
A Federated Design for a Neurobiological Simulation
Engine: The CBI Federated Software Architecture
Hugo Cornelis1*, Allan D. Coop2, James M. Bower3

1 Cornelis H. Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America, 2 Coop A. D. Department

of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America, 3 Bower J. M. Research Imaging

Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America

Abstract

Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this,
we have developed a federated software architecture. It is federated by its union of independent disparate systems under a
single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data
among different independent applications, and supports extensibility by enabling simulator expansion or enhancement
without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on
development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension
typically occurred through modification of existing functionality. The software architecture we describe here allows for both
these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the
provision of logical relationships and defined application programming interfaces. They allow any appropriately configured
component or software application to be incorporated into a simulator. The architecture defines independent functional
modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level
data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular
nature of the architecture and its independence from a given technology facilitates communication about similar concepts
and functions for both users and developers. It provides several advantages for multiple independent contributions to
software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when
compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs
and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of
components, and (5) Clear delineation of the development scope of new components.

Citation: Cornelis H, Coop AD, Bower JM (2012) A Federated Design for a Neurobiological Simulation Engine: The CBI Federated Software Architecture. PLoS
ONE 7(1): e28956. doi:10.1371/journal.pone.0028956

Editor: Kelvin E. Jones, University of Alberta, Canada

Received April 8, 2011; Accepted November 17, 2011; Published January 5, 2012

Copyright: � 2012 Cornelis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by 5R01NS049288-07, 5R01NS049288-06, 3R01NS049288-06S1, 2R01NS049288-05, 5R01NS049288-04, 5R01NS049288-03
(www.nih.gov) and CREA/07/027 (www.kuleuven.be). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Hugo.Cornelis@gmail.com

Introduction

The application of mathematical methods to modeling and

quantification in neurophysiology can be traced to the Lapicque

model of a neuron introduced over a century ago [1], the

empirical description of action potential generation and propaga-

tion [2], the application of cable theory to the modeling of

dendritic electrophysiology [3], and the recognition that different

levels of analysis could be employed to understand brain function

[4]. Although, a hand cranked calculator was employed to verify

the original integration of the action potential, it was not until

mathematical approaches based on cable theory were developed

to model dendritic properties and function in the late 1950s, that

digital computers became a necessary tool for modeling studies

[5]. It took a further quarter century for the interdisciplinary field

that links neuroscience, cognitive science, electrical engineering,

computer science, physics, and mathematics to be named and thus

give birth to computational neuroscience [6].

Historically, the development of neuronal simulation software

for the construction of morphologically detailed neuron models

and small networks was instigated by research projects that

specifically addressed complementary technical and scientific

questions [7]. For example, one widely used application is

NEURON (http://www.neuron.yale.edu/neuron/, [8]). It grew

from the identification of numerical techniques that greatly

improved the efficient computation and accuracy of the solution

to the cable equations employed to model electrical activity in

branched dendrites [9,10]. Another widely used simulation

platform is GENESIS (http://genesis-sim.org, [11]). From con-

ception, it has been a more generalized simulator and was initially

employed to model at the single cell level neural oscillations in

piriform [12] and cerebral cortex [13].

These software systems have both been highly successful and

have continued to grow in complexity through cycles of research

project extension (see for example parallel NEURON [14] and

PGENESIS [15]). However, after more than twenty years of

extending their functionality, usually by the direct incorporation of

source code into the core of the simulator, code structures have

become so complicated that it is now increasingly difficult, if not

impossible, to easily continue this process. The resulting stand-alone

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e28956

applications have become monolithic with their life cycles inevitably

moving from extension to maintenance. (Note: italicized text

indicates the first appearance of a technical term defined in

Materials and Methods. Typewriter text indicates the name of a

software module described in Results.) A significant consequence of

this process is that the development of an optimized simulation can

be a considerable challenge for the neuroscientist unfamiliar with

the underlying mathematical and computational theory.

One response to the cumbersome nature of monolithic software

applications has been the development of specialized simulators

capable of modeling different levels of biological detail. For

example, NEST (http://www.nestinitiative.org/index.php/About_

Us, [16]) simulates large structured network systems, HHsim

(http://www.cs.cmu.edu/dst/HHsim/, [17]) provides a graphical

environment for the detailed exploration of a section of excitable

membrane via the Hodgkin-Huxley equation formalism, COPASSI

(http://www.copasi.org/tiki-view_articles.php, [18]) is a SBML

[19] enabled application for simulation and analysis of sub-cellular

biochemical networks, and MCell (http://www.mcell.cnl.salk.edu/,

[20]) uses Monte Carlo algorithms to track the stochastic diffusion of

individual molecules.

