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Abstract

Background: Understanding diversity patterns and the mechanisms underlying those patterns along elevational gradients
is critically important for conservation efforts in montane ecosystems, especially those that are biodiversity hotspots.
Despite recent advances, consensus on the underlying causes, or even the relative influence of a suite of factors on
elevational diversity patterns has remained elusive.

Methods and Principal Findings: We examined patterns of species richness, density and range size distribution of birds,
and the suite of biotic and abiotic factors (primary productivity, habitat variables, climatic factors and geometric constraints)
that governs diversity along a 4500-m elevational gradient in the Eastern Himalayan region, a biodiversity hotspot within
the world’s tallest mountains. We used point count methods for sampling birds and quadrats for estimating vegetation at
22 sites along the elevational gradient. We found that species richness increased to approximately 2000 m, then declined.
We found no evidence that geometric constraints influenced this pattern, whereas actual evapotranspiration (a surrogate
for primary productivity) and various habitat variables (plant species richness, shrub density and basal area of trees)
accounted for most of the variation in bird species richness. We also observed that ranges of most bird species were narrow
along the elevation gradient. We find little evidence to support Rapoport’s rule for the birds of Sikkim region of the
Himalaya.

Conclusions and Significance: This study in the Eastern Himalaya indicates that species richness of birds is highest at
intermediate elevations along one of the most extensive elevational gradients ever examined. Additionally, primary
productivity and factors associated with habitat accounted for most of the variation in avian species richness. The diversity
peak at intermediate elevations and the narrow elevational ranges of most species suggest important conservation
implications: not only should mid-elevation areas be conserved, but the entire gradient requires equal conservation
attention.
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Introduction

Biodiversity varies geographically, and understanding why is

one of the fundamental questions in biogeography, macroecology,

and conservation ecology. Perhaps the best- studied pattern in

species richness is the latitudinal gradient in diversity - the decline

(for most taxa) in richness with increasing distance from the

equator [1,2,3]. Elevational gradients, though perhaps not studied

as intensively as the latitudinal gradient, provide equally striking

patterns in diversity [4]. The most common patterns seem to be

either decreasing richness with increasing elevation or a hump-

shaped pattern, in which diversity peaks at mid-elevations [5,6].

While many studies have documented patterns in diversity along

elevational gradients and have attempted to describe the

mechanisms underlying those patterns, the consensus on the

generality of pattern and processes is still a topic of discussion [4].

Understanding such patterns and their underlying mechanisms is

critically important for conservation efforts [7], especially in

biodiversity hotspots, montane regions which are likely to be

especially threatened by climate change, and regions that have

been generally un- or under-explored by biologists.

Patterns in diversity along elevational gradients might vary

among taxa, regions, and spatial scales [8–11]. Though the hump-

shaped pattern is the most commonly reported pattern, its ubiquity

might depend on the methods employed, sampling effort, taxa and

gradient considered [5,9,12]. Moreover, whether the entire

gradient is sampled can also influence the apparent pattern [13].

With some exceptions, studies on elevational diversity gradients
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are restricted to either low, mid or high elevation, in essence

covering only a part of the gradient or on a smaller mountain with

narrow elevational breadth. Data that span over the entire

gradient or data from the highest elevations where life occurs,

especially when the gradient itself is extensive, likely provide more

opportunities for better understanding patterns of species richness

[9,14,15,16]. For instance, the extensive elevational gradient of

Himalaya (from 200 m to .8000 m) provides an ideal test bed for

a broader understanding of the pattern of diversity with elevation

and the underlying causes of the pattern [17]. Our study, for

example, covers 4500 m in elevation (300–4700 m) in the hitherto

under-explored Eastern Himalayan Mountains. To our knowl-

edge, this is the most extensive elevational gradient for birds ever

examined.

The most frequently documented correlates and drivers of

elevational patterns of diversity include contemporary climate

(temperature, rainfall; [18,19,20]), biological processes (mass

effects, productivity, habitat heterogeneity, interspecific interac-

tions; [1,9,21,22]), evolutionary and historical processes (niche

conservatism, isolation, speciation, endemism, and evolutionary

diversification; [23–26] and spatial factors (area and the mid-

domain effect; [27–30]).

