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Abstract

The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage
modelers to develop and share model features and components. Supported by a large developer community, it participated
in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the
first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of
GENESIS is that it decomposes into self-contained software components complying with the Computational Biology
Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different
necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting
language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they
produce highly readable code and are widely employed in specialized areas of software component integration. We employ
a simplified wrapper and interface generator to examine an application programming interface and make it available to a
given scripting language. This allows independent software components to be ‘glued’ together and connected to external
libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python
scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical
solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive
command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external
graphical libraries and an open source three dimensional content creation suite that supports visualization of models based
on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software
components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in
computational neuroscience.
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Introduction

The GEneral NEural SImulation System (GENESIS, http://

genesis-sim.org/) is a general purpose simulation platform

originally developed to support the simulation of neural systems

ranging from sub-cellular components and biochemical reactions

to complex models of single neurons, simulations of large

networks, and systems-level models.

GENESIS was one of the first broad scale modeling systems in

computational biology to encourage modelers to develop and

share model features and components. For these people, it was the

object-oriented approach taken by the simulator along with its

high-level simulation language and Script Language Interpreter

(SLI), that allowed the exchange, modification, and reuse of

models or model components. It was this community of developers

and users that ultimately drove the development of the GENESIS

platform.

The development of the GENESIS simulator was initiated

during the 1980’s through research projects that addressed specific

scientific questions in computational neuroscience. Simulator

functionality was expanded through life cycles of research project

extension. For example, libraries for kinetic pathway modeling

were added for projects investigating how signaling networks store

learned behavior [1] and how light controls photoreception by

regulating calcium release from intracellular calcium stores [2].

A fast implicit solver was developed for complex Purkinje cell

modeling [3,4] and more recently synaptic learning rules have

been implemented [5]. In principle such linear or single-threaded

development processes can continue forever. However, repetitive

extension of GENESIS with source code of diverse functions and

origin has made the code structure so complicated that it is almost

impossible to extend. The unitary nature and density of the source

code has ultimately created a‘monolithic’ application. This

marginalizes user contributions to simulator functionality, updates

and releases have become less frequent, and the software life cycle

is moved from extension to maintenance.

GENESIS 3.0 (G-3) is a major reconfiguration and update of

the GENESIS simulation system. This reconfiguration is based on

the Neurospaces Project (http://neurospaces.sourceforge.net/) which

was initiated in 1998 as a development center for software
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components for computational neuroscience simulators. It em-

bodies many software components, each of which has been

developed in full isolation. In it, the core GENESIS simulator

functionality has been restructured such that it is the first neural

simulator to comply with a more modular design, the Computa-

tional Biology Initiative federated software architecture (referred to

as the CBI architecture, described in Materials and Methods and

in more detail in [6]). The CBI architecture is specifically designed

to support the integration of stand-alone software components and

applications by using common integration technologies such as

modern scripting languages. This not only results in improved

simulator performance, portability, and code reusability but also

enables both the use of new script parsers and user interfaces and

the capacity to communicate with other modeling programs and

environments and external model and data analysis and

presentation software.

In the following sections we illustrate the use of the general

purpose Python scripting language for making high performance

simulation software coded in system programming languages

accessible to neuroscientists and biologists. We note that

equivalent functionality is available from G-3 through the Perl

(http://www.perl.org/) scripting language.

Materials and Methods

In the following sections we overview the GENESIS software

platform and its recent reconfiguration to comply with the CBI

architecture (described below). We also introduce two scripting

languages employed by G-3 (Python and Perl) and a simplified

wrapper and interface generator (SWIG). We outline how they

are suitable as federation tools for the continued extension of

GENESIS functionality. Our approach to software development is

based on, but not limited to, such languages and provides a

paradigm that simplifies the extension, modification, and custo-

mization of complex neurobiological simulation software, not only

for developers but also most importantly for users.

Starting from an existing source code base, and learning from

previous experience in simulator development, G-3 is a modular-

ization of the core functions of the GENESIS simulator. The

guiding principles that define the implementation and function of

the G-3 simulator are based on the CBI architecture, a modular

abstracted architecture that layers the data in a simulator and

separates data representations from the algorithms that process

them.

GENESIS 1 and 2
GENESIS simulations are constructed from model components

that receive inputs, perform calculations on them, and then

generate outputs. Model neurons are constructed from basic parts,

such as segments, and variable conductance ion channels. (Note:

‘Segment’ is a high level term employed to describe different parts

of the biological model of a dendritic morphology. The equivalent

low level (computational) term is ‘compartment’. It refers to the

numerical representation of a segment.) Channels are linked to

their segments which in turn are linked to form multi-segment

neurons of any desired level of complexity. Neurons may be then

be connected to form neural circuits [7].

The GENESIS SLI was a high-level simulation language that

provided a framework within which a modeler could extend the

capabilities of the simulator and manipulate models or model

components by exchange, modification, and reuse. The SLI

interpreted statements in the GENESIS simulation language and

constituted the operating system ‘shell’. User-defined SLI scripts

were then used to glue together the pieces of a simulation. These

scripts also controlled the graphical objects used to define the front

end of a simulation and the GENESIS data handlers. It was the

commands the SLI recognized and the many GENESIS ‘objects’

available for constructing models and simulations that have most

powerfully assisted in the sharing of model features amongst the

broader modeling community.