The rapidly growing diversity of modeling environments and

tools raises significant issues surrounding the reproducibility of

results from different simulators. This is not a trivial problem.

When combined with the current laxity in reporting model and

simulation details and the general lack of independent validation

of computationally generated results, the credibility of research in

computational neuroscience is frequently compromised. In

principle, any finding should be independently reproduced prior

to being accepted as a genuine contribution to the body of

scientific knowledge (see [21,22]).

Problems of incremental model extension, incomplete model

specification, and reproducibility of results, have resulted in the

idea of the ‘‘interoperability’’ of neuroscience modeling software.

Interoperability has been defined as ‘‘all mechanisms that allow

two or more simulators to use the same model description or to

collaborate by evaluating different parts of a large neural model’’

[21]. Various forms of interoperability are possible and two broad

types have recently been identified [21]. Type 1 interoperability is

defined as the development of portable model description

standards such that models built for one simulator can be run

on another, i.e. through the adoption of common simulation

languages such as SBML (http://sbml.org/, [19]), NeuroML

(http://www.neuroml.org/, [23]), or NineML (http://software.

incf.org/software/nineml). Type 2 is defined as run-time interop-

erability, where different simulators operating on different

domains interoperate at run-time either by direct coupling via

simulator script languages (e.g. pyMOOSE [24]) http://moose.

ncbs.res.in/component/option,com_wrapper/Itemid,86/; MU-

SIC [25]), indirect coupling via interpreted languages (e.g. PyNN

http://neuralensemble.org/trac/PyNN, [26]), or coupling via

object oriented frameworks (e.g. Catacomb2 http://www.comp-

neuro.org/catacomb/ccmb_help/index.html, [27]).

Here we introduce a new class of simulator architecture, the

Computational Biology Initiative federated software architecture

(for convenience referred to here as the CBI architecture). It

takes its name from the Computational Biology Initiative at the

University of Texas at San Antonio, where development was first

initiated. It has been fully implemented as the basis of the

recently reconfigured GENESIS (see [28]). As we now show, it is

a software architecture that transparently supports both interoper-

ability and ‘‘extensibility’’ for model building, simulation, and

result analysis.

Results

A biological system can be characterized as rich, complex, and

multi-dimensional. These characteristics distinguish it from the

mathematical representations and data formats employed by a

computer-based model. Specifically, the dynamical properties of a

biological system do not map easily to the logical principles and

mathematical constructs used by software implementations [29].

This has the important consequence that current model

representation technology employed by simulators typically

exposes mathematical details and peripheral control code to a

user that is unrelated to the biology that it aims to represent (see

Supplementary Material–S1, S2 for examples from GENESIS 2;

S3, S4 for examples from NEURON).

To address these issues, we developed the CBI architecture, a

meta-framework for software development that defines a fully

functioning simulator. The architecture is the principled result

of a bottom-up restructuring of the source code of the

GENESIS 2 neural simulation system. It was developed on

the basis of our understanding of a general scientific workflow,

referred to as an ideal user workflow, and an analytic method

known as a separation of concerns. The software modules resulting

from this analysis are described and a brief overview of the

structural and functional relationships of the CBI architecture is

then given.

The Scientific Workflow
The relationship in computational biology between the activities

involved in conducting an experiment and running a simulation is

illustrated in Figure 1. These two iterative processes are connected

by a feedback loop that employs interpretation of results as an

iterator to design new experimental setups and model construc-

tions.

From this perspective, simulation provides a framework to

organize our understanding of biological systems. The CBI

architecture is designed to support the lower loop within the

illustrated scheme and was developed in an effort to resolve the

complexities associated with continual addition of functionality to

simulators. Ultimately, simulators become monolithic and it is

increasingly difficult for users and developers to maintain and

extend them, with the logical consequence that user workflows are

often similarly degraded. Contemporary simulator scripts are also

typically unstructured in the sense that a biological model is mixed

with other code that defines and controls inputs, outputs and

simulation configuration [21].

The User Workflow
The term user workflow is employed to describe the sequence of

necessary steps typically employed by a person in developing a

computational model and employing simulation to generate data

for subsequent analysis. In this sense it is a depiction of a sequence

of operations, declared as the work of a person or a group of

persons [30].

A comprehensive user workflow can be employed to guide the

separation of the different aspects of a model by organizing user

actions into different categories during model development. The

workflow allows distinctions to be made between an object under

investigation, the tools used to perform the investigation, and the

operations performed during the investigation. It also distinguishes

between the results obtained from a single investigation and the

method used to define multiple investigations in a series. The user

workflow identifies five steps in total (explained in more detail in

Results).