One idea that has persisted in the literature is Rapoport’s rule,

which, as originally formulated, posited that the mean latitudinal

range of species is smaller at low latitudes than at high latitudes

because species at high latitudes are adapted to a broad spectrum

of climatic conditions [31]. A ‘rescue effect’ then would lead to

higher species richness at lower latitudes than at higher latitudes if

those species at high latitudes ‘spill’ down to lower latitudes. Some

empirical support exists for Rapoport’s rule, though the idea is still

contentious [32]. Stevens [33] extended Rapoport’s rule to apply

to elevational gradients as well, such that the ranges of species

might be greater at high elevations than at low elevations, and the

rescue effect would suggest that richness should decline with

elevation. And indeed, there is some empirical support for

Rapoport’s elevational rule [28,34,35].

Another relatively controversial idea is that geometric con-

straints or mid-domain effects (MDE) are important drivers for

such a pattern [29,36]. MDE results from random placement of

species ranges within a bounded geographical domain creating a

mid-elevation peak of species richness [29,37]. Though critics

argue that the MDE does not provide biological explanations for

elevational richness patterns [38] and some MDE patterns might

be spurious [39], the MDE at a minimum provides appropriate

null models and should be evaluated in combination with biotic,

abiotic and historical factors [30].

In this study, we examine the elevational gradient in bird

diversity in the Sikkim region of the Eastern Himalaya, home to

the tallest mountains in the world. In particular, our aims are to

document, describe, and explain the elevational gradient in bird

diversity in the Eastern Himalaya. First, we describe the pattern

along this extensive gradient (we note that we did not sample the

entire gradient due to logistical reasons but this might not

influence overall pattern as there are very few plants or birds

above the highest elevation we have sampled). Then, we evaluate a

suite of biotic and abiotic factors that might be correlated with bird

diversity, focusing on geometric constraints, temperature, precip-

itation, potential evapotranspiration (PET), actual evapotranspi-

ration (AET), plant species richness, tree density, shrub density

and basal area of tree. These parameters broadly represent MDE,

energy, productivity and habitat diversity. Finally, we assessed the

range size distribution pattern of birds along the elevation gradient

by examining the elevational range size of each bird species and

the applicability of Rapoport’s rule.

Methods

Study area
The study area is in the Eastern Himalayan Mountains (the

state of Sikkim in India; 27u 03’ to 28u 07’ N and 88u 03’ to 88u 57’

E). Elevation in this region ranges from c.300 m to above 8000 m.

The study sites were located in the Teesta Valley which consists of

rough hilly terrain and varies in elevation from 300–5500 m. Both

climate (tropical to temperate) and vegetation type (tropical forest

to alpine meadows) vary with elevation, within a distance of ,150

km. The lower and middle valleys (,2000 m) are hot and humid

with annual precipitation exceeding 2500 mm, while elevations

above 2500 m are relatively drier and colder with substantially less

rainfall (,1000 mm). At the high elevation sites, precipitation is in

the form of snowfall, and most of the alpine region remains under

snow for almost 7–8 months a year.

Six major vegetation zones occur in the study area. These are

Tropical semi-deciduous forests (,900 m), Tropical moist and

broad-leaved forests (900–1800 m), Temperate broad-leaved

forests (1800–2800 m), Temperate coniferous and broad-leaved

forests (2800–3800 m), Sub-alpine (3800–4500 m) and Alpine

vegetation (.4500 m) [40].

Bird sampling
To quantify variation in the richness and abundance of birds

along this elevational gradient, at 22 sites, we used the open width

point count method along transects [41]. The open width point

count method is particularly effective for rapid assessment of bird

assemblages, especially when large areas are sampled [41]. The

transects varied in length from 600–1000 m, depending on

vegetation type and accessibility, and were distributed among six

vegetation types (Figure 1, Table 1). We avoided sites with clear

evidence of disturbance by humans. Elevational distance between

two consecutive sites was 150 m to 350 m depending upon the

accessibility and availability of the sites. Within each transect at

each site, we established permanent points (6–10 points depending

upon the length of the transect) for bird sampling, keeping a

minimum of 100 m distance between two adjacent sampling points

along the transect. We conducted a count at each point for five

minutes and recorded the identities and abundance of all birds

seen or heard. All points were replicated 1–3 times each during

winter (Dec-Feb), summer (Mar-May), monsoon (Jun-Aug) and

post monsoon (Sept-Nov) during 2003–2006. Thus, a total of 2428

point counts were conducted during entirety of this study. Prior to

the field study, we obtained the permission from the Forests,

Environment and Wildlife Management Department, Govern-

ment of Sikkim (Permit Nos. 07/GOS/FEWD and 54/GOS/

FEWD).

Vegetation sampling
We also sampled the trees and shrubs at each of the 22 sites.