Scripting Languages
Historically, there have been fundamental differences between

the Unix shells and system programming languages such as C or

C++ and scripting languages such as Perl [8], Python [9], Rexx

[10], Tcl [11]. System programming languages typically start from

the most primitive computer elements, usually the ‘words’ of

memory. They are designed to manage the complexity of building

data structures and algorithms from scratch and generally require

pre-declared data types. Alternatively, as a replacement for shell

scripts and shell communication pipes, scripting languages assume

the existence of a set of software components and are primarily

intended to assemble or glue together these components. In this

way, scripting languages operate at a higher level than system

programming languages in the sense that on average a single

statement in a scripting language does more work. For example, a

typical statement in a system programming language executes

about five machine instructions, whereas, in a scripting language a

typical statement may execute hundreds or thousands of machine

instructions [12].

The strongly typed nature of system programming languages

discourages reuse. Scripting languages, on the other hand, have

actually stimulated significant software reuse. They use a model

where interesting components are built in a system programming

language and then glued together into applications. This division

of labor provides a natural framework for reusability. When well-

defined interfaces exist between components and scripts, software

reuse becomes easy. In this sense scripting and system program-

ming are symbiotic. Used together, they produce programming

environments of exceptional power where applications can be

developed five to ten times more rapidly than when a system

programming language alone is used.

Figure 1 gives the levels of programing available in G-3. They

range from the C coding employed to create the independent

components, through Python and Perl interface scripting, the

declarative NDF file format used for model construction and the

associated reusable NDF libraries coding membrane channels and

Figure 1. Levels of programing in GENESIS 3.0. The concept
hierarchy used for communication by GENESIS developers. C Coding:
System programing languages are used to program individual simulator
components and extend simulator functionality. SLI: Indicates the level
of the GENESIS-2 Script Language Interface in the concept hierarchy.
Script Languages: Python and Perl are used to interface individual
simulator components. NDF: The native declarative file format used to
build models and model components. NDF Libraries: Model compo-
nents such as membrane channels and synapses provide a library of
functional components available for accelerated model development.
G-Tube: The GENESIS graphical user interface allows users to access
models and model components for the rapid development of single cell
and network models.
doi:10.1371/journal.pone.0029018.g001
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synapses, to the highest level of coding via the G-Tube GUI. Also

indicated is the location of the SLI in this coding hierarchy.

In summary, system programming languages are well suited for

building functional software components where there is a

requirement for computing speed because data structures and

algorithms are complex, whereas, scripting languages are well

suited for assembling applications where the complexity is in the

connections. With an increasing requirement for software

integration, scripting is providing an important programming

paradigm.

Python
Python is a powerful dynamic programming language compa-

rable to Perl, Ruby, or Scheme. In September 2011, 4% of

internet references to programing and scripting languages were to

Python, making it the 8th most popular programming language

(see Tiobe Index at http://www.tiobe.com/index.php/content/

company/Home.html. Note: Ratings are based on the number of

skilled engineers world-wide, courses, and third party vendors.

The search engines Google, Bing, Yahoo!, Wikipedia, YouTube

and Baidu are used to calculate the ratings). It combines

considerable power with very clear syntax and has modules,

classes, exceptions, high level data types, and dynamic and loose

typing. It runs on many hardware architectures, integrates with

scientific and user interface libraries, and new modules are easily

written in C or C++ (or other languages, depending on the chosen

implementation). It is also usable as an extension language for

applications written in other languages that need easy-to-use

scripting or automated interfaces. It is currently the highest ranked

scripting language.

Perl
Perl was one of the first open source scripting languages. First

released in 1987 (http://groups.google.com/group/comp.sources.

unix/msg/bb3ee125385ae25f?pli=1), it is unique in that it is very

much informed by linguistic principles. Originally developed as a

scripting language for UNIX, it aimed to blend the ease of use of

the UNIX shell with the power and flexibility of a system

programming language like C. With over 20 years of development

and nearly half a million lines of code, Perl now runs on over 100

different platforms (http://www.perl.org/about.html). Currently,

there are over 18,000 open source modules available from the

Comprehensive Perl Archive Network (CPAN, http://www.cpan.

org/), assisting in system integration, scientific application, and

user interface development. Via the CPAN Inline module, Perl

integrates seamlessly with both system programming languages

such as C and C++, and scripting languages including Python.

(Note: italicized text indicates the names of Python modules,

directory paths, and file names, whereas, Typewriter text is

reserved for Python coding examples and the dimensions of

physical quantities. Bold text indicates the names of software

components in G-3.) Perl supports object-oriented programming,

functional programming, and procedural programming para-

digms. In September 2011, nearly 2.5% of internet references to

programing and scripting languages were to Perl, making it the 9th

most popular programming language (see Tiobe Index at http://

www.tiobe.com/index.php/content/company/Home.html).

