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Abstract

Pathway analysis of genome-wide association studies (GWAS) offer a unique opportunity to collectively evaluate
genetic variants with effects that are too small to be detected individually. We applied a pathway analysis to a bladder
cancer GWAS containing data from 3,532 cases and 5,120 controls of European background (n = 5 studies). Thirteen
hundred and ninety-nine pathways were drawn from five publicly available resources (Biocarta, Kegg, NCI-PID,
HumanCyc, and Reactome), and we constructed 22 additional candidate pathways previously hypothesized to be
related to bladder cancer. In total, 1421 pathways, 5647 genes and ,90,000 SNPs were included in our study. Logistic
regression model adjusting for age, sex, study, DNA source, and smoking status was used to assess the marginal trend
effect of SNPs on bladder cancer risk. Two complementary pathway-based methods (gene-set enrichment analysis
[GSEA], and adapted rank-truncated product [ARTP]) were used to assess the enrichment of association signals within
each pathway. Eighteen pathways were detected by either GSEA or ARTP at P#0.01. To minimize false positives, we
used the I2 statistic to identify SNPs displaying heterogeneous effects across the five studies. After removing these
SNPs, seven pathways (‘Aromatic amine metabolism’ [PGSEA = 0.0100, PARTP = 0.0020], ‘NAD biosynthesis’ [PGSEA = 0.0018,
PARTP = 0.0086], ‘NAD salvage’ [PARTP = 0.0068], ‘Clathrin derived vesicle budding’ [PARTP = 0.0018], ‘Lysosome vesicle
biogenesis’ [PGSEA = 0.0023, PARTP,0.00012], ’Retrograde neurotrophin signaling’ [PGSEA = 0.00840], and ‘Mitotic
metaphase/anaphase transition’ [PGSEA = 0.0040]) remained. These pathways seem to belong to three fundamental
cellular processes (metabolic detoxification, mitosis, and clathrin-mediated vesicles). Identification of the aromatic
amine metabolism pathway provides support for the ability of this approach to identify pathways with established
relevance to bladder carcinogenesis.
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Introduction

Genome-wide association studies (GWAS) have served as a

useful tool to identify common genetic variants associated with

various complex traits [1]. As expected, each variant explains a

tiny portion of the heritable component of their associated

phenotypes [2,3]. Recently, Park and colleagues estimated that

some proportion of the ‘missing heritability’ may reside in

additional common low-penetrance susceptibility variants that

can be discovered in larger GWAS [4]. In principle, other

methods could complement the primary single-locus tests of

GWAS in identifying additional susceptibility loci. One such

approach is pathway (gene-set) analysis [5,6], which examines

whether association signals of a collection of functionally related

loci (typically genes) consistently deviate from what is expected

by chance. This approach may suggest new candidate

susceptibility loci and possibly provide insights into the

mechanisms underlying complex traits. Pathway-based analyses

have been applied to GWAS of complex diseases, including

multiple sclerosis [7], type-2 diabetes [8,9], Crohn’s disease

[10,11], Parkinson’s disease [12,13], colon [14] and breast [15]

cancers.

Bladder cancer is the fourth most common malignancy among

men in the western world [16]. Epidemiological studies have

shown that exposure to aromatic amines (AAs) from tobacco

smoking or occupation is strongly associated with bladder cancer

risk [16,17,18,19]. Additionally, genetic studies have demon-

strated that functional polymorphisms in two genes involved in

carcinogen metabolism (N-acetyltransferase 2 [NAT2] and

glutathione S-transferase M1 [GSTM1]) are associated with

bladder cancer risk [20,21]. Notably, the risk of bladder cancer

associated with NAT2 slow acetylation genotype is restricted to

smokers [20,22]. Recently, a series of GWAS have identified

previously unknown susceptibility loci for bladder cancer, with

the prospects of more to be discovered [22,23,24,25]. To identify

additional regions that harbor plausible candidate genes and

shed further light on genetic basis of this disease, we applied

pathway analysis to the first stage of the NCI’s CGEMS bladder

cancer GWAS containing 3,532 cases and 5,120 controls [22].

