism for the

activation of these SICs remains unclear. To model this we

propose, similar to the gatekeeper model, that glutamate (which

targets and binds to extrasynaptic NMDARs) is released when

Ca2+ levels within the astrocyte exceed Ca2z
thresh. Our model for

SICs is described by:

tdec

dSIC

dt
~{SICzmAS(t) ð19Þ

where SIC is the NMDA slow inward current, mA controls the

magnitude of SIC, S is a stimulus current used to form SIC and tdec

adjusts the decay time of SIC. S is modeled by:

dS

dt
~

{S

ts

zmsd(t{tCa) ð20Þ

where ms is the magnitude of the stimulus, tS is the decay rate of S

and tCa is the time that Ca2+ crosses the activation threshold from

below. Research has shown that astrocytic glutamate release is

correlated with Ca2+ oscillation peaks. Furthermore, conditions

which result in a single Ca2+ peak followed by a sustained Ca2+

Figure 7. Synaptic Plasticity in the AN Model (last 15 s). (A) Ca2+ oscillation resulting from pre-synaptic stimulation of S1 by N1, including the
gating function f (red) and Ca2+ threshold (dashed). (B) neurotransmitter (y) released by S2 as a result of presynaptic stimulation by N2. Again note
how the amplitude of y is modulated by f. (C) SIC induced by the release of glutamate from the astrocyte when Ca2+ levels cross the Ca2+ threshold at
,120.4 s. The kinetics of this SIC are similar to those observed in CA1 neurons [21]. (D) PSCs at S2, comprising EPSCs elicited by the neurotransmitter
released by N2 and the SIC. (E) N4 output firing activity. (F) Synaptic weight (v). At ,115 s the synapse is strong enough to cause firing as a result of
the presynaptic activity of N3 without the aid of NMDA induced SICs.
doi:10.1371/journal.pone.0029445.g007

Bidirectional Coupling: Astrocytes and Neurons
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plateau lead to a single glutamate release [49]. To model this we

assume there is only a single release of glutamate when Ca2+ levels

exceed a threshold and no further release is possible until the

threshold is crossed again from below. By adjusting the magnitude

and decay time of S along with the decay time of SIC it is possible

to produce a SIC with similar kinetics as those observed in CA1

neurons [21].

Research has also shown the existence of extrasynaptic a-

amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors

(AMPARs) [50,51]. However, there is no AMPA component

accompanying the activation of NMDA mediated SICs [21],

suggesting that glutamate released by astrocytes targets only

NMDARs. As a result, astrocytic glutamate release alone is not

capable of activating NMDAR mediated SICs [23] as AMPA

receptor activation is usually necessary to remove the voltage

controlled magnesium NMDAR block [52]. This means that there

must be a coincidental independent depolarizing stimulation to

admit current through the extrasynaptic NMDARs, though the

exact conditions which support such stimulation are not yet

understood [23]. In our model we assume that the coincidental

independent depolarizing stimulation is provided by presynaptic

stimulation of the synapse via input spike trains.

To reflect these SICs in the total current supplied to the

postsynaptic neuron, we modify equation (15) to:

I i
syn~Aseyi tð Þz SIC(t)F Dtð Þð Þ ð21Þ

where Dt is the time difference between the crossing of the Ca2+

threshold and the previous independent presynaptic stimulation.

F(Dt) is given by:

F Dtð Þ~
1 if Dtƒ100ms

0 if Dtw100ms

�
ð22Þ

From equations (21 and 22) it is clear that there will be no NMDA

SIC if there is no independent presynaptic stimulus within 100 ms

of the Ca2+ crossing. Note that 100 ms is typical of a plasticity

window.

Neuron Model
Although many neuron models exist [53] such as the Hodgkin-

Huxley model [54] simplified counterparts such as the FitzHugh-

Nagumo [55,56] and Morris-Lecar models [57] are often

Figure 8. Synaptic Plasticity in the AN Model (2.35 s–2.55 s). (A) Ca2+ oscillation resulting from pre-synaptic stimulation of S1 by N1, including
the gating function f (red) and Ca2+ threshold (dashed). (B) neurotransmitter (y) released by S2 as a result of presynaptic stimulation by N2. (C) SIC
induced by the release of glutamate from the astrocyte when Ca2+ levels cross the Ca2+ threshold (crossing point not shown). (D) PSCs at S2,
comprising EPSCs elicited by the neurotransmitter released by N2 and the SIC. (E) N4 output firing activity. (F) Synaptic weight (v), Note that the
weight either potentiates or depresses based on the temporal order of the pre and post neural activity.
doi:10.1371/journal.pone.0029445.g008
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preferred by electrophysiologists [53]. Nevertheless, these models

are still computationally expensive and require a great deal of

parameter tuning. Engineers and theoreticians have tended to

prefer the use of the Leaky Integrate and Fire (LIF) [58],

Izhikevich [59] and Spike Response [58] models as they have

relatively few parameters that require tuning [53] and conse-

quently are more suited to large network simulations [60]. For a

detailed comparison of all these neural models, see [61–63]. The

neuron model used in this work is the passive LIF model [58]

described by:

tm
dv

dt
~{v(t)zRm

Xi

1

I i
syn tð Þ ð23Þ

where tm is the membrane time constant, v is the membrane

potential and Rm is the membrane resistance. If v is greater than

the firing threshold (vth) then v is clamped at 0 V for 2 ms; this

implements the refractory period of the neuron.

Plasticity Model
Since Donald Hebb first suggested that a neuron must fire

shortly before or at the same time as a neuron to which it is

connected in order to strengthen the connection between them

[64,65], there have been many mathematical models that explore

synaptic plasticity (see [66] for review). However, by far the most

widely accepted and phenomenologically plausible model of

synaptic plasticity is Spike-Timing Dependent Plasticity (STDP)

which relies on the precise time difference between pre- and

postsynaptic spikes [67,68]. If the presynaptic spike arrives before

the postsynaptic spike then LTP occurs. If the presynaptic spike

occurs after the postsynaptic spike then LTD occurs. Moreover, it

has been shown that it is both pairs and triplets of spikes which are

important; recent models show that experimental data can be well

approximated when LTD is triggered by pairs of pre-post spikes

while LTP is triggered via 1pre-2post triplets [69–72]. For present

purposes it is sufficient to use a model of STDP [73] which only

considers pre-post pairs for the activation of both LTP and LTD.