Meta-Programming in Perl and Python
Meta-programming is a programming technique where a

program generates a new program and then executes it. This

technique is employed by the G-3 Python and Perl bindings to

generate an additional layer of script code that provides increased

flexibility for defining models and simulations. A predefined

Python or Perl data structure defines high-level interfaces that are

translated into strings containing Python or Perl code such as class

and method definitions. During program initialization these are

bound to the run-time environment using the Perl or Python eval

functions.

SWIG for Federated Software Integration
SWIG is a software development tool that connects programs

written in system programming languages such as C and C++ with

high-level scripting languages such as Python or Perl. SWIG was

chosen to facilitate the use of these bindings in G-3. It controls

most aspects of wrapper generation and automates the generation

of the required Perl and Python interfaces. SWIG uses a layered

approach to build extension modules where different parts are

defined in either C or the chosen scripting language. The C layer

contains low-level wrappers whereas the script code is used to

define high-level features. Considerably more flexibility is obtained

by generating code in both languages as an extension module can

then be enhanced with support code in either language. Table 1

gives an overview of the resulting code. As expected, low-level

software components emphasize low-level languages and contain

more code (e.g. C), whereas, high-level software components

emphasize high-level languages and contain less code (e.g. Python,

Perl).

The CBI Federated Software Architecture
The CBI architecture provides a modular paradigm that places

stand-alone software components into logical relationships. Each

software module is an independent component that allows

development and maintenance to be implemented concurrently.

Table 1. Comparison of Hand-Written and Generated Code (in Byte Counts).

Language: C (H) C (G) Perl (H) Perl (G) Python (H) Python (G)

Model Container 1,832,580 4,416,163 30,406 207,638 14,568 250,178

Heccer 1,163,991 1,575,615 57,565 107,261 1,586 171,219

NS-SLI 1,448,636 483,641 4,603 2,802 — —

SSP 829 2,323 55,063 — — —

Studio — — 174,923 — — —

G-Shell — — 28,142 — 623 836

A comparison of hand-written (H) and automatically generated (G) code that supports the functionality of the independent components of the GENESIS simulation
platform. Software hand-written in a system programming language such as C contains more code (in bytes) than the equivalent functionality replicated in a scripting
language. The amount of automatically generated code is considerably greater than that written by hand.
doi:10.1371/journal.pone.0029018.t001
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In this section we summarize the data-flow related concepts of the

CBI architecture. For an in-depth explanation see the accompa-

nying paper [6].

The important data-flow related components of the architecture

are shown in Figure 2. On the bottom left are databases of

neuronal models or experimental data that can be accessed by the

simulator. Optional model processors (e.g. the Reconstruct

interface) load a model into the Model Container which stores

a model in memory and makes it available to other software

components in different formats. One function of the Model
Container is to translate biological concepts and properties into

mathematical concepts that can be understood by the mathemat-

ical solvers. Thus, importantly and unlike other existing neural

simulators, the mathematical solvers are independent of the

biological representation of a model. A simulation controller

orchestrates the actions taken by the Model Container (e.g.

when to load a model, the definition of the stimulus, and when to

export a model) and mathematical solvers (e.g. when to fetch a

model from the Model Container, when to start calculations,

and what the output variables are).

A scripting layer allows the simulation system to be driven from

multiple scripting languages. Python and Perl are currently

supported, as is (for backward compatibility) the GENESIS SLI.

The G-3 GUI is shown at the top of Figure 2 and is being

developed entirely in Python. It supports many functions and

allows models to be imported from databases or constructed from

scratch, the exploration of model structure and parameters, and

the visualization of variables and model behavior.

Within the CBI paradigm each software component is self

contained and can be run independently. This facilitates the

interoperability of software obtained from different sources and

has several important advantages for software development,

including: (1) Reduced complexity of software components

compared to a unitary system, (2) simplified documentation of

components in terms of inputs and outputs, (3) simplified

development and testing of components as stand alone software,

(4) clear delineation of scope for the development of new

components, and (5) independent update, enhancement, or

replacement of individual components when needed, making the

life cycle of a modular architecture smoother than that of a non-

scalable application.

The CBI architecture provides a framework for the integration

of independent software components into a functioning simulator

using a scripting language of choice. Here, we specifically illustrate

the use of Python for this purpose.

G-3 as a CBI Compliant Simulator
G-3 is a major revision and update of the GENESIS system.

The core simulator functionality is restructured, with a more

modern modular software design referred to as the CBI

architecture. This not only results in improved simulator

performance and portability, but allows the use of alternate script

parsers and user interfaces that provide the ability to communicate

with other modeling programs and environments.