Along each transect used for sampling birds at each site, we placed

10 20 m 6 10 m quadrats for enumeration of trees. Plants with

GBH (girth at breast height) .20 cm were considered as trees. For

estimating shrub density, two 5 m65 m sub-quadrats were placed

diagonally within each of the 20 610 m quadrats. Thus, for each

site, we recorded the richness and density of trees, the richness and

density of shrubs, and the GBH of trees. We also estimated basal

area of trees for each site using the formula: Basal Area =

(GBH)2/4 , where = 3.14.

Climate and climatic variables
We obtained rainfall and temperature data from seven locations at

different elevations in the study region from Indian Meteorological

Elevational Distribution of Birds in Himalaya
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Figure 1. Map of Sikkim showing sampling locations in different elevations.
doi:10.1371/journal.pone.0029097.g001
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Department. Based on these data, rainfall and temperature were

estimated for all locations using regression equations, as is often done

in these types of analyses [18,20]. The equations used for estimation

were

rainfall = -0.7909(elevation) + 4046.1, R2 = 0.975, p,0.01

temperature = -0.0062(elevation) + 29.85, R2 = 0.983, p,0.01.

We calculated potential evapotranspiration (PET) using the

formula [PET = mean annual bio-temperature (i.e. temperature

. 0uC) x 58.93] (see [42]). PET is an estimate of the potential

amount of water released through transpiration and surface

evaporation from vegetation that is well supplied with water [43]

and is considered as a surrogate of energy. We used actual

evapotranspiration (AET) as surrogate of productivity. We

calculated AET using the Turc’s formula, AET = P/ [0.9 + (P/

L) 2]1/2 with L = 300 + 25T + 0.05T3, where P = mean annual

precipitation and T = mean annual temperature [18,44].

Data Analysis
How does richness vary with elevation?. We examined

how observed species richness, estimated richness had sampling

gone to completion, rarefied richness and density of birds varied

with elevation for the 22 sampling sites. Observed species richness

was the total count of species detected across all seasons at each

site. We followed Reynolds et al. [45] to estimate density as D = n

*10000/ r2C, where D = bird density (numbers/ha), n = total

number of birds observed in all counts within the specific radius,

r = specific radius (m) (specific radius is the average radial distance

of birds from the observer), C = total number of counts conducted

and = 3.14. We also estimated individual-based rarefied

richness, which accounts for variation in the number of

individuals sampled. We rarefied to the lowest number of

individuals detected in any one survey (n = 260). Because some

sites were more frequently sampled than others, we also used

sample-based rarefaction (rarefied to lowest number of counts

conducted (n = 72 point counts) for any site. Since the individual

and sample-based rarefaction results were qualitatively similar, we

report only the results from the individual-based rarefaction (but

the results from sample-based rarefaction are presented in Figures

S1 and S2).

Additionally, we used two other approaches to assess whether

our sampling protocol introduced any potential biases. First, we

used a two-step rarefaction approach by using only six sampling

points (the lowest number of points sampled) at each site from one

season (summer) and rarefied to lowest number of individuals

detected at any one site (n = 15). We found that the pattern of this

two-step rarefaction procedure did not differ qualitatively from

either total bird species richness (see results) or the more standard

individual- or sample-based rarefaction procedures described

above (see Figure 2 and Figure S3). Second, because the number

of species in a sample rarely asymptotes, either because of missed

species or because of unequal sampling, we estimated the Chao2

estimated species richness of each site using EstimateS, version 7

[46]. While non-parametric estimators have their own biases and

levels of precision, we selected the Chao2 because this estimator is

less sensitive to patchiness of species distributions and variability in

the probability of encountering species [47].

To describe the pattern of observed species richness, the Chao2

estimate of species richness, rarefied richness and density along the

elevational gradient, we used ordinary least squares (OLS)

regressions. Because the relationship between any estimate of

richness and elevation need not be linear, we also used a quadratic

term (elevation2) in each model to relate each of the response

variables (observed richness, Chao2 estimated species richness,

rarefied richness and density) to elevation. We compared AIC

values to determine whether the linear or quadratic model best

accounted for variation in each of the response variables. Because

spatial autocorrelation can inflate errors in the statistical analyses

of ecological data [48,49], we also used spatial regressions. We

generated spatial correlograms for observed bird species richness

and density using Moran’s I coefficients with the software SAM

version 4.0 (see [50] for application and analytical procedure).