The model is described by:

dv Dtð Þ~
Az exp

Dt

tz

� �
if Dtv0

{A{ exp
{Dt

t{

� �
if Dt§0

8>>><
>>>:

ð24Þ

where dv(Dt) is the weight update of the synapse, Dt is the time

difference between pre- and postsynaptic events, A+ and A2 are

the maximum value of weight potentiation and depression

respectively and t+ and t2 control the decay rate of dv(Dt).

Equation 21 suggests that Ase can be interpreted as the weight of

the synapse: by varying this value it is possible to change synaptic

strength. Therefore, we relate Ase to dv and formulate an update

rule as:

Ase~ASOzdv � K ð25Þ

where ASO is the previous synaptic weight, dv is the amount the

weight has changed according to STDP and K ( = 10212) is a

scaling factor.

Extension to Multiple Synapses
Recent research suggests that when employing the Li-Rinzel if

IP3 levels become too large there is a cessation of Ca2+ oscillation

[74]. However, there is also evidence that IP3 levels within the

astrocyte can be degraded depending on the level of Ca2+ within

the cytosol [39]. Results based on the Li-Rinzel model further

show that under prolonged glutamate stimulation of the synapse,

IP3 may still reach levels which cause cessation of Ca2+ oscillations.

In contrast, it is believed that Ca2+ oscillations can be initiated

within discrete microdomains and may be localized or propagate

intracellularly by activating neighboring microdomains [17,18,75–

77]. In order to model an astrocyte with multiple tripartite

synapses we assume that each tripartite synapse contains a single

microdomain which produces a unique Ca2+ oscillation based on

the stimulus level present at the synapse. Although the Ca2+ level

within the cell will differ depending on the spatial location of the

stimulated microdomains and the propagation properties of the

oscillations, capturing delay in the absence of supporting

experimental data seems premature. Therefore, propagation

delays are ignored in our model and the aggregate Ca2+ level

remains the same everywhere throughout the cell given by:

Ca2z
T (t)~

Xj

i~1

Ca2z
i tð Þ ð26Þ

where Ca2z
T (t) is the total level of Ca2+ within the cytosol at time t

and Ca2z
i is the level of Ca2+ within the ith microdomain at time t.

Given that the baseline level of IP3 in equation (1) is set at

0.16 mM [30] we therefore set Ca2z
thresh of a single synapse to just

above this point at 0.18 mM. For multiple synapses we multiply

this value by the number of synapses (n):

Ca2z
thresh~0:18mM � n ð27Þ

Figure 2 illustrates how the specific computational models

described throughout this section are connected to form the AN

model.

Figure 9. Dynamic coordination in the AN model. All synapses
connected to the astrocyte can communicate via bidirectional signaling
of neurotransmitter (NT) and gliotransmitter (GT).
doi:10.1371/journal.pone.0029445.g009
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Results

In all the results presented here, Matlab 2009a platform

(Windows version) by Mathworks was used to realize the AN

model and the Euler method of integration was used for

simulation. A fixed time step of Dt~1ms was used throughout

all simulations. Simulations with a time step of Dt~0:1ms (data

not shown) were also carried out and it was found that results

remain unchanged.

Initial simulations provide insight into the valid range of

synaptic input frequencies that cause Ca2+ oscillation in each of

the AM, FM and AM-FM modes. This is followed by an

investigation into the role of extrasynaptic NMDARs in providing

a remote supervisory learning signal. Finally, we explore how the

combination of pre- and post-astrocytic feedback affects coordi-

nation of neural activity. All astrocyte and synapse parameters

used in these experiments can be found in Tables 1, 2 and 3 unless

otherwise stated.

Establishing the Valid Range of Input Frequencies
In this simulation, presynaptic neuron A stimulates a tripartite

synapse with a sustained Poisson spike train for 100 s (see Figure 3).

The frequency of the spike train is different for each trial and

ranges from 1 Hz to 40 Hz. This is repeated for all three modes of

the Li-Rinzel Ca2+ model i.e. AM, AM-FM and FM. The purpose

of the simulation (the full AN model including the gating function f

and NMDA SICs) is to determine the frequency ranges that result

in sustained Ca2+ oscillation for each of the three modes. Figure 4

presents the results which show that each mode has a well-defined

frequency range. In AM mode, input stimulus frequencies of

between 5 Hz and 17 Hz cause sustained oscillations. In FM

Figure 10. Ca2+ oscillations and resulting coordination. (A) Ca2+ oscillations (black line) and IP3 levels (red line) at a synapse from N1
stimulated by 7 Hz Poisson spike train for 100 s. (B) Ca2+ oscillations at a synapse from N2 which is only stimulated from 0–40 s and 80–100 s with a
7 Hz Poisson spike train. (C) Activity of the gating function f which is activated when the total level of Ca2+ (D) within the astrocyte passes the
threshold (D-black dashed line). (E and F) The output firing activity of neurons N1 and N2. Note that when the total Ca2+ oscillation crosses the
threshold from below both neurons fire with a significantly higher frequency of activity; a result of the global release of glutamate and NMDA SIC
activation. These are the only times that the neurons are highly coordinated. Furthermore it can be seen that there are extended periods of silence
from both neurons after firing in bursts. This is a result of the negative feedback from f which depresses the release of neurotransmitter from the
synapses and remains active until the Ca2+ oscillation crosses the threshold from above.
doi:10.1371/journal.pone.0029445.g010
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mode the frequency range is between 9 Hz and 35 Hz and in AM-

FM mode the range is between 1 Hz and 10 Hz. In AM and FM

mode, frequencies which fall below the range do not sufficiently

stimulate the production of IP3 to enable a burst of Ca2+ release

from the ER (see example shown in Figure S2). This is not the case

in AM-FM mode due to the fact that the baseline value of IP3

(0.16 mM) is very close to the level at which Ca2+ release can occur

[39]. Furthermore, frequencies which are higher than the

sustained oscillation band stimulate IP3 production to such a

degree that the negative feedback signal f can not prevent IP3

levels reaching a steady state. Consequently, oscillations fail to

cross Ca2z
thresh from below and above, or reach a plateau above the

Ca2+ threshold. Examples of this can be seen in Figure S3. Unless

otherwise stated, simulations presented in the remainder of this

paper are from the AN model operating in the AM and AM-FM

modes.