We report here seven pathways implicated in diverse carcino-

genic processes to be enriched with bladder cancer susceptibility

loci.

Materials and Methods

Study population
We applied our analyses to primary scan data of 591,637 SNPs

from NCI’s bladder cancer GWAS containing 3,532 cases and

5,120 controls of European ancestry from five studies (Spanish

Bladder Cancer Study [SBCS], New England, Maine and

Vermont Bladder Cancer Study [NEBCS-ME/VT], Alpha-

Tocopherol, Beta-Carotene Cancer Prevention Study [ATBC],

the American Cancer Society Cancer Prevention Study II

Nutrition Cohort [CPS-II], and the Prostate, Lung, Colorectal

and Ovarian Cancer Screening Trial [PLCO]) [22].

Pathway data construction
We collected gene-sets from five publicly available pathway

resources: BioCarta [26], Kyoto Encyclopedia of Genes and

Genomes (KEGG) [27], NCI’s Pathway Interaction Database

(PID) [28], Reactome [29], and Encyclopedia of Homo sapiens

Genes and Metabolism (HumanCyc) [30]. Inclusion criteria of

pathways for analysis were those containing 5–100 genes to avoid

testing too narrowly- or too broadly- defined functional categories.

In addition, we constructed 22 candidate pathways (Table S2)

based on known bladder cancer risk factors and general

carcinogenic processes [31,32,33] which were not represented in

the public databases above. Specifically, selection of genes was

determined through 1) biochemical data for the detoxification of

aromatic amines [34,35]; 2) Ingenuity pathway lists [36]; and 3)

Gene ontology lists [37].

To explore the similarity between pathways in our database, we

assessed the percentage of overlapping genes between each two

pathways (A and B) as:

Overlap(%)~

(
N½A\B�
N½A|B�

z
N½A\B�

minfNA,NBg
)

2
|100% ð1Þ

where NA and NB are the number of genes within pathways A and

B.

SNPs from the first stage of the NCI bladder cancer GWAS

[22] were mapped to genes in these pathways if they were located

in a region encompassing 20 kb 59 upstream and 10 kb 39
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downstream from the genes’ coding regions (NCBI’s human

genome build 36.3). These gene’s boundaries were selected

attempting to capture most of the gene’s coding and regulatory

variants [38] as well as minimizing the overlap between genes.

Overall, 1,422 pathways containing 5,647genes (24.3621.7

[mean 6 SD] genes per pathway) and ,92,000 SNPs were

included in our database. A complete list of the studied pathways

is available in Table S1.

Statistical analysis
SNPs with MAF,1% among controls were excluded from the

analysis. We fitted logistic regression models adjusted for age, sex,

study center, DNA source (buccal/blood), and smoking status

(current/former/never/occasional), to assess the marginal effect of

each SNP (1 degree of freedom trend test) on the risk of bladder

cancer, as previously described [22]. For each gene Gj (j = 1, …, N,

where N is the total number of genes in our dataset), the SNP with

the lowest p-value among all SNPs that were mapped to its region

was selected to represent the gene in the pathway analysis. We

used two approaches to test for overrepresentation of association

signals within pathways in our database:

A. Gene-set enrichment analysis (GSEA; [12]): In this approach,

the 2log10 of the p-value of each gene’s best SNP was used

as the gene’s test statistics (rj = 2log10(pj). Then, a weighted

Kolmogorov-Smirnov procedure was used to assess for

overrepresentation of gene’s statistics Enrichment Score (ES)

within each pathway (S) [15].

ESs~ max
1ƒjƒN

f
X

Gj�[S,j�ƒj

rj�
�� ��
Ws

{
X

Gj�=[S,j�ƒj

1

N{NH

g ð2Þ

where, WS~
P

Gj�[S

rj�
�� �� and NH is the number of genes in a

pathway.