Is there evidence of a mid-domain effect? We used Monte

Carlo simulations programme, mid-domain effect null model [30]

for testing geometric constraints or mid-domain effects on species

ranges. This programme uses empirical range sizes or range

midpoints within the elevational range and simulates species

richness curves based on analytical-stochastic models [29,37]. To

test the impact of spatial constraints on species richness, 95%

prediction curves were produced based on 50,000 simulations

(without replacement) using empirical range sizes. Simulations

using range mid-points arbitrarily show better fit to null model

because midpoint simulations are too constrained by the empirical

data [30]. Hence, range size simulation rather than range

midpoint simulations are better for assessing fit to MDE null

models for geometric constraints of species richness. The empirical

species richness curves were compared with the 95% confidence

intervals generated from species range sizes. Species richness data

were generated at 100 m elevational increments. We then

regressed the average of the predicted number of species against

Table 1. Details of transects laid along the elevation gradient
of Sikkim, Eastern Himalaya.

Transect
Elevation
(m)

Vegetation
Types

Latitude

(6 9N)

Longitude

(6 9E) Effort

T1 300 TrSDF 27 12.1 88 28.9 14

T2 450 TrSDF 27 14.8 88 27.2 14

T3 600 TrSDF 27 14.3 88 28.4 15

T4 750 TrSDF 27 15.1 88 26.6 14

T5 900 TrSDF 27 29.3 88 30.6 16

T6 1050 TrMBF 27 29.4 88 30.7 16

T7 1200 TrMBF 27 29.5 88 30.2 12

T8 1350 TrMBF 27 33.1 88 38.5 15

T9 1500 TrMBF 27 34.2 88 39.2 15

T10 1650 TrMBF 27 36.2 88 38.6 15

T11 1900 TBF 27 37.6 88 36.9 15

T12 2150 TBF 27 37.7 88 42.2 16

T13 2400 TBF 27 39.8 88 36.3 15

T14 2650 TBF 27 39.5 88 43.7 15

T15 2850 TCF 27 41.1 88 45.4 12

T16 3050 TCF 27 45.2 88 43.8 12

T17 3250 TCF 27 46.8 88 42.5 11

T18 3450 TCF 27 48.4 88 42.7 14

T19 3650 TCF 27 49.3 88 42.5 12

T20 4000 SAV 27 51.4 88 41.6 12

T21 4350 SAV 27 52.2 88 41.7 13

T22 4700 AV 27 54.8 88 41.9 10

TrSDF - Tropical semi-deciduous forests; TrMBF - Tropical moist and broad-
leaved forests; TBF - Temperate broad-leaved forests; TCF - Temperate
coniferous forests; SAV - Sub Alpine vegetation and AV - Alpine vegetation.
Effort - No. of times each transect was repeated for sampling birds.
doi:10.1371/journal.pone.0029097.t001
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the observed empirical values to assess whether geometric

constraints could contribute to the pattern of bird species

richness in this system. In addition, we also used MDE predicted

richness as predictor variable in the multiple regression model (see

below).

What factors are correlated with richness? We first used

several simple linear regression models to explore the potential of

individual environmental factors to predict observed bird species

richness, Chao2 estimated species richness, rarefied species

richness and density. We then performed stepwise multiple

regressions to identify the factors that were related with the

species richness and density of birds. Among the set of factors, we

selected six variables - AET, MDE predicted richness, plant

species richness, tree density, shrub density and basal area of trees.

Since temperature, rainfall and PET were highly correlated with

one another and with AET, we dropped these factors from the

model and used only AET. In each step, the factor with lowest

AIC and sums of squares was dropped until we found no

significant difference between the model with or without that

particular factor. This analysis was performed using statistical

package R version 2.11.0. As discussed above, we also generated

spatial correlograms for AET, MDE predicted richness, plant

species richness, tree density, shrub density and basal area of trees

using software SAM version 4.0 (see [50]).

Are range size and elevation correlated? We estimated the

range of each species as the difference between the lowest and

highest elevation at which that species was recorded during the

study. The assumption then is that the species occurs at all

intermediate elevations between lowest and highest elevation (see

[8,51]). We then asked whether there was a relationship between

range size and elevation by regressing range size of each species

against the lower and upper limits of its elevational range, as would

be predicted if Rapoport’s rule holds in this system.

