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Abstract

Research on the human pathogen Mycobacterium tuberculosis (Mtb) would benefit from novel tools for regulated gene
expression. Here we describe the characterization and application of a synthetic riboswitch-based system, which comprises
a mycobacterial promoter for transcriptional control and a riboswitch for translational control. The system was used to
induce and repress heterologous protein overexpression reversibly, to create a conditional gene knockdown, and to control
gene expression in a macrophage infection model. Unlike existing systems for controlling gene expression in Mtb, the
riboswitch does not require the co-expression of any accessory proteins: all of the regulatory machinery is encoded by a
short DNA segment directly upstream of the target gene. The inducible riboswitch platform has the potential to be a
powerful general strategy for creating customized gene regulation systems in Mtb.
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Introduction

Tools for manipulating gene expression are fundamental to

genetic studies. Inducible systems, usually under the control of a

small molecule, are particularly useful because they permit

exquisite experimental control over both the dose and timing of

gene expression. Inducible promoters are widely used to silence

genes via direct transcriptional control or antisense methodologies

and to overexpress proteins for biochemical and structural studies

[1]. In bacteria, inducible systems have been used to elucidate

gene function, determine gene essentiality, and validate drug

targets [2,3,4].

Although several inducible expression systems exist for Gram-

negative bacteria, adaptation to distantly related bacteria has

proven difficult. Species that lack diverse regulated expression

tools include the mycobacteria, among them Mycobacterium

tuberculosis (Mtb), which causes tuberculosis in humans, and species

that are commonly used as models for Mtb such as the fish and

amphibian pathogen M. marinum, the non-pathogenic M. smegmatis

(Msmeg), and the vaccine strain M. bovis BCG [5]. Unique

challenges inherent to the biology of these medically relevant

organisms, such as their pathogenesis, slow growth rate, and

inefficient DNA uptake, have significantly hindered molecular

genetics studies [6].

The earliest described mycobacterial inducible system, and the

only one derived from endogenous mycobacterial machinery, is

the acetamide-inducible Msmeg acetamidase promoter [7]. Al-

though the system has proven useful for conditional mutant

construction and protein overexpression, the acetamidase pro-

moter exhibits a high level of basal activity and is prone to

recombination in Mtb [7,8,9,10]. Alternatives have been derived

from transposons or the regulons of other Gram-positive bacteria

[5,11,12,13,14,15], including several tetracycline repressor-based

(TetR) systems [16,17,18,19].

For all of the above regulons, response to the inducer is

mediated by one or more accessory proteins that must be imported

into mycobacteria. Expression of these exogenous regulators can

require optimization to achieve desired levels of induction [19].

Moreover, further adapting such systems can entail protein

engineering and extensive characterization to verify function

[20]. While these tools have proven useful in some contexts,

alternative regulatory strategies, especially those that circumvent

these limitations, would be valuable additions to the mycobacterial

genetic toolkit.

We have recently reported a series of theophylline-responsive

riboswitches that can control gene expression in a range of Gram-

negative and Gram-positive bacteria, including Msmeg, a fast-

growing, non-pathogenic species that is a widely used model

system for Mtb [21]. Significantly, no exogenous regulator proteins

are involved in the induction mechanism, making the system easy

both to modify and to implement in different strains or species.

The machinery is encoded by a single ,300-bp DNA segment
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comprising a mycobacterial promoter (a variant of Phsp60, a

widely used constitutive promoter from BCG [22]) and a synthetic

RNA aptamer that binds to theophylline (Figure 1) [21]. Here we

characterize this promoter-riboswitch combination and show that

it can be used to induce and repress gene expression reversibly; to

control a conditional gene knockdown; and to regulate expression

in a macrophage model of infection.

Results

Characterization of riboswitch-controlled gene
expression in mycobacteria

To assess the generality of riboswitch response across different

target genes, we created two constructs, ribo-gfp and ribo-lacZ,

which are designed to express GFP and b-galactosidase under

control of the riboswitch, and assayed their fluorescence or

enzyme activity. With both constructs, we observed dose-

dependent induction by theophylline with maximum reporter

expression at ,2 mM theophylline (Figure 2A), whereas signifi-

cant growth attenuation was only observed at $10 mM

theophylline in Msmeg (Figure S1). Also, the activation ratio,

defined as the ratio of the reporter gene readout at 2 mM vs.