Spatially distributed learning signals
Here we show how a learning signal, distributed spatially via an

astrocyte, can promote STDP-based plasticity at remote synaptic sites.

One major requirement of STDP is that the pre- and post-

synaptic neurons must fire within the plasticity window. If we

consider the case where the synaptic efficacy of the synapse is

insufficient to produce a postsynaptic AP then the STDP rule

cannot activate learning. We propose that spatial neuron to

neuron signaling using large astrocytic NMDA SICs promotes

postsynaptic neuron activation. While some doubts have been

expressed [78,79] there is overwhelming evidence to suggest that

astrocytes have an important role to play in synaptic plasticity

[19,20,80–89]. Although further research is required [90,91] to

address their limitations, some progress can be made with existing

astrocyte models. Here we use the AN model for the simple case

shown in Figure 5. The network fragment consists of post-synaptic

Figure 11. Coordinated firing activity of N1 and N2 for the first 15 s of AN model simulation. (A) The aggregate level of Ca2+ (black line)
and gating function f (red line). (B) and (D) firing activity of N1 and N2. (C) and (E) firing activity of N1 and N2 plotted as number of output spikes
against time. When the level of Ca2+ crosses the threshold (1st vertical dashed line) SIC stimulates all synapses causing each neuron to burst for
approximately 600 ms (2nd vertical dashed line). During this time the gating function f depresses neurotransmitter release from all synapses, during
which the neurons are held silent as a result of decreased neurotransmitter release, until the Ca2+ level crosses the threshold from above (3rd vertical
dashed line) after which it takes approximately 1 s for the gating function to fully stop synaptic depression (4th vertical dashed line). When this period
ends the neuron can again fire as the synapses are releasing transmitter fully.
doi:10.1371/journal.pone.0029445.g011
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neurons N2 and N4 stimulated by independent spike trains from

pre-synaptic neurons N1 and N3 via synapses S1 and S2; output

spike trains from N1 and N3 last for 130 s and are Poisson-like

with an average frequency of 15 Hz (this frequency was chosen

because it causes a Ca2+ oscillation using the parameters provided

in Table 1). S1 communicates bidirectionally with the astrocyte (in

AM mode) as described earlier and we only consider the effects of

glutamate release from the astrocyte at S2. Also weights are of

sufficient magnitude to cause N2 to fire but not N4. We assumed

unidirectional signalling at S2 because we are only interested in

how binding of glutamate at S2 influences learning; in the network

topology presented in Figure 5, the activity of S1 is sufficient to

cause astrocytic release of SICs. Feedback to the astrocyte from S2

would not change the frequency of SICs, therefore we use this

restricted approach to test our hypothesis.

Figure 6A shows the Ca2+ oscillation within the astrocyte and

the gating function f. When the Ca2+ oscillation passes Ca2z
thresh

(dashed line) from below glutamate, which targets presynaptic

mGluRs and extrasynaptic NMDARs, is released from the

astrocyte to both S1 and S2. This induces large SICs in both

synapses at frequencies equal to that of the Ca2+ oscillation

(Figure 6C). Figure 6D shows the total PSC, which consists of the

SIC and the presynaptically induced EPSC that result from the

level of neurotransmitter (y) released by the axon (Figure 6B) scaled

by the weight of the synapse (v) (Figure 6F). It is clear that each

time the astrocyte releases glutamate there is a sharp rise in the

PSC (Figure 6D) due to the large NMDA induced currents (SIC).

It is also clear that the release of glutamate which targets mGluRs

modulates the amount of neurotransmitter released from the

axonal bouton; this modulation mirrors the kinetics of f. The firing

rate of N4 is synchronized to SIC below 115 s but thereafter the

firing rate of N4 increases due to presynaptic activity alone, as

shown also in Figure 6E. Figure 6F shows the synaptic weight

evolution of S2. It can be seen that the weight potentiates on S2 as

a result of the STDP rule, and that after ,115 s the synapse has

potentiated sufficiently to initiate a causal relationship between N3

and N4; increasing weight correlates with the firing rate of N4.

This can be seen more clearly in Figure 7 which depicts the last

15 s of the model simulation.

On initial inspection of this result it appears that only

potentiation occurs as a result of the learning rules. However,

closer inspection of Figure 6 shows that depression also occurs as a

result of the temporal order of input and output spikes. This can be

seen in Figure 8 which shows results of this simulation from 2.35 s

to 2.55 s. Furthermore, we envisage that in the case of multiple

synapses the temporal order of spikes would dictate which

synapses depress and which potentiates.