A. The statistical significance of ESS was empirically evaluated

using 10,000 permutations (permuting the genotype data

between individuals and keeping the LD between SNPs

intact).

B. Adaptive Rank-Truncated Product (ARTP; [39]): In this

approach the genes’ best SNP p-values (pj) in each pathway

were ordered from lowest to highest. Then, the mathematical

product was computed for all possible sets of p(j) such that

W (K)~ P
K

j~1
(p(j)) ð3Þ

with K, 1#K#L, being all possible integers (the truncation

points) between 1 and L, with L being the number of genes in

a pathway. In words, W(K) is simply the product of the K

smallest P-values in a pathway. Next, we used the minP

statistics [40,41] to evaluated what is the K truncation point

where the W(K) get the most statistically significant value.

min P~ min
1ƒjƒJ

s
^

(Kj) ð4Þ

where s
^

(Kj) be the estimated P-value for W(Kj), K1#…#K.

B. We then used two-level permutation procedure (10, 000

permutations, permuting the genotype data between individ-

uals and keeping the LD structure between SNPs intact) to

estimate s
^
(Kj), and to adjust for multiple testing over the

different truncation points used.

Using both the GSEA and ARTP methods that employ

different approaches to assess the enrichment of gene-based

signals within predefined gene-sets may facilitate capturing a

broader range of candidate pathways for bladder cancer

susceptibility.

Finally, we calculated a false discovery rate (FDR) to assess the

proportion of expected false positive findings in the GSEA and

ARTP analyses. In short, we normalized the GSEA and ARTP

statistics for each pathway (NSs(GSEA) and NSs(ARTP) respectively)

based on the mean and standard deviation of the corresponding

permutation data [12]. This procedure allows a direct compar-

ison of pathways with different sizes and gene compositions.

Then, we used these normalized statistics to calculate the FDR

as:

FDR~

Pper
S NS

per
S §NS�SPper

S NS
per
S

=

P
S NSS§NS�SP

S NSS

ð5Þ

Genetic heterogeneity analysis
To minimize false positives, we estimated the I-squared statistic

(I2) [42] to identify SNPs displaying heterogeneous effects across

the five studies [ATBC, CPSII, NEBCS (ME, VT), PLCO, and

SBCS]. I2describes the proportion of total variation in study

estimates that is due to heterogeneity. In short, a meta-analysis was

applied to every SNP belonging to one of the top pathways using

the genotype frequency counts of cases and controls to estimate

per-allele OR and CI’s. SNPs with I2 P-values,0.2 were removed

from further analyses. We evaluated the OR, CI and p values for

both the meta-analysis and they were similar in both models, and

did not change the interpretation of the data. These analyses were

done using STATA (Version 11, STATA Corporation, College

Station, TX).

Results

Overall, there was good correlation between the results of the

GSEA and the ARTP methods (r = 0.74, P,0.0001). A detailed

examination of the results revealed that, on average, GSEA

performed better in detecting pathways enriched with multiple

weak association signals while ARTP appeared to be more

powerful in detecting pathways where only few genes with

relatively strong signals are dominating. Notably, the AA

metabolism pathway, which contains several known bladder

cancer susceptibility loci, was detected by both GSEA and ARTP

methods (PGSEA = 0.0100, PARTP = 0.0020). Therefore, we used its

significance level as a reference for highlighting additional

candidate susceptibility pathways. Of the 1421 pathways exam-

ined, 18 were significantly enriched with association signals at the

P,0.01 level (Table 1). Of these, seven pathways were detected by

both GSEA and ARTP, four pathways were detected only by

GSEA, and seven were detected only by ARTP. After removing

SNPs with heterogeneous effects across the five studies (I2 P-

value,0.2), the enrichment signals remained significant (P,0.01)

in seven pathways belonging to four cellular processes (‘‘aromatic

amine [AA] metabolism’’, ‘‘Nicotinamide adenine dinucleotide

[NAD] metabolism’’, ‘‘Clathrin-mediated vesicles’’, and ‘‘Mito-

sis’’). For clarity, from this point forward, we will refer only to the

results from the post heterogeneity analysis.