Much existing software such as GUI libraries and plotting

libraries, are application neutral. Other software packages are

tailored to the needs of computational neuroscience. The Neuro-

spaces project (http://www.neurospaces.org/) provides core soft-

ware components for the G-3 simulator [13]. These include, the (1)

Model Container: Stores two representations of a model, the first

is conceptual and can be regarded as an enumeration of biological

concepts and their relationships, the second is an expanded

mathematical representation that, if complete, can be simulated,

(2) Heccer: A fast compartmental solver based on the GENESIS

hsolve object that can be instantiated from C, Python, Perl or other

scripting languages, (3) SSP (Simple Scheduler in Perl): Binds

Heccer and the Model Container, and activates them correctly,

such that they work together on a single simulation, (4) Studio and

G-Tube: Contain graphical tools for model construction, explora-

tion, and simulation, (5) G-Shell (G-3 Interactive Shell): Dynam-

ically loads other software components in an interactive environ-

ment, and the (6) Project Browser: For inspection of projects and

simulation results. For completeness, we also mention (7) NS-SLI:

The G-3 component that provides backward compatibility for the

GENESIS SLI. All software can be downloaded from the GENESIS

web site (http://genesis-sim.org/download/) and extensive installa-

tion instructions with examples are available from the GENE-

SIS documentation website (http://www.genesis-sim.org/userdocs/

genesis-installation/genesis-installation.html). Simulator correctness

can be established by running automated regression and integration

tests.

Results

PyGENESIS (http://www.cs.caltech.edu/,mvanier/hacking/

pygenesis/pygenesis.tar.gz) was a version of GENESIS developed

in the late 1990’s. It replaced the standard GENESIS SLI with a

Python interface. This Python-enabled version of GENESIS was

never publicly released. However, with the increased sophistica-

tion of the Python platform and reconfiguration of GENESIS to

comply with the CBI architecture, Python interfaces have been

developed for several of G-3’s core simulator components. While it

is possible to drive each component in isolation from these

interfaces, here we show how individual components may be

integrated via Python to create a simple simulator, explore a

dendritic morphology, and connect to external applications that

support sophisticated model visualization and morphological

analysis.

A Python Enabled Neural Simulator
Python uses modules to group related functions. G-3 employs

Python’s module system to group functions that provide an

interface to each of its software components. As an example, the

Figure 2. Relation of components in the Computational
Biology Initiative (CBI) federated software architecture. The
CBI architecture defines the relationships between the necessary
components of a computer-based neural simulation system. The
architecture contains three layers that include a graphical user interface
(GUI) connected to the functional components of a simulator by an
interposed layer of application programming interfaces (APIs) and
scripts. Components in the lowest layer are interconnected by APIs
while their particular functionality is needed. GENESIS 3 is the first
simulator to be implemented in compliance with the CBI architecture.
doi:10.1371/journal.pone.0029018.g002
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G-3 Python module nmc contains functions to simplify the storage

of neuron models in computer memory. This module is a simple

front-end to the Model Container, a G-3 component which for

efficiency is coded in the system programming language C.

Likewise, Heccer is a wrapper module for the Heccer component

which in turn is an interface to a low-level single neuron solver

written in C. Python bindings for the Discrete Event System to

facilitate network modeling also exist.

Here we show a simple high-level Python script that runs a

simulation of a single cylindrical segment. It is defined by standard

values for the parameters of membrane resistance (RM), axial

resistance (RA), and membrane capacitance (CM). (Note: This

script is written for clarity of presentation rather than compactness

or efficiency. Python version 2.6.6 is used on Linux Ubuntu 10.10

Maveric.) These parameters are given by their specific values (in SI

units) as commonly reported in the literature, instead of their

actual values scaled to the compartment surface area as used by a

mathematical solver [14]. The script defines a Python function

run_simulation that will load and run a model when invoked from a

system command line on an appropriately configured computer.

The script can also be imported into G-3 as a Python module, thus

allowing access to this function. For convenience, we call this

Python module example.

000

Comment: Python script running a simple model with G-3.

000

from g3.nmc import ModelContainer

def RunSimulation (simulationTime):

timeStep = 1e-5

#------------------------------------------------------------------------------

# Create a model container with a neuron cell and a dendritic

segment

#------------------------------------------------------------------------------

my_nmc = ModelContainer()

my_cell = my_nmc.CreateCell (‘‘/cell’’)

my_segment = my_nmc.CreateSegment (‘‘/cell/soma’’)

my_segment.SetParameters(

{

‘‘Vm_init’’: 20.0680,

‘‘RM’’: 1.000,

‘‘RA’’: 2.50,

‘‘CM’’: 0.0164,

‘‘ELEAK’’: 20.0800,

‘‘DIA’’: 2e-05,

‘‘LENGTH’’: 4.47e-05,

}

)

# Apply current injection to the soma

my_segment.SetParameter(‘‘INJECT’’, 1e-9)

#------------------------------------------------------------------------------

# Create a Heccer for computing the neuron model stored by

the model container.

#------------------------------------------------------------------------------

from g3.heccer import Heccer

my_heccer = Heccer(name = ‘‘/cell’’, model = my_nmc)

my_heccer.CompileAll()

#-----------------------------------------------------------------------------

# Create an output object.

#------------------------------------------------------------------------------

from g3.experiment.output import Output

my_output = Output(‘‘/tmp/output’’)

#-----------------------------------------------------------------------------

# Link the output object to the address of the computed

variable of interest.

#------------------------------------------------------------------------------

my_output.AddOutput(‘‘output’’, my_heccer.GetAddress(‘‘/

cell/soma’’, ‘‘Vm’’))

#-----------------------------------------------------------------------------

# Create an array of the objects that participate in the

simulation.