Dynamic Coordination
Neural oscillations across a broad range of frequency bands are

ubiquitous throughout the nervous system and give rise to a wide

variety of dynamic coordination effects including synchrony,

learning, precisely timed phase-shifts among oscillating neural

ensembles, concatenation of different rhythms, and so forth [92–

Figure 12. Example of total Ca2+ oscillations and neural coordination with different Ca2+ threshold levels. (A) Ca2+ threshold (dashed
line) set at 3.94 mM. (B) Neural activity of N1 (black) and N2 (red) plotted as number of spikes against time with the Ca2+ threshold set at 3.94 mM. (C)
Ca2+ threshold set at 1.44 mM. (D) Same as (B) except that the Ca2+ threshold is 1.44 mM. The input stimuli to the synapses for both simulations are set
at 7 Hz. When the threshold is too high (A) there is no crossing of the threshold by the total level of Ca2+. Since there is no astrocytic global release of
glutamate, f is not activated and there is no coordinating bursting of the neurons (B). In contrast, where the threshold is crossed (C) and (D), f is
activated and NMDA SICs are induced (not shown) thus producing coordinated activity of N1 and N2. Note that in both cases there is a reduction in
total Ca2+: N2 produces no firing activity because the N2 synapse receives no stimulus between 40 s and 80 s.
doi:10.1371/journal.pone.0029445.g012
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96]. Given that glutamate released by astrocytes can activate

synchronized SICs in neighboring synapses thereby acting as a

bridging mechanism between circuits which are not directly

coupled [97,98], we now investigate dynamic coordination using

the network in Figure 9 where each of the neighboring neurons N1

and N2 has four tripartite synapses. In these simulations, synapses

associated with both N1 and N2 communicate in a bidirectional

manner. Please note that in these simulations we do not consider

the effects of synaptic plasticity and as such do not apply the

plasticity rules as given by equation 24.

Firstly, we explore how the model produces coordination when

all the synapses are subjected to the same stimulus within the valid

frequency range (see Figure 4). The synapses connected to N1

were stimulated for the duration of the experiment (100 s), while

the synapses associated with N2 were stimulated from 0 to 40 s

and 80 to 100 s. The individual synaptic weights of both N1 and

N2 were set at a level which resulted in postsynaptic firing of the

connected neuron when all synapses were stimulated with a series

of spikes (spike trains). Figure 10 (A–B) shows an example of the

resulting Ca2+ oscillations and IP3 levels produced by Poisson spike

trains with an average frequency of 7 Hz stimulating the synapses

of N1 (A) and N2 (B) while in AM mode. Given that there is a

microdomain associated with each synapse, the response of which

will be very similar to the same Poisson stimulus, Figure 10 (A)

shows the response of a single microdomain to a stimulus from a

synapse associated with N1 while (B) is the response of a

microdomain to a stimulus from a synapse associated with N2.

(C) is the f function. Figure 10 (D) shows the aggregate Ca2+ level

within the astrocyte while (E) and (F) describe the output firing

activity of N1 and N2 as a result of the AN model. Observe that

while the background firing activity of N1 and N2 is not

coordinated, both N1 and N2 burst at the same time provided

presynaptic inputs are present at N2 (Note: we define a burst as a

period of neural activity with a significantly higher firing frequency

[99]). This coordinated activity happens exactly at the same time

because we have ignored signal propagation delays.

It is interesting to note that when the Ca2+ threshold

(Ca2z
Threshold~1:44mM ) is crossed from below there is a burst of

Figure 13. Threshold variations vs the onset of coordination. (A1) Total Ca2+ level and Ca2+ threshold (dashed line, 3.94 mM). (A2) f function.
(A3) Spiking activity (o/p) of N1. (B1–B3) same as (A1–A3) with Ca2+ threshold set at 1.44 mM. Notice how the onset of bursting and the f function is
delayed when the threshold is set at 3.94 mM since more time is required for the total Ca2+ level to cross the threshold. Furthermore, f is activated for
a shorter period thereby reducing the duration of the silent period between bursts. Note that N2 bursts at the same time as N1 (data not shown).
doi:10.1371/journal.pone.0029445.g013
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firing activity from both neurons. This is a result of the astrocyte

coordinated SIC signals at all synapses. Note the silent periods

after bursting which are a result of the negative feedback provided

by mGlu modulation of pre-synaptic transmission controlled by f

(Figure 10C). It should also be noted that during silent periods N2

does not respond to the SICs because post-synaptic excitation due

to pre-synaptic firing is also required for N2 to fire. Also, as a result

of there being no stimulation of N2 synapses between 40 s and

80 s, IP3 is no longer created at these synapses and is allowed to

degrade: Ca2+ oscillations cease during this period. This is evident

from Figure 10D where it can be seen that the aggregate level of

Ca2+ falls significantly between 40 and 80 s. However it still

remains high enough to cause passing of the threshold and

therefore the activation of SICs and the gating function f continues

during this period. This can be seen much more clearly in

Figure 11 where (A) represents the aggregate level of Ca2+ within

the cell (black line) and the gating activity of f (red line). Figure 11

(B) and (C) show the number of spikes output from neurons N1

and N2 respectively against time.

This type of simulation was repeated for all frequencies within

the valid frequency range (see Figure 4) of both AM and AM-FM

modes: in every case the neural activity was produced in the same

manner. The only significant difference found in AM mode was

that the higher the stimulus frequency the earlier the onset of

coordination. This was not the case in the AM-FM mode,

however, the time between coordinated bursts was found to vary

as a result of the variations of frequency of oscillation for each of

the different input stimuli.

Since the Ca2+ threshold within our model can be treated as an

open parameter we investigated its effect on coordination. The

same simulations as previously presented were again repeated with

the threshold varying from 1.44 mM to 3.94 mM in steps of 0.5 mM

per trial. The Ca2+ threshold was found to have a significant

impact on the coordination of the neurons. Firstly, if the threshold

was beyond the level reached by the total Ca2+ oscillation, no

coordination in the form of synchronized bursts from N1 and N2

occurred. Figure 12 compares the total Ca2+ oscillation and neural

coordination when the threshold is set at 3.94 mM and 1.44 mM

with all synapses stimulated with a 7 Hz Poisson spike train.

Secondly, as the Ca2+ threshold was raised it was found that

the timing of the onset of the first burst in both the AM and

AM-FM modes was changed: the higher threshold delayed the

onset. In both cases the initial burst was followed by bursting

that was synchronized to the total Ca2+ oscillation. Further-

more, in both cases the activity of N1 and N2 changed between

the periods of bursting activity: as the threshold was increased

the f function was activated for much shorter periods.