0 mM theophylline, was similar for the two reporter genes (89612

for b-galactosidase and 6568 for GFP). Msmeg ribo-gfp cells were

further characterized by flow cytometry after incubation in 0–

4 mM theophylline (Figure 2B). Each sample comprised a single

distribution, and the mean GFP fluorescence intensity increased

with theophylline concentration (Table S1).

In Mtb containing ribo-gfp, a similar dose response was

observed as in Msmeg (Figure 2A). Growth rates of Mtb were

slightly more sensitive to theophylline, with attenuation in Mtb

observed at $5 mM (Figure S1). For the negative controls in the

absence of theophylline, a higher fluorescence signal was observed

from Mtb than Msmeg, perhaps due to higher scattering from Mtb.

While this resulted in a lower calculated activation ratio in Mtb

(8.260.84), the overall dose response and maximum fluorescence

levels were similar between the two species (Figure 2A). To

confirm that GFP expression in Mtb is fully repressed in the

absence of theophylline, anti-GFP immunoblots were performed

on whole-cell lysates (Figure 2C). In the absence of theophylline,

no signal above background was detected in cells containing ribo-

gfp or vector only.

The kinetics of both gene expression and repression were

measured in GFP fluorescence and immunoblot assays. In both

Mtb and Msmeg, maximal GFP expression was observed after two

doubling times (Figure 3A; as in Figure 2A, higher background

fluorescence signal was detected for the Mtb vs. Msmeg negative

controls). To demonstrate gene repression upon theophylline

removal, Msmeg strains were induced for ,1.3 doubling times (4 h)

and then exchanged into fresh media with or without 2 mM

theophylline. After theophylline removal, GFP fluorescence levels

in Msmeg ribo-gfp cells were significantly reduced within five

doubling times, whereas cells with theophylline maintained high

GFP expression over the same period (Figure 3B; note that the

data in Figures 3A and 2B were acquired on a different

instruments, so RFU values cannot be directly compared between

the two). These data, particularly the reversibility of theophylline

induction, were further confirmed by flow cytometry. After the 4-h

initial induction period, two identically induced ribo-gfp cell

populations exhibited the same level of GFP expression. Five

doubling times after the media exchange, ribo-gfp cells without

theophylline were indistinguishable from vector control, whereas

continuously induced cells maintained GFP expression (Figure 3C,

Table S1). In Mtb ribo-gfp cells, the effect of theophylline removal

was analyzed by immunoblot. Whereas as GFP expression was

maintained over 4 days (,4 doubling times) for cells incubated in

theophylline, no GFP was detected one and two days after

theophylline removal (Figure 3D).

Theophylline-dependent knockdown of katG in Msmeg
To assess the ability of the riboswitch-promoter combination to

control theophylline-dependent knockdown mutants, we targeted

Msmeg katG (MSMEG_6384), a homologue of Mtb katG (Rv1908c).

The katG gene encodes a catalase-peroxidase that converts the

Figure 1. A theophylline-responsive riboswitch variant exerts translational control of gene expression. A synthetic theophylline-
responsive riboswitch variant adopts a fold that sequesters the ribosome binding site (RBS) in the mRNA transcript. In the presence of theophylline,
the riboswitch adopts a conformation in which the aptamer is bound to theophylline. The RBS is then released and able to promote protein
translation. (The sequence for riboswitch E9 from ref [21] is depicted.)
doi:10.1371/journal.pone.0029266.g001

Applying an Inducible Riboswitch in Mycobacteria
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Figure 2. Theophylline induces riboswitch-mediated gene expression in Msmeg and Mtb. (A) Riboswitch-controlled GFP fluorescence in
Msmeg (filled circles) and Mtb (filled squares) and b-galactosidase activity in Msmeg (filled triangles) in response to incubation in 0–5 mM theophylline
for 6 h. Empty vector negative controls for GFP fluorescence and b-galactosidase activity are shown as open circles and triangles. Data are presented
as relative fluorescence (RFU) for GFP and in Miller units for b-galactosidase, and as the mean 6 SEM of three independent experiments. (B) Flow
cytometry analysis of riboswitch-controlled GFP expression in Msmeg treated for 6 h with varying concentrations of theophylline. The empty vector
control is shown in black. Results are representative of three or more independent experiments. (C) Immunoblot analysis of whole-cell lysates from
Mtb harboring ribo-gfp, empty vector, or Phsp60-gfp positive control constructs. Band intensities were corrected for background, and GFP signal was
normalized against the GroEL loading control.
doi:10.1371/journal.pone.0029266.g002