Results

How does richness vary with elevation?
We observed a total of 297 bird species over the course of the

study from the 22 sites along this elevational gradient. The number

of species observed at a single site varied from 27 to 89. Bird

Figure 2. Elevational distribution pattern of birds. Elevational variation of bird species richness (observed and Chao 2), rarefied richness
(rarefied to 260 individuals) and density (birds/ha) in Sikkim, Eastern Himalaya.
doi:10.1371/journal.pone.0029097.g002
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species richness exhibited a mid-elevation peak: the highest

number of species was observed at approximately 2000 m

(quadratic r2 = 0.55, P , 0.01; Figure 2) in the eastern Himalaya.

Although the species accumulation curves approached a plateau

for each of the sites, richness did not completely plateau for several

of them (Figure 3 and Figure S1). Hence, we also examined the

Figure 3. Species accumulation curves of birds. Curves based on number of individuals detected in different elevational transects in Sikkim,
Eastern Himalaya. Numbers in the figures indicate elevation (m) of the sampling site.
doi:10.1371/journal.pone.0029097.g003
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Chao2 estimate of the number of species had sampling gone to

completion. Similar to the pattern for observed richness, the

Chao2 estimated species richness also peaked at mid-elevations

(r2 = 0.55; p , 0.01; Figure 2). Because the number of individuals

varied among sites, we also examined whether rarefied species

richness varied systematically with elevation. The pattern of

rarefied richness along the elevational gradient was best explained

by a quadratic regression (r2 = 0. 66; p , 0.01). However, the

pattern was not clearly hump-shaped. Instead, below about 2000

m, there was no systematic variation in rarefied richness with

elevation, but above 2000 m, rarefied richness declined with

elevation (Figure 2).

The total number of birds encountered varied from 260 to 1964

per site, and the mean number of individuals per point along each

transect at each site ranged from 3.31 to 12.87. The density of

birds ranged from 5.1 to 56.3 birds ha-1 with the maximum density

recorded at 2400 m and the minimum at 4350 m. Both the mean

number of individuals per point (r2 = 0. 46; p , 0.01) and density

(r2 = 0. 45; p , 0.01) peaked at mid-elevations (Figure 2).

Vegetation along elevation gradient
We recorded a total of 216 species of woody plants from the 22

sites. Of the total species observed, 170 were trees and 135 shrubs

with 89 species common between trees and shrubs. Species

Figure 4. Scatter plot showing the relationship between elevation and vegetation parameters in Sikkim, Eastern Himalaya.
doi:10.1371/journal.pone.0029097.g004

Elevational Distribution of Birds in Himalaya

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e29097



richness of both trees and shrubs followed a hump-shaped

relationship with elevation peaking at approximately 1500 m

(Tree, r2 = 0.71, p,0.05; Shrubs, r2 = 0.44, p,0.05; Figure 4).

Combined richness of trees and shrubs peaked at approximate-

ly1000 m. Shrub density also followed unimodal pattern with a

peak at 1500 m, but tree density did not vary systematically with

elevation. Basal area of trees was greatest at 1900 m elevation

(Figure 4).

Is there evidence of a mid-domain effect?
We found, at best, limited support for a mid-domain effect. The

curves were asymmetrical, and thus differed from mid-domain

predictions (Figure 5). A comparison of the empirical data with the

95% prediction curves obtained from 50,000 simulations using

range sizes showed that 80% (35/44) of the empirical points

occurred outside the predicted range of the null model (Figure 5).

Empirical species richness was correlated with the mean of the

predicted richness, but only weakly (r2 = 0.18; p = 0.003). Addi-

tionally, bird species richness did not correlate with the MDE

predicted richness (Table 2) and MDE predicted richness (when

used as predictor variable for observed bird species richness) fell

out of the stepwise regression model (Table 3).

What factors are correlated with richness?

The r2 values and associated p-values for simple linear

regression between bird species richness (observed and the Chao2

estimate), rarefied richness and density as a function of six

environmental factors are shown in Table 2. AET, plant species

richness, and shrub density were all positively correlated with bird

species richness (observed, estimated and rarefied), whereas bird

density was correlated with plant species richness, shrub density

and basal area. In the stepwise regression model, AET and shrub

density remained as the most important factors for bird species

richness along the elevational gradient (Table 3). Plant species

richness, shrub density and basal area were most strongly

correlated with bird density.

The spatial correlogram for species richness (Figure 6) indicated

that richness was positively spatially autocorrelated up to 10

distance classes. Moran’s I decreased beyond that point with

negative or no correlation but the values were not statistically

significant. Bird density also followed similar trend. For the suite of

environmental variables, positive spatial autocorrelation appeared

up to a few distance classes in all the cases with decline in Moran’s

I index towards higher distance classes (Figure 6). For MDE

predicted richness, tree density, and tree basal area, positive

autocorrelation reappeared in the largest distance classes but for

AET and plant species richness the Moran’s I index declined

towards larger distance classes with a negative autocorrelation

coefficient.