Therefore, the duration of the silent periods of neural activity

was reduced as a result of shorter periods of depression by f.

Figure 13 shows an example of this phenomenon where the

model is in AM-FM mode and all synapses are stimulated with a

7 Hz Poisson spike train.

Figure 14. Loss of Ca2+ oscillation in the synaptic microdomain. (A) Ca2+ oscillation (black) and IP3 levels (red) within a synaptic microdomain
of N1. (B) Ca2+ oscillation and IP3 levels within a synaptic microdomain of N2. (C) Total Ca2+ level within the astrocyte as a result of all synaptic
microdomain oscillations and the f function (blue).(D) Neural output of N1 (black) and N2 (red) as spike count as a function of time. Since the
threshold is close to the peak of the total Ca2+ oscillation f is only active for a short period. Therefore the reduction of IP3 due to synaptic
neurotransmitter release depression cannot prevent IP3 levels reaching a point at which the sustained Ca2+ oscillations cease at synapses associated
with N1. This is not the case at synapses associated with N2 as there is no synaptic input stimulation between 40 s and 80 s and IP3 levels degrade
naturally. Furthermore, the coordinated activity also changes: between 40 s and 80 s there is no bursting activity in either neuron since the total Ca2+

level is insufficient to cross the threshold.
doi:10.1371/journal.pone.0029445.g014
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Reduction in synaptic depression was also found to change the

valid frequency range. As the threshold was increased it was found

that when frequencies at the upper limit of the valid input frequency

range were used to stimulate the synapse, the reduction in synaptic

depression could not prevent the synapses associated with N1 from

producing saturated IP3 levels and the individual Ca2+ oscillations of

these synapses ceased. Figure 14 depicts the case of

Ca2z
Threshold~3:94mM with all synapses stimulated at 14 Hz.

Next we investigated dynamic coordination when Poisson spike

trains with different average frequencies were applied to each

synapse of N1 and N2 in both modes. Figures 15 and 16 present

the results of this simulation in AM mode. Frequencies were

chosen arbitrarily to be 5 Hz, 9 Hz, 15 Hz, and 6 Hz for synapses

associated with N1 and 10 Hz, 12 Hz, 8 Hz and 7 Hz for

synapses associated with N2. All synapses were stimulated for the

duration of the simulation (100 s). Figure 15 (A–H) shows the

Figure 15. Individual Ca2+ oscillations and IP3 levels in AM mode. (A–H) Individual Ca2+ oscillations (black), IP3 transients (red) in each of the 8
microdomains associated with the synapses of N1 (A–D) and N2 (E–H). The input stimulus to each microdomain is a Poisson spike train with an
average frequency of (A) 5 Hz, (B) 9 Hz, (C) 15 Hz, (D) 6 Hz, (E) 10 Hz, (F) 12 Hz, (G) 8 HZ, (H) 7 Hz. Note how the phase of the individual oscillations
change, especially in (A), (D) and (H). Note also that the oscillation of IP3 occurs at the same time for all microdomains. This is a result of the f function
triggered by total Ca2+ which regulates the release of neurotransmitter at all synapses. It is the global oscillation of IP3 that causes the phase shift of
the individual Ca2+ oscillations.
doi:10.1371/journal.pone.0029445.g015
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individual Ca2+ oscillation and IP3 transients of each synaptic

microdomain while Figure 16 (A) shows the total Ca2+ oscillation,

(B) the f function and (C–D) the output firing activity of N1 and

N2. From these results we note that the phases of the individual

Ca2+ oscillations are changed. This is especially evident from

Figure 15 (H). Note also that the total Ca2+ is much more

sinusoidal than in previous experiments yet coordination is still

maintained.

Figures 17 and 18 present model simulations in the AM-FM

mode. Frequencies were again chosen arbitrarily to be 2 Hz,

10 Hz, 5 Hz, and 7 Hz for synapses associated with N1 and 3 Hz,

9 Hz, 8 Hz and 4 Hz for synapses associated with N2. Once more

the inputs to all synapses were maintained for the duration of the

experiment (100 s). Figure 17 (A–H) shows the individual Ca2+

oscillation and IP3 transients of each synaptic microdomain while

Figure 18 (A) shows the total Ca2+ oscillation, (B) the f function

and (C–D) the output firing activity of N1 and N2. From these

results we note that there is no noticeable phase locking of the

individual Ca2+ oscillations: the coordination of N1 and N2 is not

maintained at regular periods as in the AM mode due to the

irregular total Ca2+ level. The results of these simulations suggest

that the negative feedback and IP3 regulation provided by the f

function help maintain the coordination of N1 and N2. Phase

locking of the individual Ca2+ oscillations appears to occur and the

total Ca2+ oscillation resembles a sinusoid. Further simulations in

which the f function was removed revealed in all cases that

coordination was lost and the total Ca2+ oscillation became much

less sinusoidal.

Given the foregoing results suggest phase locking of individual

Ca2+ oscillations, the previous two simulations were repeated with

all synaptic stimuli in succession with a delay of 2 s between each

stimulus. Despite the fact that the phase of each individual Ca2+

oscillation is now different, in AM mode it was found that the

individual oscillations are successfully phase locked (Figure 19) and

that coordination of N1 and N2 is maintained (Figure 20).

Furthermore the pattern of coordination is also changed. From

Figure 20 it can be seen that the periods between bursting of N1

and N2 are not constant.

In the AM-FM mode no phase locking of individual waves was

accomplished (Figure 21). The total Ca2+ oscillation is much less

sinusoidal and the pattern of oscillation is different. Moreover,

coordination is sporadic since the total Ca2+oscillation infrequently

crosses the threshold from above and below (Figure 22).