Pathway Analysis of Bladder Cancer GWAS
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Aromatic amine [AA] metabolism
Table 2 displays the results for the genes in the AA pathway.

The enrichment signals in this pathway were mainly driven by

SNPs in the UGT1A9 and NAT2 genes. SNPs in these genes were

identified in the primary analysis of this GWAS [22]. Removing

these two genes from the pathway analyses reduced the

enrichment signal in the AA metabolism pathway in both methods

but still ranked it relatively high using the GSEA (PGSEA = 0.0130,

PARTP = 0.1217). Apart from UGT1A9 and NAT2, five additional

genes in this pathway had SNPs with significant genetic effect

(Ptrend,0.05). These included NAT1, UGT1A4, UGT1A6, NQO1

and CYP1B1.

Some of the genes in the AA metabolism pathway (i.e. CYP1A1

and CYP1A2; UGT1A4, UGT1A6 and UGT1A9; SULT1A1 and

SULT1A2) occur on the same chromosomal locus and conse-

quently share similar tagging SNPs. To assess the effect of this

redundancy on the pathway enrichment signal, we pooled together

genes with overlapping SNPs and treated them as a single genetic

unit in our pathway analyses. Consequently, the number of loci

included in the AA metabolism pathway was reduced to seven,

(Table S2) and the corresponding enrichment signals were

strengthened (PGSEA = 0.0046, PARTP = 0.0001). Even when remov-

ing the NAT2 and UGT1A regions from this gene-set, its cor-

responding enrichment signal remains relatively high (PGSEA =

0.024, PARTP = 0.0921).

NAD metabolism
Two nicotinamide adenine dinucleotide (NAD) metabolism

pathways were detected in this analysis. The ‘‘NAD biogenesis I’’

pathway (HumanCyc) was detected by both GSEA and ARTP

(PGSEA = 0.0018, PARTP = 0.0086), and the ‘‘NAD salvage II’’

pathway (HumanCyc) was detected only by the ARTP method

(PARTP = 0.0068). Table 3 presents the results for the genes in these

pathways. The three NMNAT genes (NMNAT1, NMNAT2, and

NMNAT3) that are shared by both of these two pathways harbor

SNPs with significant genetic effect (Ptrend,0.05) and therefore

likely to dominate the significant enrichment signals in these

pathways. Other genes displaying significant bladder cancer risk

are QPRT in the ‘‘NAD I’’ pathway, and ACP6, ITGB1BP3,

ACPL2 in the ‘‘NAD II’’ pathway.

Vesicle biogenesis and budding
Three pathways involved in clathrin-dependent vesicle biogen-

esis and budding were detected in this analysis. The ‘‘Lysosome

Vesicle Biogenesis’’ pathway (Reactome) showed the strongest

enrichment signal among all pathways in this study, and was

detected by both GSEA and ARTP (PGSEA = 0.0023,

PARTP,0.0001). The ‘‘Clathrin derived vesicle budding’’ pathway

(Reactome) was detected only by ARTP (PARTP = 0.0018), while

the ‘‘Retrograde neurotrophin signaling’’ pathway (Reactome) was

detected only by GSEA (PGSEA = 0.0084). Table 4 displays the

Table 1. Pathways enriched with bladder cancer susceptibility loci at a P#0.01 level using GSEA and ARTP.