The CBI Federated Software Architecture

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e28956

The Ideal User Workflow for Simulations in Neurobiology
As many more data flows can exist than are present in reality,

each actual data flow can be considered in the context of a

sequence of user actions or workflow. We define an ‘‘ideal user

workflow’’ that provides a canonical form of a user workflow

specific for neural simulators. In this section, we introduce the set

of typical workflows that use CBI simulator architecture

applications by describing the ideal user workflow where a user

wants to model a biological system. We then briefly mention a

second set of workflows that comprise user extensions of the

functionality of an implementation of the CBI architecture. Both

sets of workflows are presented in a technology and implemen-

tation free manner.

A five step outline of an ideal user workflow for the

development, implementation, and simulation of a computa-

tional model has been identified from the workflow of users of

the GENESIS neural simulation platform [31]. Importantly, the

workflow explicitly distinguishes between the static structure of

a model of the biology (Step 1), the dynamic state of its

simulation (Step 3), and the analysis of this dynamic state (Step

4). We also note that this workflow does not specify any

particular order for its completion. However, for any given

case, meaningful simulation output will only occur with

completion of Steps 1–4.

Step 1: Construct Model
The simulator shell and the graphical user interface (GUI) each

provide an interface that interprets user input such that the

simulator ‘understands’ different commands and performs the

appropriate actions. Simple models can be created directly within

the simulator shell by entering a sequence of commands. More

complex models are available to the shell from libraries or

databases external to the simulator. Shell tools can then be used to

explore and check the integrity of a model. Following any

necessary or desired changes, a new version of the model can be

saved.

Step 2: Design Experiment
Specific change management tools can be used to make small

modification to a model, e.g. to set model parameter values

specific to a given simulation. Configuration tools support the

definition of the stimulus or activation parameters for a given

simulation run or experiment and the output variables to be stored

for subsequent analysis by independent software.

Step 3: Run Simulation
Shell tools can be used to check the state of a given simulation

or reset the simulation time step and solved variables to their initial

values. After a simulation is run, output values are flushed to raw

result storage for subsequent data analysis. The model state can be

saved at any simulation time step. This allows it to be imported

into a subsequent simulator session for further development and

exploration.

Step 4: Process Output
The validity and location of simulator output is checked prior to

data analysis. Output can be analyzed either within the simulator

or piped to external applications such as Matlab.

Step 5: Iterate
A modeling project is established by the introduction of iterators

into the user workflow. Iterators close the loop between the output

of results and model construction, they include: Automated

construction of simulations and batch files, static parameter

searching, and active parameter searching using, for example,

dynamic clamp technology.

Principal Concerns
In software engineering, the process of partitioning a program

into logical functions that minimize overlap is referred to as a

separation of concerns. We consider that a principled separation of

concerns is a prerequisite for the development of advanced

computational modeling techniques in the neurosciences. User

concerns have a direct influence on the user’s experience of an

application. Technical concerns have a clear and direct influence

on the partitioning of a program into its primary functional blocks,

and are also crucial for problem diagnosis and guaranteeing the

correct behavior of software. Here, we propose there are two

principal concerns that underly the development of modeling

software: (1) Separation between data and control, and (2)

Separation of biology and mathematics through the use of data-

layering.

Control versus data
All software can be understood in terms of algorithms operating

on input data to produce output data. For experimental research,

the natural distinction between data and algorithms can be

compared to the distinction between the biological system (data to

be investigated) and the stimulation paradigm (tools supporting

Figure 1. Data flows in science. Conducting experiments and running simulations are two iterative processes indicated by the upper and lower
dashed outlines. They are connected by an interposed feedback loop that uses the iterative interpretation of results to design new experimental
setups and model constructions.
doi:10.1371/journal.pone.0028956.g001

The CBI Federated Software Architecture

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e28956

data investigation). For computational research, the distinction

between data and algorithms leads to a separation between model

(data) and simulation control (control of data flows).

The requirement for data-layering
It is the capacity to represent a model in terms of biological

concepts such as neuron, dendrite, soma, channels, and molecules,

that allows a user to clearly relate a model to the original scientific

questions. One way to achieve this goal is to separate the high-

level biological representation of a model from its low-level

mathematical implementation and provide operators that convert

between them. This insulates the process of model construction

from the computations performed during a simulation.

The relationships between simulator control and data modules

in a federated architecture are symbolized by the horizontal

arrows in Figure 2, whereas the relationship between high level

biological concepts and their mathematical implementation are

symbolized by the vertical arrows. It is the separation of the

principle concerns along the horizontal and vertical axes that

allows independent modules to be designed. This process underlies

the construction of a simulator composed of stand-alone components

and forms the basic meta-framework referred to as the CBI

architecture.