#------------------------------------------------------------------------------

schedulees = []

# schedule heccer

schedulees.append(my_heccer)

schedulees.append(my_output)

#-----------------------------------------------------------------------------

# Advance all the particpating objects for the duration of the

simulation.

#------------------------------------------------------------------------------

currentTime = 0.0

while currentTime,simulationTime:

currentTime+ = timeStep

for schedulee in schedulees:

schedulee.Advance(currentTime)

my_heccer.Finish()

my_output.Finish()

#------------------------------------------------------------------------------

# Main program executes a simulation of 0.5 seconds.

# The if statement allows use of this file as an executable or as a

library.

#------------------------------------------------------------------------------

if --name-- = = ‘--main--’:

RunSimulation(0.5)

Contrasting Levels of Expressibility
The CBI architecture allows G-3 to accommodate many user

interfaces. As an example, the compartmental solver Heccer can

be driven stand-alone from C code, Python, or Perl to run the

simplest models, or it can be interfaced with the Model
Container to run more realistic multi-compartment models

based on morphological data. To illustrate this flexibility we now

compare the above Python script with alternative implementations

in C and the GENESIS SLI.

In the C code there is an abundance of low level detail that

interfaces directly to the solver. For example, compartments are

identified by their position in an array and parameters such as RM

and CM must be provided as an unlabelled ordered sequence of

their actual values (scaled to the compartment surface area).

The complexity of the GENESIS SLI interface falls between

that of the Python interface and the C code interface. (Note: the

G-2 SLI is supported by G-3 through its backward compatibility

component NS-SLI.) While compartments and parameters have

names and numerical values are given in a format used by

solvers.
C Code Implementation. #include ‘‘heccer/compartment.h’’

struct Compartment compSoma =

{

// type of structure

Python as a Federation Tool for GENESIS 3.0
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{ MATH_TYPE_Compartment, },

21, // no parent compartment

4.57537e-11, // Cm

20.08, // Em

20.068, // InitVm

0, // Inject

360502, // Ra

3.58441e+08, // Rm

};

// compartment and channel mapping

int piC2m[] = { 0, 21, };

// model definition

struct Intermediary inter =

{ 1, &compSoma, NULL, piC2m, };

// include commands for simulation

#include ‘‘main.c’’

GENESIS SLI Implementation. create neutral/cell

create compartment/cell/soma

setfield/cell/soma dia 2e-05

setfield/cell/soma len 4.47e-05

setfield/cell/soma Cm 4.57537e-11

setfield/cell/soma Em 20.0800

setfield/cell/soma Vm_init 20.068

setfield/cell/soma inject 1e-9

setfield/cell/soma Ra 360502

setfield/cell/soma Rm 3.58441e+08

reset step 0.5 -time

While script language bindings are suitable for construction of

toy models from scratch, it is better to use a domain specific

language to construct the various parts of a model. For example,

the Model Container is installed with a library of domain

specific model components where the standard Hodgkin-Huxley

channels are provided in the file channels/hodgkin-huxley.ndf. These

channels can be included in the Python example given above by

adding the statements:

my_segment.ImportChild(‘‘channels/hodgkin-huxley.ndf::/k’’)

my_segment.ImportChild(‘‘channels/hodgkin-huxley.ndf::/na’’)

The Model Container can export models constructed in a

scripting language as a library for incorporation into new models

or for use with other G-3 components such as the Project
Browser. These new models can then be imported by a call to

the Model Container Read method. For example, importing a

Purkinje cell model with over 4,000 compartments may be done

with the following statement:

my_nmc.Read(‘‘cells/purkinje/edsjb1994.ndf’’)

After importation, the Model Container provides a set of

functions to analyze the structure of a model morphology. For

example, the names of the most distal segment of each dendrite

can be obtained with:

my_nmc.Query(‘‘segmentertips/Purkinje’’)

Interactive Query and Simulation
The G-Shell integrates other G-3 components and makes their

functions available through an interactive environment available

from a command line. Coded in Perl, the G-Shell is a

communication abstraction layer for the Model Container,

Heccer, SSP, DES and the Studio. After the G-Shell has been

started from a system shell with

genesis-g3

the list of loaded software components can be printed to the

screen with the command:

list components

Each loaded software component will be shown with associated

status information that helps diagnose possible problems. For

example, after correct initialization of the Model Container the

status information appears as:

model-container:

description: internal storage for neuronal models

integrator: Neurospaces::Integrators::Commands

module: Neurospaces

status: loaded

type:

description: intermediary

layer: 2

Integration of the G-Shell with the Model Container allows for

real-time analysis of the quantitative and structural aspects of a

neuronal morphology. The library of model components that is

installed with the Model Container provides a definition of a model

Purkinje cell in the file cells/purkinje/edsjb1994.ndf. The command:

ndf_load cells/purkinje/edsjb1994.ndf

makes this model Purkinje cell available for interactive analysis.

Alternatively, if the model is encoded in a GENESIS SLI script

with the name PurkM9_model/CURRENT9.g, the command

ndf_load can be replaced by sli_load:

sli_load PurkM9_model/CURRENT9.g

This command imports the model that is specified in the SLI

script without running the simulation. A similar command

(pynn_load) is currently in active development to interface with

the PyNN network modeling environment [15].