Finally we investigated the extent to which phase locking can occur

between different Ca2+ oscillations in both modes and its concomitant

effects on coordination. For this investigation we reduced the number

of synapses on each output Neuron (N1 and N2) to one synapse. We

then investigated each combination of input stimulus frequency (in

steps of 1 Hz) and different phases by repeating each experiment with

a different starting time for the synapse of N2 (start time = 0 s–10 s, in

steps of 2 s) for the valid input frequency range of each mode. In the

AM mode it was found that phase locking of the individual waves was

achieved for the entire valid input frequency range as long as the

phases were not *180o out of phase. In AM-FM mode it was found

that phase locking was only achieved when the individual Ca2+

oscillations were between +0:00295 Hz and no more than *45o

out of phase. In both modes coordination was still possible even when

phase locking could not be achieved as long as the total Ca2+

oscillation still crossed the threshold from above and below. However,

coordination of the N1 and N2 was often infrequent and not

maintained.

Discussion

The AN model presented in this paper captures the bidirec-

tional coupling between astrocytes and neurons and in so doing

Figure 16. Total Ca2+ oscillation and neural firing activity in AM mode. (A) Total Ca2+ oscillation and Ca2+ threshold (dashed line). (B) f
function. (C) Neural firing activity of N1. (D) Neural firing activity of N2. Note how total Ca2+ is much more sinusoidal than in previous experiments and
that coordinated bursting of N1 and N2 occurs each time Ca2+ crosses the threshold from below.
doi:10.1371/journal.pone.0029445.g016
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demonstrates that positive and negative feedback to extrasynaptic

NMDARs and presynaptic mGluRs significantly contributes to the

regulatory capability of astrocytes.

Astrocytic ‘supervisory’ learning signal
Experimental evidence indicates that astrocytes have a role to

play in LTP/LTD. Deficiency of GFAP (glial fibrillary protein),

which is predominantly expressed by astrocytes in the CNS, has

been found to enhance LTP and impair LTD [19,20]. For many

years STDP has been accepted as one of the most popular and

biological plausible mechanisms of synaptic plasticity. However, it

is dependent on presynaptic input and postsynaptic output activity

to induce plasticity changes. Our results show that it is possible to

initiate STDP learning when the weight of the synapse is too weak

to cause post-synaptic neural firing. When astrocytic Ca2+ levels

rise above a threshold due to stimulation from a neuron or

neurons, glutamate is released which in turn activates large SICs

which can induce postsynaptic firing in other neurons, thereby

Figure 17. Individual Ca2+ oscillations and IP3 levels in AM-FM mode. (A–H) Individual Ca2+ oscillations (black), IP3 transients (red) in each of
the 8 microdomains associated with the synapses of N1 (A–D) and N2 (E–H). The input stimulus to each microdomain is a Poisson spike train with an
average frequency of (A) 2 Hz, (B) 10 Hz, (C) 5 Hz, (D) 7 Hz, (E) 3 Hz, (F) 9 Hz, (G) 8 HZ, (H) 4 Hz. Note that there is no noticeable phase locking of the
individual Ca2+ oscillations.
doi:10.1371/journal.pone.0029445.g017
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causing STDP related weight potentiation/depression. This

learning relies on a presynaptic stimulus and astrocytic induced

SICs. However, after the synaptic weight is strengthened

significantly, presynaptic stimulation alone is sufficient to cause

firing of the presynaptic neuron and the synaptic weight grows

uncontrollably. Such instability is in agreement with other

research [73,100,101] and a mechanism for weight capping has

been proposed based on the Bienenstock Cooper Munro (BCM)

rule [102]. Specifically, it has been shown that merging BCM with

STDP can create stability in plasticity. However, much research is

still required to clearly establish the biophysical underpinnings of

these rules [103,104]. Despite this shortcoming the present

modeling research points to a new mechanism of plasticity based

on the interactions between astrocytes and neurons.

When the postsynaptic neuron is sufficiently depolarized voltage

gated-channels allow the influx of Ca2+ into the dendrite causing

endocannabinoids to be synthesized and subsequently released

from the dendrite. However, the exact release machinery related

to this process is not fully understood [105]. Endocannabinoids are

a type of retrograde messenger which travel back from the

postsynaptic membrane to the pre-synaptic terminal. The release

of 2-arachidonyl glycerol (2-AG), a type of endocannabinoid, is

known to feed back to the pre-synaptic terminal directly and

indirectly via an astrocyte. The direct route results in a decrease in

transmission probability (PR) and is termed Depolarization-

induced Suppression of Excitation (DSE) [105], while the indirect

route results in the astrocytic release of glutamate which binds to

pre-synaptic group I mGluRs and gives rise to an increase of

synaptic transmission probability termed e-SP [106]. Note that the

indirect signaling pathway is far reaching and can affect distant

synapses [106]. It is therefore plausible that these opposing

mechanisms could modulate the probability of release, and

therefore the firing activity of pre and postsynaptic neurons,

thereby affecting a Hebbian-like learning process. Our AN model

may be extended to more complex networks where the training

signal (i.e. the astrocyte-derived SIC) is able to fuse sensory inputs

across remote neuron clusters. In doing so we would effectively be

investigating how structural/synaptic plasticity in large networks of

neurons may be regulated by astrocytes. However, for such

experiments to proceed and succeed, more information is needed

regarding signal transmission across the gap junctions associated

with astrocytes.