Figure 3. Theophylline riboswitch-controlled gene induction is reversible. (A) GFP fluorescence as a function of time in 0 mM (open) or
2 mM (filled) theophylline for Msmeg (circles) and Mtb (squares) harboring ribo-gfp. Msmeg vector and Mtb wild -type controls are shown as triangles
and diamonds. Doubling times for Msmeg and Mtb are approximately 3 and 24 h, respectively. Data are presented as mean 6 SEM of three
independent experiments. GFP fluorescence from Msmeg::ribo-gfp and vector control strains was (B) monitored over time and (C) analyzed by flow
cytometry after incubation with (+) or without (2) 2 mM theophylline. Theophylline was maintained or removed by media exchange after 1.3
doubling times (4 h; arrow). Kinetic data are presented as the mean 6 SEM of eight replicates for each sample and are representative of three
independent experiments. (D) Immunoblot analysis shows GFP induction in Mtb whole-cell lysates after incubation in 2 mM theophylline for one and
two days (top). On day 2, theophylline was maintained (+) or removed by media exchange (2) and grown for an additional two days (bottom). Band
intensities were corrected for background, and GFP signal was normalized against the GroEL loading control.
doi:10.1371/journal.pone.0029266.g003
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prodrug isoniazid into its active form [23]. We generated a

homologous recombinant strain, RiboS-katG, in which katG is

under riboswitch regulation, and confirmed the single crossover

event by PCR (Figure 4A).

For both the wild-type and RiboS-katG strains, the half-

maximum effective concentration of isoniazid (EC50) was deter-

mined in a growth assay in 0–5 mM theophylline. RiboS-katG did

not express KatG at levels detectable by immunoblot, indicating

efficient repression in the absence of theophylline, and therefore

exhibited isoniazid resistance compared to the wild type (EC50

,10 mg/mL) (Figure 4). In response to theophylline, dose-

dependent KatG expression and increasing isoniazid sensitivity

were observed. Addition of 2–5 mM theophylline induced KatG

at levels sufficient to restore the wild-type isoniazid EC50.

Theophylline-dependent expression in Mtb in a
macrophage infection model

To test the utility of the riboswitch regulatory system in the

context of infection, we infected the murine macrophage-like

RAW 264.7 cell line with Mtb harboring the ribo-gfp construct.

Macrophages were then induced with 0 or 0.5 mM theophylline

for one day, fixed, and imaged by fluorescence microscopy. GFP

fluorescence was observed from intracellular Mtb containing ribo-

gfp only in the presence of theophylline (Figure 5).

Discussion

Both the activation ratio and time response of the riboswitch-

based system compare favorably with the ,100-fold activation

ratios and 2-day induction times reported for the nitrile-inducible

and Tn10-derived Tet systems [14,19]. In a direct comparison

between the riboswitch and Tet systems in Msmeg, the activation

ratio for GFP was equivalent (6963 for the riboswitch vs. 7265

for Tet; data not shown). We further determined that the

riboswitch functions as a titratable system, like the Tn10 TetR

repressor, rather than as a bistable switch, like the nitrile-inducible

system [14]. Also, the effect of theophylline is reversible in both

Msmeg and Mtb upon removal of the inducer.

Gene expression in an intracellular pathogen such as Mtb is

often regulated in response to changes in the host environment,

such as internalization by macrophages [24]. The ability to

modulate expression levels during infection is critical to determin-

ing how specific genes affect bacterial survival and disease

progression in the host. Chromosomal gene knockouts are

commonly used to examine gene function or determine gene

essentiality, and conditional gene knockdowns afford the addi-

tional power of inducing expression or repression at a defined

phase of growth or infection. The results from the conditional katG

knockdown and macrophage infection experiments show that the

riboswitch affords control of mycobacterial gene expression both in

vitro and within host macrophages.

We have confirmed that the riboswitch can regulate gene

expression in both the model organism Msmeg and the pathogen

Mtb, suggesting that the mechanism of riboswitch induction is

species-independent and that factors affecting intracellular the-

ophylline concentration—such as membrane penetration, metab-

olism, and efflux—operate similarly in both species. These data

also demonstrate the consistency of riboswitch response to

theophylline across a variety of in vitro and cell-based applications

that are relevant to the study of Mtb and other mycobacteria.