Are range size and elevation correlated?
Elevational range profiles of the birds of Eastern Himalaya

showed that most species occupied very narrow elevational ranges

along the gradient (Figure 7). Ninety bird species were restricted

within 1800 m elevation, whereas 200 species occurred below

2600 m, and 40 species occurred only above 3000 m (Figure 7).

Approximately 42% (125) of the bird species had elevational

ranges of ,500 m, and 30% (90 species) were detected at only a

Figure 5. Mid-domain effect null model. Bird species richness curve (line with squares) along the elevation gradient of Sikkim, Eastern Himalaya
with 95% simulation curves (lines without markers) obtained using empirical range sizes through the programme mid- domain null [30].
doi:10.1371/journal.pone.0029097.g005

Table 2. The r2 values and associated P-values for simple
linear regression between observed species richness, Chao2
estimated richness, rarefied richness and density of birds as a
measure of six environmental factors.

Parameters
Observed
bird species Chao2

Rarefied
richness

Bird
density

MDE richness r2 0.14 0.11 0.14 0.30

P 0.07 0.13 0.09 0.08

AET r2 0.25 0.29 0.35 0.06

P 0.01 0.009 0.004 0.28

Plant species r2 0.47 0.45 0.52 0.30

P 0.00 0.001 0.00 0.008

Tree density r2 0.02 0.01 0.02 0.02

P 0.54 0.64 0.53 0.54

Shrub density r2 0.42 0.38 0.37 0.44

P 0.001 0.002 0.003 0.001

BA r2 0.18 0.11 0.18 0.32

P 0.05 0.13 0.05 0.006

MDE - Mid-domain effect; AET - Actual evapotranspiration; BA - Basal area of
trees. Significant (P#0.05) r2 values are shown in bold font.
doi:10.1371/journal.pone.0029097.t002
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single elevation. Thirty five species had range sizes of more than

2000 m (Figure 8). Only one species (White-capped Water

Redstart Chaimarrornis leucocephalus) occurred at each site in

the gradient (elevational range = 4500 m). The range sizes of low

elevation species (especially those occurring below 1800 m

elevation) tended to decrease with elevation (r = -0.34, p ,

0.01), whereas range sizes of high elevation species tended to

increase with elevation (r = 0.37, p , 0.01).

Discussion

Along one of the most extensive elevational gradients in the

world, we found that the species richness of birds in Eastern

Himalaya displayed a distinct mid-elevation peak in species

richness and density. Such a pattern is frequently documented in

birds (see [6]), small mammals [8,23,30,52], herpetofauna [53,54],

invertebrates [55,56] and plants [18,57,58,59]. Other taxa in the

Himalayas and nearby regions also exhibit mid-elevation peaks in

species richness: plant diversity in the Central Himalaya, Nepal

and Western Himalaya, India [42,58,60] and small mammal

diversity in the Mt. Qilian, China [61]. Clearly, the pattern is

common, but what causes it?

One idea is that perhaps the geometry of bounded domains or

available area accounts for the mid-elevation peak in richness

found here [27,29,62]. However, we found little support for the

MDE: only about 20% of the observed values of species richness

occurred within the 95% prediction curve of the null model

(Figure 5) and MDE predicted richness was not correlated with

avian richness (Table 2). In some cases, the MDE can account for

most of the variation in species richness [18,29,63]. But in others it

accounts for very little, or no variation in species richness (e.g.,

[6,62,64,65]). Determining the circumstances for when the MDE

does, and does not, account for variation in species richness is an

important challenge for biogeographers and macroecologists [62].

We also think that available area is likely not important here.

Furthermore, the most recent synthetic analysis at global scales

found no support for the idea that area influences avian species

richness along elevational gradients (see [6]).

Various processes such as climate, productivity, habitat

heterogeneity and mass effects have been proposed to explain

elevational distributions of species [1,9,22,66]. Though we did not

test the entire suite of possible factors that could shape the pattern

of bird diversity in the Eastern Himalaya, we found strong support

for climatic and habitat variables. In particular, when we

examined the potential correlates of species richness in isolation

of one another using simple linear regressions, we found that both

species richness and density of birds were positively and strongly

correlated with AET, plant species richness and shrub density.