Dynamic coordination
The AN model also shows that astrocytes have a key role in the

dynamic synchronization of neurons. The SICs and neurotrans-

mitter modulation induced by astrocytic release of glutamate causes

coordinated neural activity in remote neurons. Our results suggest

that the frequency of input stimuli, the phase relation of the

astrocytic Ca2+ oscillations and the Ca2+ threshold responsible for

the release of gliotransmitter directly impact on the pattern of

synchronization. Extrasynaptic NMDAR activation was needed to

provide coordinated periods of bursting activity. We also found that

negative feedback of presynaptic mGluR activation was important

for maintaining neural coordination via phase locking of the Ca2+

oscillations. In exploring the effects of out of phase oscillations we

expected the total Ca2+ oscillation to be a complex wave comprising

the sum of the individual waves. These should be out of phase due to

the different initiation times of the input spike trains. However, our

results suggest that over a period of time and under certain

conditions Ca2+ oscillations may become phase locked due to the

negative feedback provided by f. The latter arises from modulation

of neurotransmitter in the cleft of all synapses associated with the

astrocyte and consequently the IP3 level in the astrocyte. This

Figure 18. Total Ca2+ oscillation and neural firing activity in AM-FM mode. (A) Total Ca2+ oscillation and Ca2+ threshold (dashed line). (B) f
function. (C) Neural firing activity of N1. (D) Neural firing activity of N2. Note how total Ca2+ is much more erratic. As a result the coordinated bursting
of N1 and N2 is less frequent since the total level of Ca2+ crosses the threshold from below less often. Furthermore, it can be seen that f is activated
for a much greater period of time (e.g. between 28 s and 94 s) since the total level of Ca2+ does not cross the threshold from above.
doi:10.1371/journal.pone.0029445.g018
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process leads to gradual alignment of Ca2+ oscillations in each

microdomain that, when successful, provides a simple sinusoidal like

total Ca2+ oscillation. Moreover, it has recently been suggested that

oscillations within microdomains of astrocytic distal processes differ

from oscillations at the soma [107]. In our model we linearly sum

the individual microdomain oscillations to create a total Ca2+

oscillation which may be considered to occur at the soma. Despite

this simplistic assumption our results show that when phase locking

cannot be achieved, oscillations within the distal processes and the

soma are indeed different.

Our results also suggest that even though phase locking can

occur it is not vital for coordination. In AM mode, when both

waves were approximately in antiphase, phase locking could not

be achieved, the total Ca2+ oscillation becoming much flatter and

less sinusoidal. However, when both input stimulus frequencies

were below 12 Hz and again in antiphase, coordination was still

possible. The reason is that lower frequencies produce lower

amplitudes: as a result, it was still possible for the fluctuation of

Ca2+ to cross the threshold and release glutamate, thus producing

global SICs responsible for coordination. On the other hand,

Figure 19. Individual Ca2+ oscillations and IP3 levels in AM mode. (A–H) Individual Ca2+ oscillations (black), IP3 transients (red) in each of the 8
microdomains associated with the synapses of N1 (A–D) and N2 (E–H). The input stimulus to each microdomain is a Poisson spike train with an
average frequency of (A) 5 Hz (0 s–100 s), (B) 9 Hz (2 s–100 s), (C) 15 Hz (4 s–100 s), (D) 6 Hz (6 s–100 s), (E) 10 Hz (8 s–100 s), (F) 12 Hz (10 s–100 s),
(G) 8 HZ (12 s–100 s), (H) 7 Hz (14 s–100 s). Note how the phase of the individual oscillations phase lock each microdomain Ca2+ oscillation.
doi:10.1371/journal.pone.0029445.g019
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when both frequencies were above 12 Hz and in antiphase,

coordination was no longer possible as the fluctuations of the total

Ca2+ were not sufficient to continually cross the Ca2+ threshold.

Consequently, no further global release of glutamate from the

astrocyte was possible and the SICs died off. In AM-FM mode

phase locking occurred much less frequently and was only

achieved when the individual Ca2+ oscillations were between

+0:00295 Hz and no more than *45o out of phase. Again,

coordination was still possible as long as total Ca2+ oscillation

crossed the threshold from above and below.

Although propagation delays were not included in the present

version of the AN model it would be interesting to investigate

intercellular delays and the propagation time for waves across

astrocyte networks. For example, it is likely that dynamic

coordination across neuron clusters, mediated via astrocyte

networks, is important for the brain rhythms underlying cognitive

function. Dynamically altering the cluster size and with that their

spatial location may mean that the Ca2+ signal pathways are

dynamically changing causing ongoing phase shifting between

bursting activity across the clusters. If we assume that the

‘‘envelope’’ of a rhythm correlates with the times of maximum

bursting then the frequency of the brain oscillation depends on

cluster locations and consequently on delays. Moreover, the phase

locking characteristics of our model may also provide a

mechanism for dynamically changing the coordination between

neuron ensembles. Since phase locking was found to occur

between microdomain oscillations with approximately the same

frequency of oscillation, it is not inconceivable that stimuli of

similar frequency may cause a unique pattern of oscillation which

changes as the stimuli frequencies change.

Our model shows that the Ca2+ threshold responsible for

releasing glutamate from the astrocyte has an effect on the valid

input frequency range that causes Ca2+ oscillations in each

microdomain. Furthermore, this threshold may also have an

impact on the pattern of coordination between neurons. When

phase locking occurs the total Ca2+ oscillation is sinusoidal like and

therefore the bursting activity is regular and periodic. In both

modes many of the higher input frequencies caused the total Ca2+

oscillation to cease crossing the threshold. This condition may be

avoided, however, if the threshold is raised. More biological

experimentation is required to establish the key parameters

governing the threshold level.

Ca2+ oscillations are related to the frequency of the input stimuli

and dependent on IP3 and its rate of change (rip3) which, in our

model, is not constrained and therefore can be treated as an open

parameter. Therefore, changing the value of rip3 would make the

Ca2+ oscillations sensitive to a band of different input frequencies

thereby providing a possible biophysical mechanism for receptive

fields.

It is intriguing that the frequency of phase synchronization in

AM mode is of the order ,0.1 Hz, in line with the low frequency

Blood Oxygen Level-Dependent (BOLD) oscillations used to

identify large scale brain networks and their properties from

functional Magnetic Resonance Imaging (fMRI) (e.g. [108]). This

finding supports the recent suggestion that these infra-slow

oscillations are of astrocytic origin [109,110]. Since the pattern

of coordination observed here is based primarily on independent

synaptic stimuli, one role of phase synchronization may be

information encoding and communication [27].