GSEA ARTP

Gene
overlap
(%)

Pathway source
#
genes1 # genes2 p-value3 FDR4 # genes2 p-value3 FDR4

Aromatic amine metabolism Self 11 (5); 1 (0.0059); 0.0100 (.0.5) (9); 1 (0.0012); 0.0020 (0.28) NA

NAD biosynthesis I (from aspartate) HumanCyc 5 (4); 4 (0.0021); 0.0018 (.0.5) (4); 4 (0.0086); 0.0086 (0.36) 44%

NAD salvage pathway II HumanCyc 9 (5); 6 (0.0150); 0.0583 (.0.5) (7); 8 (0.0033); 0.0068 (0.32)

Clathrin derived vesicle budding Reactome 15 (6); 6 (0.0210); 0.0189 (.0.5) (9); 9 (0.0018) 0.0018 (0.35)

Lysosome Vesicle Biogenesis Reactome 10 (6); 7 (0.0031); 0.0023 (.0.5) (7); 7 (,0.0001);
,0.0001

(0.16) 49%

Retrograde neurotrophin signaling Reactome 9 (4); 4 (0.0092); 0.0084 (.0.5) (4) ;4 (0.0192); 0.0192 (0.41)

Mitotic Metaphase/Anaphase Transition Reactome 8 (3); 3 (0.0043); 0.0040 (.0.5) (3); 3 (0.0187); 0.0187 (0.43) 55%

Mitotic Prometaphase Reactome 80 (12); 12 (0.0955); 0.2567 (.0.5) (13); 12 (0.0095); 0.0346 (0.37)

Control of skeletal myogenesis by hdac and
calcium/calmodulin-dependent kinase (camk)

BioCarta 21 (11); 10 (0.1216); 0.2322 (.0.5) (7); 3 (0.0040); 0.0617 (0.29) 12%

B cell receptor signaling pathway KEGG 75 (29); 28 (0.1121); 0.1931 (.0.5) (10); 9 (0.0059); 0.0244 (0.38)

Syndecan-1-mediated signaling events PID 15 (12); 9 (0.0014); 0.0388 (.0.5) (12); 11 (0.0092); 0.1666 (0.43) 18%

Syndecan-2-mediated signaling events PID 31 (19); 16 (0.0048); 0.0559 (.0.5) (31); 31 (0.0078); 0.1404 (0.42)

TGF-beta signaling pathway KEGG 85 (41); 36 (0.0090); 0.0988 (.0.5) (57); 57 (0.0251); 0.2196 (.0.5) NA

Activated AMPK stimulates fatty-acid
oxidation in muscle

Reactome 8 (4); 3 (0.0434); 0.2470 (.0.5) (8); 8 (0.0017); 0.0454 (0.41)

AMPK inhibits chREBP transcriptional activity Reactome 5 (3); 2 (0.0010); 0.0411 (.0.5) (3); 2 (0.0014); 0.0465 (0.33) 39%

Reversal of insulin resistance by leptin BioCarta 10 (5); 7 (0.0170); 0.6432 (.0.5) (10); 2 (0.0028); 0.1635 (0.37)

Maturity onset diabetes of the young KEGG 25 (12); 11 (0.0067); 0.0308 (.0.5) (12); 16 (0.0390); 0.1908 (.0.5) NA

Metabolism of polyamines Reactome 12 (6); 4 (0.0055); 0.0460 (.0.5) (7); 5 (0.0040); 0.0657 (0.32) NA

Results of the top ranked pathways (P,0.01) using GSEA and ARTP. In parenthesis are results prior of removal SNPs displaying heterogeneous signals.
1The number of genes in the pathway.
2The number of genes underlying the enrichment signal in the pathway.
3P-value of the enrichment score based on 10,000 permutations.
4False-discovery rate calculated based on the normalized statistics of the permutation data to account for the variable sizes of genes and pathways.
doi:10.1371/journal.pone.0029396.t001
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results for the genes in these pathways. Three genes are shared by

the three pathways: CLTA and CLTC, which encode for the light

and heavy chains of clathrin respectively, and SH3GL2 which is

associated with clathrin-mediated endocytosis. The association of

SNPs in these three genes with bladder cancer risk ranked them

among the top four genes in these pathways.