Given the name of one of its dendritic segments, the number of

branch points between the segment and the soma can be

determined. After indicating with the command morphology_sum-

marize which paths of the dendritic tree to examine, the parameter

SOMATOPETAL_BRANCHPOINTS contains the result, which

can be obtained with:

morphology_summarize/Purkinje

show_parameter/Purkinje/segments/b1s06[182] SOMA-

TOPETAL_BRANCHPOINTS

If a dendritic segment contains a synaptic channel, it can be

stimulated with a precomputed spike train stored in a file named,

for example, event_data/events.yml:

set_runtime_parameter/Purkinje/segments/b1s06[182]/Pur-

kinje_spine_0/head/par/synapse

EVENT_FILENAME ‘‘event_data/events.yml’’

Finally, following the addition of an output for the somatic

membrane potential:

add_output/Purkinje/segments/soma Vm

A simulation can then conveniently be started using:

run/Purkinje 0.1

This simulation produces the somatic response to the given

dendritic stimulus in a file named, by default, /tmp/output.

To query the parameters of the stimulated compartment the

model can then be analyzed using the graphical front-end of the

Studio with the command:

explore

Figure 3 shows sample output of running this command. Other

capabilities of the Studio include rendering morphologies in

three dimensions and generating overviews of network models (not
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shown). In the next section we explore some of the more graphical

capabilities of G-3.

Integration of Pre-existing Applications and Libraries
The GENESIS Graphical User Interface (GUI) was supported

by the X-Window System Output and Display Utility for

Simulations (XODUS). XODUS provided graphical objects that

could be connected to model components from within the

SLI. Rather than providing a full GUI instance, the flexibility of

XODUS came from its infrastructure which allowed modelers to

easily develop new GUIs dedicated to their particular research or

teaching projects. (Note: The official GENESIS software

distribution contained both simple and sophisticated example

GUIs.) However, the XODUS paradigm inevitably resulted in

Figure 3. Querying a model in GENESIS 3.0. The Studio is a component of the reconfigured GENESIS software platform. It can be used to query
the parameters of individual compartments in a multi-compartment model neuron. The Studio also renders 3D morphology of dendrites and
generates overviews of network models.
doi:10.1371/journal.pone.0029018.g003
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modelers contaminating their model script with GUI related

statements.

As mentioned above, one advantage of the CBI architecture is

that it defines how to interface simulator components with external

applications. An obvious example is the use of existing 3D graphics

software to examine and edit the spatial properties of a model

neuron morphology. Others include, integration with external

graphing and windowing software to plot the values of solved

variables against simulation time, or to allow the construction of

button-rich tutorial applications.

GUI libraries typically communicate with other software

components using an event based system. The functional core of

such a system is an event dispatching loop, usually called the main

loop. The binding between a button click event and the main loop,

and the visual layout of most contemporary GUI applications is

conveniently constructed using one of a number of freely available

user interface builders. One such builder is wxFormBuilder. (Note:

This builder is a user interface designer for the wxPython toolkit and

the Linux desktop environment GNOME. It is available from

http://wxformbuilder.org/.) It can be used to construct a GUI

with visual elements such as menus and buttons and writes a

description of these elements and their bindings to a file known as

an XML resource (XRC) file. The GUI definitions in this file can

then be rendered with the wxWidgets library and its Python front

end wxPython. Further integration with additional G-3 specific data

bindings ensures that, for example, the data produced by a

mathematical solver flows to a widget that plots the value of a

variable against time. This functionality replaces the XODUS

paradigm, which required SLI scripting to connect GUI

components to model components and simulation actions, with

a more contemporary paradigm that separates simulator and

model scripts from GUI related statements.

In the following example, we create a wxPython application class

called G3App. This demonstrates the Python scripting required to

connect the software components that create a small GUI for G-3.

We specifically show how to initialize the application (implemen-

tation of method OnInit), how to run a simple simulation based on

the previous example (method OnRun), and how to plot output

(method Plot). To achieve this, it is assumed that a XRC file with

the name G3.xrc can be found that describes a GUI with one frame

(here, mainFrame) which allows the simulation duration to be set via

a text control widget and contains a button to start the simulation.

The first lines of code in the script load the necessary Python

modules which in turn load low-level libraries coded in a system

programming language. The widget output is shown in Figure 4.

import DataPlot

import example

import wx

from wx import xrc

class G3App(wx.App):

def OnInit(self):

# Load the XML resource file

self.res = xrc.XmlResource(‘G3.xrc’)

# Declare objects for each part of the gui,

# we fetch the objects from the loaded XML resource

# via the name we gave each component in the builder.

self.frame = self.res.LoadFrame(None, ‘mainFrame’)

self.runButton = xrc.XRCCTRL(self.frame, ‘runButton’)

self.durationTextCtrl = xrc.XRCCTRL(self.frame,duration‘

TextCtrl’)