Habitat heterogeneity and productivity are often correlated with

bird species richness at various geographical scales [67–71]. The

diverse habitat with complex vegetation structure at mid-

elevations in the Eastern Himalaya has relatively higher

Table 3. Result of stepwise multiple regressions with bird species richness and bird density as response variable and MDE
predicted richness, AET, plant species richness, tree density, shrub density and BA of trees as predictor variable.

Model: Bird species , AET + Shrub density

,none. Df Sum of Sq RSS AIC

- - 2569.3 110.73

AET 1 2037.4 4606.7 121.57

Shrub Density 1 3336.3 5905.6 127.04

Residuals Min 1Q Median 3Q Max

-7.078 -5.486 -1.185 1.414 32.487

Coefficients Estimate Std. Error t value Pr (.|t|)

(Intercept) 1.843 6.395 2.881 0.009**

AET 0.0198 0.0051 3.882 0.001**

Shrub Density 0.000828 0.000166 4.967 0.00008***

Model: Bird density , Plant richness + Shrub density + BA

,none. Df Sum of Sq RSS AIC

- - 1796.4 104.86

Plant 1 762.06 2558.4 110.63

Shrub Density 1 597.03 2393.4 109.17

BA 1 505.85 2302.2 108.31

Residuals Min 1Q Median 3Q Max

-13.8160 -6.2631 0.1712 3.6711 22.8234

Coefficients Estimate Std. Error t value Pr (.|t|)

(Intercept) 0.0883 4.669 0.019 0.9851

Plant 0.4119 0.149 2.763 0.0128 *

Shrub Density 0.0004 0.0001 2.446 0.0250 *

BA 0.0049 0.0021 2.251 0.0371 *

MDE - Mid-domain effect; AET- Actual evapotranspiration; BA- Basal area of trees.
Only final model is presented here. Significant codes: #0 ‘***’ #0.001 ‘**’ #0.01 ‘*’.
doi:10.1371/journal.pone.0029097.t003
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productivity, which would have caused peaks in species richness

and abundance of birds.

Many studies have examined how productivity might influence

diversity [2,22], and even in eastern Asia, there appears to be a

relationship between primary productivity and bird species

richness [72,73]. However, some contention persists about both

the shape of the relationship between diversity and productivity

[22] and how exactly more productivity might lead to higher

species richness [74]. The most frequently posited mechanism

linking productivity to diversity is something like the ‘More

Individuals Hypothesis’ [75] or ‘species-energy’ theory. The basic

idea is that more productivity leads to more individuals, and with

more individuals, species richness is also higher, either because of

reduced extinction probabilities or simply because of the sampling

effect. However, it is unclear exactly why more energy should lead

to more individuals of different species rather than simply more

Figure 6. Spatial correlograms for birds, AET and habitat variables along the elevation gradient of Sikkim, Eastern Himalaya.
Correlograms represents (A) observed bird species richness, (B) bird density, (C) mid-domain effect predicted richness, (D) actual evapotranspiration,
(E) plant species richness, (F) tree density, (G) shrub density and (H) basal area of trees.
doi:10.1371/journal.pone.0029097.g006
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individuals of the same species. Indeed, in our study, when we

removed the effect of ‘more individuals’ by rarefaction, there was

still a strong and positive correlation between rarefied richness and

AET.

Evolutionary and historical events such as geographic isolation,

dispersal, speciation and endemism could shape elevational

diversity in montane regions [24,71,76–80]. It is hypothesized

that several speciation events and subsequent dispersal into

Himalayas occurred due to the formation of new habitats by

climatic changes in the past [79,81]. Endemism appears to be

lower in the Himalayas relative to other montane regions [82] and

indeed in all other global hotspots [83]. Furthermore, recent work

argues that speciation alone is not likely to drive the pattern we

describe here because speciation is low within the Himalaya due to

an apparent lack of potential barriers [79]. Since Eastern

Himalaya is located at the transition belt of Oriental and

Palaearctic zoogeographical realms and Indian, Indochinese and

Indomalayan regions [84], the avifauna in the study region could

consist of immigrants from these realms and regions due to

dispersal of species. While it would be unwarranted at this stage to

discard endemism and speciation due to a dearth of empirical

studies, further work could address these issues. In particular,

applying phylogenetic analyses for the birds in the Eastern

Himalayan region would clearly allow for a better evaluation of

how (or whether) historical and evolutionary factors influence

species richness (e.g., [26,80,85]). However, the lack of robust

phylogenetic hypotheses for many of these taxa examined here

prevented us from pursuing this line of research.