Mitosis
The ‘‘Mitotic metaphase/anaphase transition’’ (Reactome)

was detected by the GSEA method (PGSAE = 0.0040) and was

marginally significant using ARTP (PARTP = 0.0187). Interesting-

ly, all eight genes in this pathway are included in the more

comprehensive ‘‘Mitotic prometaphase’’ pathway that was

detected in the initial pathway screening, but had a less

significant signal after removing SNPs with heterogeneous

signals (Table 1). Results for the eight genes included in the

‘‘Mitotic metaphase/anaphase transition’’ pathway are present-

ed in Table 5. Three SNPs in three genes (FBXO5, SMC3 and

SPC24) were associated with significant protective effect on

bladder cancer (Ptrend,0.05).

Table 3. Summary of genes in the NAD metabolism pathways used for pathway-based analysis of multi-study bladder cancer
GWAS.

Pathway Gene # SNPs1 SNP2 SNP3 rank MAF4 Allelic OR (95% CI)5 P-value6

NAD1/NAD2 NMNAT3 36 rs7636269 1 0.48 1.12 1.05 1.20 0.0004

NAD2 ACP6 16 rs1344 1 0.41 1.11 1.04 1.18 0.0017

NAD1 QPRT 7 rs3862476 1 0.07 1.19 1.04 1.35 0.0087

NAD1/NAD2 NMNAT2 36 rs4652795 1 0.38 0.92 0.86 0.98 0.0099

NAD1/NAD2 NMNAT1 8 rs1220398 1 0.14 0.89 0.81 0.98 0.0169

NAD2 ITGB1BP3 8 rs2304191 1 0.11 1.11 1.01 1.23 0.0355

NAD2 ACPL2 31 rs3210458 2 0.09 1.12 1.00 1.25 0.0421

NAD2 NUDT12 5 rs371315 1 0.28 1.07 1.00 1.15 0.0686

NAD2 NT5C3L 6 rs9907244 1 0.43 0.95 0.89 1.01 0.1094

NAD1 NADSYN1 17 rs4945007 1 0.06 1.10 0.96 1.25 0.1555

NAD2 C9orf95 19 rs7021664 1 0.08 0.94 0.83 1.06 0.3193

1Number of SNPs genotyped in the gene region (20 kb 59 upstream and 10 kb 39 downstream from the gene’s coding region).
2The SNP representing the gene in the pathway analysis after the removal of SNPs with heterogeneous effects.
3The rank of the SNP among all SNPs in the gene’s region based on their p-values.
4Minor allele frequency among controls.
5Per allele odds ratios +95% confidence intervals from logistic regression models adjusting for age, sex, study center, DNA source , and smoking.
61 d.f. trend test.
doi:10.1371/journal.pone.0029396.t003

Table 2. Summary of genes in the aromatic amine metabolism pathway used for pathway-based analysis of multi-study bladder
cancer GWAS.

Gene # SNPs1 SNP2
SNP3

rank MAF4
Allelic OR (95%
CI)5 P-value6

UGT1A9 72 rs11892031 1 0.08 0.77 0.68 0.87 3.661025

NAT2 15 rs4646249 1 0.28 0.89 0.83 0.95 0.0013

NAT1 11 rs9650592 1 0.11 0.86 0.78 0.96 0.0054

UGT1A4 41 rs4148328 1 0.38 0.91 0.85 0.98 0.0086

UGT1A6 62 rs4148328 1 0.38 0.91 0.85 0.98 0.0086

NQO1 6 rs1437135 1 0.20 0.91 0.84 0.99 0.0275

CYP1B1 13 rs2855658 1 0.43 0.94 0.88 1 0.0477

CYP1A1 4 rs2472297 2 0.22 1.03 0.95 1.11 0.4758

CYP1A2 5 rs2472297 4 0.22 1.03 0.95 1.11 0.4758

SULT1A1 1 rs1968752 1 0.37 1.01 0.95 1.08 0.7321

SULT1A2 1 rs4788073 1 0.37 0.99 0.93 1.06 0.8344

1Number of SNPs genotyped in the gene region (20 kb 59 upstream and 10 kb 39 downstream from the gene’s coding region).
2The SNP representing the gene in the pathway analysis after the removal of SNPs with heterogeneous effects.
3The rank of the SNP among all SNPs in the gene’s region based on their p-values.
4Minor allele frequency among controls.
5Per allele odds ratios +95% confidence intervals from logistic regression models adjusting for age, sex, study center, DNA source , and smoking.
61 d.f. trend test.
doi:10.1371/journal.pone.0029396.t002
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Discussion