# Bind the gui objects to methods.

#

Figure 4. Simple Integration of G-3 with the wxPython widget set. The CBI architecture defines a separation between GUI statements and
peripheral code. This allows GUI construction kits to be used for the creation of a user-friendly interface to a simulation. In this example
wxFormBuilder was used to construct a text control widget and a button to start the simulation using its standard drag & drop interface. The same
approach can be used for the development of research and educational projects.
doi:10.1371/journal.pone.0029018.g004
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# Note: frame is the main component inthe MainLoop so

this

# is what we set the binding to.

self.frame.Bind(wx.EVT_BUTTON, self.OnRun, self.run-

Button)

# Display our simple gui.

self.frame.Show()

return True

# An action to do when the run button is pushed.

# This will run the simulation with the given time

# and plot the output.

def OnRun(self,evt):

simulationTime = float(self.durationTextCtrl.GetValue())

print ‘‘Simulation time is:’’ + str(simulationTime)

print ‘‘running simulation…’’

example.RunSimulation(simulationTime)

print ‘‘Simulation Complete!’’

print ‘‘Plotting output’’

self.Plot(‘/tmp/output’)

##
# Plots data output from a data file.

#
# wxPython sizer & layouts

# This is the alternative to using an

# XRC specification, this however is a small

# example.

def Plot(self,datafile):

plotwindow = wx.Frame(self.frame, 21, ‘‘Graph display’’,

(480,300))

plotpanel = wx.Panel(plotwindow, 21)

self.dataplot = DataPlot.DataPlot(plotpanel, 21,

‘/tmp/output’,

‘Example Plot’,

‘Time (Seconds)’,

‘Membrane Potential (Volts)’)

vbox_sizer = wx.BoxSizer(wx.VERTICAL)

vbox_sizer.Add(self.dataplot, 1, wx.EXPAND)

plotpanel.SetAutoLayout(True)

plotpanel.SetSizer(vbox_sizer)

plotpanel.Layout()

plotwindow.Show()

# Our main function where we perform the main loop

if --name-- = = ‘--main--’:

app = G3App(False)

app.MainLoop()

In this example we have shown how the CBI architecture

defines a separation between GUI statements and peripheral

code such as input and output specifications, and model

construction. Besides allowing common GUI construction kits

to be used for the development of research and educational

projects, our approach also allows G-3 to interface with highly

specialized GUI kits.

Interfacing GENESIS with External Applications
As an example of how to interface GENESIS with specialized

external applications, we now show how to validate and analyze

models of the morphology of small dendritic segments obtained

from electron microscopy data. The required geometrical

algorithms are typically available in state-of-the-art rendering

applications such as Blender (http://www.blender.org/). Blender

is a free open source 3D content creation suite available for all

major operating systems that have Python enabled bindings (Note:

One restriction is that code must be run from inside the Blender

specific Python interpreter.) In our example it replaces the

functionality otherwise provided by the G-Shell.

Over the last several years we have used electron microscopy

(EM) in conjunction with Reconstruct (http://www.bu.edu/

neural/Reconstruct.html, [16]) to obtain precise morphologies of

small segments of Purkinje cell dendrites [17,18].

The Reconstruct interface converts the application into a G-3

simulator component by making it CBI compliant. This allows

Reconstruct data to be imported into the Model Container.

The core of the interface implements geometrical transformation

algorithms that convert EM contours provided by Reconstruct to

equivalent cylinders suitable for cable modeling. The necessary

conversion algorithms are accessible from the Model Container
via Python. The geometrical properties of the cylinders are stored

in the native G-3 NDF file format and algorithms provided by the

Model Container link them to the cable parameters required by

the mathematical solvers. A simulation can then be run with the

read and run methods given above.

The Python interface of Blender links it to the G-3 simulator to

provide, to our knowledge, the first 3D model inspection tool for

EM data available directly from a neural simulator. As an

example, the Python script developed above can be run from

within the Blender environment. Also, via the same Python

interface, simulations can be started based on the 3D image data.

Interactive visualization of reconstructed dendritic segments is a

valuable method of model validation and is available with the

integration of G-3 and Blender (see Figure 5). However, the

development of small focused plugins allows for more than just this

functionality. For example, 3D measurement and manipulation of

neuron morphology, computation of surface areas and volumes,

and the generation of 3D cross-sections and 2D cuts also becomes

possible.

Discussion

GENESIS is the first neural simulator to be reconfigured in

compliance with the CBI federated software architecture. In it, the

Python and Perl bindings embed similar functionality to that of the

GENESIS SLI, although their purpose is different. While the SLI

had as major goals the integration of model components, running

simulations, and output collection, the primary goal of scripting

languages has become application integration.

Through the Neurospaces project, GENESIS now provides a

series of independent software components that can readily be

combined to support computational modeling in the neuroscienc-

es. As examples of this scripted integration we have shown how to

run a simple model using Heccer and the ability of the Model
Container to query the structure of a neuronal morphology. In a

third interactive example, synaptic stimulation was delivered to a

Purkinje cell model.

We have described how scripting languages such as Python

provide powerful integration tools and can be used to connect

simulator components to general purpose external libraries and

appropriately configured external applications. This expanded

simulator functionality will lead to the development of consider-

ably more sophisticated GUIs, result visualization, and data

analysis.
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It is notable that in the paradigm of the CBI architecture,

although model parameters are stored and processed separately

from stimulus protocols and the way simulations are run, the

modularity of the software does not interrupt but actually

enhances an integrated user experience. Simultaneously, this

modularity greatly facilitates the development and maintenance of

individual G-3 components.