Variation in species richness and density are rarely, if ever,

wholly explained by a single factor [58]. And species richness

varies in peculiar ways among taxa, even on the same elevational

gradient [11]. In our case, we found that climatic and habitat

factors accounted for most of the variation in the density and

species richness of birds. It is of course not surprising that multiple

Figure 7. Elevational range profiles of birds of Sikkim, Eastern Himalaya. Vertical bars indicate maximum and minimum elevational limits of
each species.
doi:10.1371/journal.pone.0029097.g007

Figure 8. Elevational range-size distribution of birds of Sikkim, Eastern Himalaya.
doi:10.1371/journal.pone.0029097.g008
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factors can shape diversity gradients, and perhaps that is to be

expected. What is somewhat surprising, however, is that these

same factors accounted for variation in every attribute of the avian

communities examined here – observed richness, the Chao2

estimate of diversity, rarefied richness and density.

The decline in both species richness and density of birds above

2500 m is striking, and suggests an abrupt change in some factor

or suite of factors that limits birds. The stature of the forest

decreases dramatically at about this point, and the climatic

conditions become increasingly severe beyond 2500 m in the

region; both of these changes could cause declines in abundance

and size distribution of invertebrates and scarcity of other food

items for birds [15]. One potential criticism of our study is that

we did not continue to sample avian communities above 4700 m

elevation. However, we note that the decline in avian richness

from 3000 m to 4700 m is very low (32 species at 3050 m and 27

species at 4700 m). While there are essentially a very few bird

species above this elevation in this part of the Himalayas and,

even if a few transient species were detected, their presence would

not have qualitatively changed the overall patterns we document

here.

Rapoport’s rule (extended to elevational gradients by Stevens

[33]) suggests that range size of species should increase with

increasing elevation. Although range size of high elevation species

in our case tended to increase with elevation, the relation was

weak, and the ranges of low-elevation species actually decreased

with increasing elevation. Hence, we find little evidence to support

Rapoport’s rule for the birds of Sikkim region of the Himalaya,

indicating that Rapoport’s rule does not explain the elevational

pattern of birds in the eastern Himalaya. Rapoport’s rule has

invited criticisms and whether this rule is a general phenomena is

an open question in biogeography [86,87].

Most bird species in this study exhibited very narrow

elevational ranges. Interestingly, of 297 species, only one species

(White-capped Water Redstart Chaimarrornis leucocephalus)

occurred at all 22 sites. Most occurred at only a few sites,

suggesting that range sizes are extremely limited in this system,

probably by a combination of dispersal ability, particular habitat

associations, competition, or environmental tolerance [88,89,90].

Most species here appear to be habitat specialists, either restricted

to a handful of sites or a single vegetation zone. Those species

with larger elevational ranges tended to be omnivores. For

example, the omnivorous birds Blue Whistling Thrush (Myopho-

nus caeruleus) and White-capped Water Redstart occupied

extensive ranges along the gradient, whereas a true frugivore

Pin-tailed Green Pigeon (Treron apicauda) was present at only a

single elevation site. Playback experiments, coupled with

physiological tolerance and behavioral observations about the

degree of specialization among species would help elucidate the

factors that limit the ranges of species along this extreme

elevational gradient [91]. However, in the absence of such

exhaustive studies, incorporating phylogenetic analyses as a short

cut to understanding the interplay between interspecific interac-

tions and climatic tolerance (e.g., [85]) would clearly be an

important next step.

In sum, along one of the longest elevational gradients in the

world, we found that bird species richness and density showed

hump-shaped relationship with elevation, peaking at approxi-

mately 2000 m, in the Eastern Himalayan region. The variation in

richness and density was correlated strongly with both productivity

and habitat rather than geometric constraints. The small

elevational ranges of species along the gradient suggest that

conservation efforts should consider the entire gradient rather than

just portions of it.

Supporting Information

Figure S1 Species accumulation curves of birds. Curves

based on number of point counts in different elevational transects

in Sikkim, Eastern Himalaya. Numbers in the figures indicate

elevation (m) of the sampling site.

(TIF)

Figure S2 Elevational variation of rarefied bird species
richness. Species richness observed when rarefied to 72 point

counts along elevational transects in Sikkim, Eastern Himalaya.

(TIF)

Figure S3 Elevational variation of rarefied bird species
richness. Species richness observed when rarefied to 15

individuals from six point counts from each site along elevational

transects in Sikkim, Eastern Himalaya.

(TIF)
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