Finally, the similarity in responses shows that Msmeg can serve as a

host for screening further iterations of riboswitch-based mycobac-

terial gene regulation. We anticipate that the construction of

promoter-riboswitch libraries and the ability to screen by

fluorescence, as demonstrated here, will facilitate the engineering

of enhancements such as increased dynamic range, decreased

basal expression, and inducible repression. Such screens could be

performed not only under standard culture conditions, but also in

a macrophage infection model or various in vitro culture models,

such as hypoxia [25] and carbon starvation [26], that mimic

tuberculosis disease states.

Application of the theophylline-responsive riboswitch system to

animal models of infection would be facilitated by the fact that

theophylline is an FDA-approved drug and well tolerated in mice

and guinea pigs. However, because theophylline is a bronchodi-

lator, its use may complicate Mtb infection studies. Given that the

TetR system is the only mycobacterial inducible system currently

available for use in animals, the application of theophylline

riboswitch in animal models of tuberculosis nevertheless warrants

further investigation.

Figure 4. Theophylline controls endogenous KatG expression and restores sensitivity to isoniazid. (A) A single recombination event
between the Msmeg chromosome and a plasmid containing the promoter-riboswitch combination and 500 bp of KatG yields the RiboS-katG strain
containing a single full-length copy of katG under riboswitch control. The positive control for wild-type (1) and RiboS-katG (3) corresponds to the first
777 bp of katG. A primer specific to the promoter-riboswitch yields the predicted 1065-bp product from RiboS-katG (4), but not the wild type (2),
confirming the recombination. (B) The isoniazid EC50 for Msmeg wild type (open circles) and RiboS-katG (filled squares) was measured in response to
0–10 mM theophylline. Data are presented as mean 6 SEM of three independent experiments. (inset) The anti-KatG immunoblot for Msmeg wild type
and RiboS-katG shows the response to 0–5 mM theophylline after 6 h. The GroEL immunoblot serves as a loading control, and data are
representative of two independent experiments.
doi:10.1371/journal.pone.0029266.g004
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Materials and Methods

Reporter gene assays for riboswitch-regulated constructs
See Tables S1, S2, and S3 for summaries of all strains,

constructs and primers as well as Text S1 for detailed methods

used in this study. Riboswitch-reporter plasmids were constructed

by assembly PCR methods as previously described [21]. Whole-

cell GFP fluorescence assays were performed as reported for Msmeg

[21]. Briefly, for dose response curves, cultures were grown from

early to late log phase (optical density at 600 nm [OD600] of 0.2 or

0.3 to ,1) over two doubling times (6 h) in media containing 0–

5 mM theophylline. Emission from whole-cell suspensions was

measured at 510 nm with excitation at 450 nm and a 495 nm

high-pass cutoff filter in a Gemini XPS fluorescence microplate

reader (Molecular Devices Corporation). For Mtb, cells were

resuspended and incubated at room temperature for 1 h in 200 mL

phosphate-buffered 10% formalin prior to fluorescence measure-

ment.

To measure the kinetics of GFP repression upon theophylline

removal, the OD600 and GFP fluorescence of Msmeg cultures were

monitored continuously in a 96-well plate. Briefly, bacteria were

inoculated at OD600 of 0.1 in 300 mL in black, clear-bottom 96-

well plates in media containing 0 or 2 mM theophylline and

incubated without shaking at 37uC. After 4 h, cells were pelleted

and exchanged into fresh media with or without theophylline and

monitored for an additional 15–17 h. For these assays, fluores-

cence was measured with a FLUOstar Optima plate reader (BMG

Labtech) with 485-nm excitation and 520-nm emission filters (30

flashes per well, constant gain of 1000). All GFP data are reported

as relative fluorescence (RFU) normalized by the OD600 for each

sample. b-Galactosidase activity in whole-cell lysates was mea-

sured as previously described [27].

Flow cytometry
For each sample, 1–36108 Msmeg cells (based on OD600 of

1 = 36108 cells/mL) were washed twice with 1 mL of PBS and

resuspended in 1 mL 10% formalin. After sonication in an ice

water bath for 2 minutes, cell clumps were pelleted by centrifu-

gation for 10 min at 2006 g, and 900 mL supernatant was

removed for analysis with a Becton Dickinson FACScan flow

cytometer (Clinical Flow Cytometry Laboratory, Stony Brook

University). For each experiment, the vector control sample was

used to set a gate based on forward and side scatter channels to

select against debris and any remaining cell clumps. Histograms

were calculated from approximately 26104 cells per sample using

Cyflogic software (CyFlo Ltd., Finland).