Extensibility in The G-3 Software Federation
An important benefit of the CBI architecture is that third party

software libraries become available to users. For example,

wxFormBuilder can be employed to generate GUI bindings for

wxPython and integrate them with the G-3 software platform.

To demonstrate the power of our approach, we interfaced G-3

with Reconstruct and Blender. This novel integrated software

platform has been used for visual inspection and validation of

reconstructed dendrites by connecting a model to the geometrical

and analytical tools provided by the Blender plugin library.

Further, we note that it is possible to use Blender to instantiate

neural simulations and, for example, collect simulation output data

for movie generation.

Complementary functionality to that provided by interfacing G-

3 with Blender would be available after interfacing G-3 with

neuroConstruct (http://www.neuroconstruct.org/), a software

package designed to simplify the development of complex

networks of biologically realistic neurons [19,20]. Implemented

in Java, neuroConstruct uses the latest NeuroML specifications (see

http://www.neuroml.org/, http://www.morphml.org/), can be

used to visually validate network layout and design [21], and can

be connected to Python applications (e.g. see http://www.jython.

org/). In principle this allows it to be interfaced with other

simulators that have Python bindings, including NEURON

(http://www.neuron.yale.edu/neuron/, [22]) and NEST (http://

www.nestinitiative.org/index.php/About_Us, [23]).

A serial communication framework for event delivery of action

potentials to afferent synapses has been developed. Called DES, it

can be integrated with the mathematical solvers of G-3 using

either Python or Perl. It allows a user to stimulate one or more

synapses with a specific train of afferent impulses. DES is

optimized for communication over serial hardware. However, it

is straight forward to extend it to support communication

frameworks for parallel hardware such as those provided by the

MOOSE simulator [24] and the MUSIC framework [25].

The digital reconstruction of neuronal arborization is an

important step in the quantitative investigation of cellular

neuroanatomy. The NeuroMorpho.Org database of neuronal

morphologies (http://www.neuromorpho.org/) is a centrally

curated inventory of digitally reconstructed neurons [26]. It allows

extensive morphometric analysis, when linked to a simulator and

provides a first step in the large scale implementation of

biophysical models of electrophysiology. Interfaced with the

functionality of the Model Container it has the capacity to

accelerate the development of neuronal models by providing a

direct link to data from experiments. Preliminary implementations

of this functionality are now part of an automated test framework

for G-3.

G-3 also significantly extends the ability of GENESIS to

transparently interact with experimental technologies such as open

source dynamic clamp software. As an example, the modular

approach taken by the RTXI platform for dynamic clamp [27,28]

and the modular structure of G-3 mean that the solver, Heccer,

can be directly integrated as an RTXI plug-in [29]. This greatly

simplifies the required software development.

Ultimately, the extensibility of the CBI architecture provides an

extremely plastic environment within which appropriately config-

ured external applications can be integrated with a scripting

language of choice.

Implications for Neuronal Simulator Interoperability
The current generation of neural simulators can be character-

ized as software applications that support a user workflow

extending from model construction to data analysis. Due to their

simplicity [30] and ease of use [31], many of these simulators

support Python bindings. They range from Monte-Carlo simula-

Figure 5. Image of reconstructed Purkinje neuron dendritic segment. Blender is an open source 3D content creation suite that can be
interfaced with the GENESIS neural simulation platform to replace the functionality otherwise provided by the G-Shell (a stand-alone GENESIS
component). The rendering functions of Blender can then be used to analyze the morphology of small dendritic segments imported from electron
microscopy data.
doi:10.1371/journal.pone.0029018.g005
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tors for reaction-diffusion systems [32] and dedicated large

network simulators [33] to the general purpose simulators

NEURON and GENESIS [7,34].

For these simulators, interoperability can be implemented using

one of the emerging standards for model exchange such as

NeuroML [35], NineML [36] or PyNN [15]. While dedicated G-3

modules supporting the use of these interoperability standards are

currently under development, the G-3 platform also provides an

alternative approach. By employing scripting languages a CBI

compliant simulator can easily be connected to general purpose

software. This provides functionality that powerfully supports the

development of ‘next generation’ neural simulation platforms.

Federated Software Development in Neuroscience
Processes of software development have traditionally been

described as either cathedral-like where there is a closed

development group under central direction and software releases

are infrequent, or bazaar-like where software is developed by

volunteers and software releases occur early and often [37,38].

While cathederal-like software development leads to a single-

threaded development cycle commonly used by commercial

applications, the bazaar-like leads to multi-threaded development

cycles of applications that come in different flavours. (Note: A

classical example is the family of editors based on Emacs.)

Here, based on the CBI paradigm, we have outlined a solution

for multi-threaded development of software components for

neuroscience (for other examples of this approach to neural

simulation see [39,40]). We have given examples that use Python.

Employed in this way, the modularized design of the G-3

simulator gives rise to an ecology of software components that

can be integrated in a variety of ways to provide a software

development environment that is both progressive and

federated.
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