Extension of the AN model
Astrocytes, like neurons, also form interconnected networks

where the communication between astrocytes is via gap

Figure 20. Total Ca2+ oscillation and neural firing activity in the AM mode. (A) Total Ca2+ oscillation and Ca2+ threshold (dashed line). (B) f
function. (C) Neural firing activity of N1. (D) Neural firing activity of N2. Note how total Ca2+ is much more erratic up until ,40 s. As a result, the
coordinated bursting of N1 and N2 during this time does not have a constant period. After ,40 s phase locking of the individual microdomains is
achieved and the coordinated activity of N1 and N2 is more constant. Furthermore, the total Ca2+ oscillation once again becomes much more
regular.
doi:10.1371/journal.pone.0029445.g020
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junctions. Early research using cultures of hippocampal

astrocytes showed that they were not only excitable by external

stimulation but were also able to transmit or propagate

intracellular Ca2+ oscillations to other non stimulated astrocytes

[111]. This was followed by in situ experimentation which

showed that glutamate released as a result of hippocampal

neuronal activity results in both intracellular Ca2+ oscillations

and intercellular waves (a wave which propagates through an

astrocytic network) [6]. More recently, in vivo studies showed

that astrocytes exhibit Ca2+ transients that travel much faster

within the astrocyte syncytium than previously expected.

Furthermore, Ca2+ transients have also been reported to be

spontaneous and independent of neural activity [25,111–114].

At present, however, it is still unclear if the Ca2+ waves are a

result of external synaptic stimulation, coordinated spontaneous

activity or a mixture of both [113,114]. Whatever the source of

intercellular Ca2+ waves, their ability to traverse relatively long

distances suggests that coordination may not be solely local in

nature, but may also be a means to realize flexible global

communication across remote networks of neurons.

Figure 21. Individual Ca2+ oscillations and IP3 levels in the AM-FM mode. (A–H) Individual Ca2+ oscillations (black), IP3 transients (red) in
each of the 8 microdomains associated with the synapses of N1 (A–D) and N2 (E–H). The input stimulus to each microdomain is a Poisson spike train
with an average frequency of (A) 2 Hz, (B) 10 Hz, (C) 5 Hz, (D) 7 Hz, (E) 3 Hz, (F) 9 Hz, (G) 8 HZ, (H) 4 Hz. Note there is no phase locking of the
individual microdomain oscillations.
doi:10.1371/journal.pone.0029445.g021
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It is worth noting that the various model systems encompassed

by the AN model were chosen to reduce computational overhead

while still remaining biophysically meaningful. Thus, the AN

model can form an important building block to explore global

communication across large remote clusters of neurons via

astrocyte ensembles. Extension of the AN model to include

intercellular signaling similar to those described in [115–117]

may aid in the understanding of how phase locking of field

potentials encodes functionally relevant information via AN

networks.

The present modeling results strengthen the hypothesis that

astrocyte networks provide much more than structural support to

neural networks. Indeed astrocytes are viewed as regulators of

neural circuitry through coordination of transmission at synaptic

junctions. Moreover, it is also believed that retrograde messengers

induced in the postsynaptic neuron can be fed back either directly

or via an astrocyte to receptors on the presynaptic neuron [106].

This feedback signal modulates the probability of neurotransmitter

release and therefore may provide new insight into self repairing

synapses Extension of the present AN model may thus be used to

investigate such repair mechanisms [118]. Moreover, the AN

model could be extended to provide a flexible research tool to

allow neuroscientists to explore the role of astrocytes in a number

of neurological disorders. For example, it has been suggested that a

characteristic of Alzheimer’s disease is the accumulation of

amyloid-beta (Ab) peptide, which can induce transient changes

in intercellular Ca2+ concentration in astrocytes [119]. While this

mechanism might explain the loss of new memory formation,

further studies are required to understand the Ab-induced

neuronal and glia Ca2+ fluctuations and the changes that these

fluctuations trigger.

Supporting Information

Figure S1 IP3 generation within the astrocyte cyto-
plasm. (A) The evolution of IP3 within the cytoplasm of the

astrocyte as a result of a range of Poisson generated spike trains

stimulating the tripartite synapse. Note that IP3 builds much

faster than it decays which can be seen after 10 s when the input

ceases. (B) Same experiment as (A) except the Poisson distributed

spike train is maintained. Note how the level of generated IP3 is

limited to a steady state value and is dependent on the stimulus

frequency.

(TIF)

Figure S2 Examples of no Ca2+ oscillation. (A) AM mode

with input stimulus frequency set at 3 Hz. (B) FM mode with input

stimulus set at 7 Hz. Note that in both cases the levels of IP3 are

insufficient to cause a Ca2+ oscillation.

(TIF)

Figure S3 Examples Ca2+ oscillations outside of the
valid frequency range. (A) AM mode with the input stimulus

frequency set at 18 Hz. (B) FM mode with the input stimulus

frequency set at 36 Hz. (C) AM-FM mode with the input stimulus

frequency set at 11 Hz. In (A) AM mode this frequency causes

Ca2+ to oscillate at a point at which it no longer crosses the

threshold from above, therefore the gating function ( f ) remains

active and in a state of depressing neurotransmitter release from

the synapse. However, this negative feedback is insufficient to

reduce the transmitter to which IP3 is degraded sufficiently to

allow Ca2+ to drop below the threshold level. As a result IP3

reaches a steady state at which no further crossing of the threshold

is possible. This is also the case with (B) and (C); however, in these

Figure 22. Total Ca2+ oscillation and neural firing activity in the AM-FM mode. (A) Total Ca2+ oscillation and Ca2+ threshold (dashed line).
(B) f function. (C) Neural firing activity of N1. (D) Neural firing activity of N2. Note how total Ca2+ is much more erratic and infrequently crosses the
threshold from above and below. Although the f function is activated for much longer periods, negative feedback is still unable to cause phase
locking. As a result the coordinated bursting activity of N1 and N2 is significantly reduced.
doi:10.1371/journal.pone.0029445.g022
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cases the steady state level of IP3 now causes a cessation of the

Ca2+ oscillation also.

(TIF)
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