Our pathway-based analysis of a large bladder cancer GWAS

using two complementary pathway-based methods (GSEA and

ARTP) identified an overrepresentation of association signals in

seven pathways (‘Aromatic amine metabolism’, ‘NAD biosynthe-

sis’, ‘NAD salvage’, ‘Clathrin derived vesicle budding’, ‘Lysosome

vesicle biogenesis’, ‘Retrograde neurotrophin signaling’, and

‘Mitotic metaphase/anaphase transition’) and suggest involvement

in at least three cellular processes (metabolic detoxification,

mitosis, and clathrin-mediated vesicles).

The identification of the AA metabolism pathway in this study by

both GSEA and ARTP could be considered a good indication for

the utility of this approach, since AA metabolism has established

relevance to bladder cancer susceptibility. Interestingly, the

enrichment signal in this pathway is driven by variations in the

UGT1A gene cluster and the NAT1, NAT2, and NQO1 genes (Table 1)

that are involved in detoxification processes in the AA pathway

[34,35]. The strong enrichment signal left in this pathway even after

the removal of the UGT1A and NAT2 genes from the analysis

indicates that other genetic variations affecting aromatic amines

detoxification may contribute to bladder cancer susceptibility.

The detection of the NAD metabolism pathway may be relevant

to bladder cancer susceptibility through several carcinogenic

mechanisms. First, NAD homeostasis has been shown to play a

role in various redox reactions that may lead to irreversible cellular

damage and consequently to the initiation of malignant tumor

[43]. In addition, NAD has been shown to be involved in DNA

repair and telomere maintenances [44] as well as in energy

production both of which are important processes in cancer

development. Interestingly, NAD metabolism pathway has been

implicated in a recent pathway-based analysis of colon cancer

GWAS [14]. Colon and bladder cancers have been associated with

NAT2 acetylation status. For bladder cancer, in which N-

acetylation is a detoxification step, NAT2 slow acetylator

phenotype presents a higher risk. In contrast, for heterocyclic

amine-related colon cancer in which N-acetylation is negligible

and O-acetylation is a carcinogen-activation step, NAT2 rapid

acetylator phenotype presents a higher risk [45]. Thus, similar

metabolic pathways could play diverse roles in the etiology of these

two cancers.

Three clathrin-mediated vesicle pathways are also highlighted

in this study. Clathrin-coated vesicles play essential role in

intracellular trafficking, endocytosis, and exocytosis [46]. In this

realm, it has been shown that clathrin-mediated vesicle pathways

regulate the signaling and cellular localization of several growth

factors [47] that are known to play a role in cancer susceptibility.

Interestingly, clathrin may be also relevant to the Mitotic

Metaphase/Anaphase transition pathway that was also implicated

in this study. During mitosis, clathrin helps stabilizing the

Table 4. Summary of genes in the Clathrin-mediated vesicle pathways used for pathway-based analysis of multi-study bladder
cancer GWAS.