Immunoblot analysis of Mtb lysates
Mtb strains were inoculated at OD600 of 0.05 in 30-mL cultures

and incubated with shaking at 37uC in medium containing 2 mM

theophylline. On day two, a subset of cultures was pelleted and

resuspended in medium without theophylline, and all cultures

were grown for an additional two days. On each day of the

experiment, samples were removed for OD600 measurements and

to obtain lysates for immunoblot analysis. Cells were killed by

boiling and lysed by bead-beating (265k rpm for 30 s each). After

removing cell debris by centrifugation, supernatants were stored at

280uC until further analysis.

Immunoblots were performed using the Odyssey Western

Blotting kit III LT (LI-COR Biosciences). Where necessary,

lysates were concentrated by centrifugal filtration. Two micro-

grams of protein (or, where the protein concentration was

insufficient, the maximum volume per well) were separated by

SDS-PAGE and transferred to nitrocellulose. Proteins were

detected with anti-GFP (Invitrogen #33-2600 at 1:1000 dilution

for Figure 3D (top); Abcam #ab290 at 1:100 dilution for Figure 3D

(bottom)) and anti-GroEL2 (Abcam #ab20519 at 1:200 dilution)

antibodies. Membranes were probed with anti-mouse IgG-800CW

(1:15,000 dilution, #926-32212, LI-COR Biosciences) or anti-

rabbit IgG-680LT (1:20,000 dilution, #827-11081, LI-COR

Biosciences) and imaged by infrared fluorescence detection.

Quantitative analysis was performed using the Odyssey Imaging

System software.

Construction and characterization of Msmeg with katG
under riboswitch control

A homologous recombinant Msmeg strain was generated as

described using pRiboS-katG, a suicide vector containing a

segment of the Msmeg katG gene MSMEG_6384 [28]. Homologous

recombination at the katG locus was verified by PCR on genomic

DNA isolated from a single clone. The half-maximum effective

concentration of isoniazid (EC50) was determined in a growth

assay at each theophylline concentration. Expression of KatG in

Msmeg wild-type and RiboS-katG strains was confirmed in whole-

Figure 5. Theophylline induces riboswitch-controlled Mtb gene expression in a macrophage infection model. Murine macrophage-like
RAW 264.7 cells infected with (A) Mtb wild type or (B) Mtb::ribo-gfp were induced with 0 mM or 0.5 mM theophylline for 24 h. Overlaid fluorescence
signals from DAPI and GFP channels show nuclei (blue) and GFP-expressing bacteria (green). Panels on right show additional DIC light microscopy
overlay. Scale bar represents 10 mm. Images are representative of three independent experiments for each condition.
doi:10.1371/journal.pone.0029266.g005
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cell lysates by immunoblot and chemiluminescent detection using

anti-KatG (TB Vaccine Testing and Research Materials Contract

HHSN266200400091c, Colorado State University) and anti-

GroEL2 antibodies.

Macrophage infection and microscopy
RAW 264.7 cells (ATCC TIB-71) were incubated in an Mtb

suspension at an MOI of 5 for 4 h and washed with PBS. Infected

macrophages were allowed to recover in medium until replace-

ment at 24 h post infection with fresh medium containing 0 or

0.5 mM theophylline. After an additional day, macrophages were

washed with PBS and fixed in phosphate-buffered 10% formalin

for 1 h. Coverslips were mounted on glass slides with VectaShield

mounting medium plus DAPI stain (Vector Laboratories). Image

stacks were acquired on a Zeiss Axiovert 200 M using a 10061.3

numerical aperture lens. Following digital deconvolution using the

nearest-neighbors algorithm in Slidebook (Intelligent Imaging

Solutions), final images were generated by z-projection of 30–40

frames at 0.34 mm separation.

Supporting Information

Figure S1 Growth of mycobacteria in theophylline. (A)

Growth in medium containing 0–20 mM theophylline was

monitored for (A) Mtb and (B) Msmeg.

(TIF)

Text S1 Detailed protocols for DNA constructs and
assays.

(DOC)

Table S1 Mean fluorescence intensities for flow cytom-
etry analysis of Msmeg.

(DOC)

Table S2 Bacterial strains used in this study.

(DOC)

Table S3 Oligonucleotides used for PCR amplification
or site-directed mutagenesis.

(DOC)
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