Pathway Gene # SNPs1 SNP2
SNP3

rank MAF4 Allelic OR (95% CI)5 P-value6

Clathrin/Lysosome/Retrograde CLTA 10 rs10972786 1 0.06 1.27 1.11 1.45 0.0004

Clathrin/Lysosome ARRB1 29 rs667791 1 0.39 1.11 1.04 1.19 0.0014

Clathrin/Lysosome/Retrograde SH3GL2 92 rs2209426 1 0.17 0.87 0.80 0.95 0.0020

Clathrin/Lysosome/Retrograde CLTC 10 rs7224631 1 0.09 1.19 1.06 1.32 0.0023

Clathrin/Lysosome DNAJC6 38 rs1325607 1 0.21 1.12 1.03 1.21 0.0057

Clathrin/Lysosome HSPA8 8 rs11218950 1 0.05 0.80 0.68 0.95 0.0087

Retrograde NGF 45 rs12760036 1 0.10 0.85 0.76 0.96 0.0096

Clathrin/Lysosome AP1G1 7 rs9932707 1 0.45 1.07 1.00 1.14 0.0353

Clathrin VAMP2 3 rs3202848 1 0.37 0.93 0.86 1.00 0.0572

Clathrin VAMP8 9 rs719023 1 0.39 0.94 0.88 1.00 0.0631

Retrograde DNAL4 7 rs738141 1 0.17 1.08 1.00 1.18 0.0645

Clathrin SNAP23 3 rs4924682 1 0.01 1.27 0.95 1.70 0.1087

Clathrin/Lysosome DNM2 16 rs4804528 1 0.43 0.95 0.89 1.02 0.1437

Retrograde DNM1 13 rs13285411 1 0.12 0.93 0.84 1.03 0.1463

Clathrin/Lysosome AP1B1 14 rs5763140 1 0.11 1.08 0.97 1.19 0.1500

Clathrin/Lysosome ARF1 4 rs3768331 1 0.38 1.05 0.98 1.12 0.1536

Clathrin GBF1 15 rs1057050 1 0.06 0.90 0.78 1.04 0.1673

Retrograde NTRK1 13 rs1888861 1 0.23 0.95 0.88 1.03 0.2275

Retrograde AP2A2 12 rs7483870 1 0.23 0.96 0.89 1.04 0.3014

Retrograde AP2A1 9 rs2286948 1 0.36 1.03 0.96 1.10 0.3694

Clathrin STX4 1 rs10871454 1 0.39 1.00 0.94 1.07 0.9722

1Number of SNPs genotyped in the gene region (20 kb 59 upstream and 10 kb 39 downstream from the gene’s coding region).
2The SNP representing the gene in the pathway analysis after the removal of SNPs with heterogeneous effects.
3The rank of the SNP among all SNPs in the gene’s region based on their p-values.
4Minor allele frequency among controls.
5Per allele odds ratios +95% confidence intervals from logistic regression models adjusting for age, sex, study center, DNA source, and smoking.
61 d.f. trend test.
doi:10.1371/journal.pone.0029396.t004
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kinetochore fibers which are required for the proper function of

the mitotic spindle [48]. Thus, the overrepresentation of

association signals in two distinct pathways associated with mitosis

suggest that perturbations in the mitotic process, and particularly

those related to the metaphase/anaphase transition, may modify

the risk of human bladder cancer.

Strengths of our study are the large sample size; the use of

primary scan data from five independent studies allowing us to

address consistency of effects across the different populations; and

the use of two complementary pathway-based methods. A limitation

of our study is the lack of pathway-based signals to reach a

noteworthy FDR significance level, with only one pathway

(Lysosome Vesicle Biogenesis) having an FDR value ,0.2. This

could be partially due to the inherent limits of the methods used, the

inadequate annotation of relevant pathways in public databases, or

due to weak association signals in our data. Recent analysis of

bladder cancers using RNA expression data, have also highlighted

enrichment of genes with similar processes as we identified in our

genomic data here, including metabolic processes, which provide

further plausibility that the pathways identified may be relevant to

bladder cancer susceptibility [49]. Furthermore, the high rank of the

AA metabolism pathway in both GSEA and ARTP support the

power of these methods to highlight pathways with established

relevance to bladder cancer susceptibility and may therefore

similarly suggest the involvement of metabolic detoxification,

mitosis and clathrin-mediated pathways in bladder carcinogenesis.

Supporting Information

Table S1 Details and results for all 1423 pathways
included in this study.
(XLS)

Table S2 List of genes included in the 22 self-construct-
ed candidate pathways.
(XLS)
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