Importantly, we note that a simulator can be efficiently

modularized when only horizontal or vertical interactions are

allowed between the modules illustrated in Figure 2. The larger

the number of interactions allowed between diagonally located

components, the more difficult it becomes to functionally separate

simulator components and to maintain and extend the resulting

software application. Diagonal interactions are forbidden in the

CBI architecture as they foster the mixing of functionality across

different levels that ultimately leads to the creation of monolithic

software applications.

Separation of Concerns
Consideration of the principal concerns of data, control, and

data layering were used to expand Figure 2 by the separation of

concerns principle. This key principle in software engineering

states that a given problem involves different kinds of concerns. To

cope with complexity, these concerns should be identified and

separated [32]. The aim is to achieve engineering quality factors

such as robustness, adaptability, maintainability, and reusability.

Ultimately, this results in clear model scripts where the biological

aspects of a model are separated from the peripheral code that

implements a model during a simulation.

In this section we present the outcome of a separation of

concerns based on the principal concerns of data- and control-

related simulator components introduced above. Initially, the

biological and numeric representations and user workflows and

scheduling modules are expanded to give the principal functions of

the CBI architecture.

Our analysis generated the primary functions of the CBI

architecture illustrated in Figure 3. The mechanism identified for

separation of model construction from the low level computations

performed during a simulation was the addition of a mid-level

software layer. This intermediate layer provides function and data

bindings between scripting applications and database interfaces,

respectively, and the low-level back-ends. Note, this figure

maintains the relationships between the four principal concerns

identified in Figure 2 by separating high level biological

representations (Fig. 3A) and low level mathematical implemen-

tation (Fig. 3B), as well as separating control functions from data

streams. Note also, the addition of a GUI to connect high level

scripting applications with database interfaces.

User Workflows and Biological Data
The first step in our ideal user workflow involves creating or

importing a model. It maps directly to high-level biological

representations via a simulator shell or GUI. This interface

straddles the Control/Data divide and replaces the upper

horizontal arrow connecting the User Workflow and Biology

modules in Figure 2. It enables the workflow by assisting either the

development of simple cell models from the command line of a

simulator shell via the Scripting Libraries & Applications module

or the importation of model descriptions via the Database

Interfaces module (see Fig. 3).

Step 2 of the ideal user workflow typically requires biological

expertise to design an experiment. This includes the definition of

constants such as the command voltage of a voltage clamp

protocol, delays and duration of a current injection protocol, and

model and simulation inputs and outputs.

Numerics and Scheduling
Step 3 of the ideal user workflow deals with the checking,

resetting, and running of a simulation. This is accomplished via

the Function Bindings module of the CBI architecture (see Fig. 3).

At a technical level the simulation involves scheduling

mathematical operations on, and communication of, the numer-

ical representations of a biological model. This step is indicated by

the horizontal arrow between Scheduling and Numerics in

Figure 2 and is encompassed by the Controllers & Communication

and Solvers modules illustrated in Figure 3.

Elaborate user workflows can stop and restart running

simulations and provide new inputs to a model thereby imposing

high-level control on the low-level back-ends via the controller.

Overall Design Objectives
Several important objectives emerged from the separation of

concerns and were used to guide the development of our federated

approach to the design and development of a neuronal simulation

engine. They include: (1) Reduced complexity of software modules

when compared to a monolithic system, (2) Simplified documen-

tation of modules in terms of inputs and outputs, (3) Easy

incorporation or removal of individual modules as required, (4)

Simplified development and testing of modules as stand alone

components, and (5) Clear delineation of scope for new module

development.

Figure 2. Principle concerns. The four fundamental building blocks
of a simulator are distinguished by separating (i) Data from control, and
(ii) High level biological concepts from their mathematical implemen-
tation. In a federated architecture the only allowed interactions
between modules are those indicated by the vertical and horizontal
arrows. Diagonal interactions are forbidden as they ultimately lead to
interactions that result in the existence of a monolithic software
architecture.
doi:10.1371/journal.pone.0028956.g002

The CBI Federated Software Architecture

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e28956

Structural Overview of the CBI Architecture
The CBI architecture is defined as a modular paradigm that

places stand-alone software components into a set of logical

relationships. In this sense it defines a modular framework that

provides the necessary parts of a neural simulator.

The schema identified by the separation of concerns (see Fig. 2)

is expanded in Figure 3 to give the modules that form the building

blocks of the CBI architecture. This figure retains the four

quadrants of simulator functionality identified by our separation of

concerns. It includes the notions of low-level data for numerics and

high-level representations for biology, as well as separation

between data and control (Fig. 3 indicated by horizontal and

vertical dashed lines, respectively).

We refer to the CBI architecture as being ‘federated’ as it extends

the modular approach associated with the development of single

applications to the functional integration of otherwise independent

applications. Federation aims to provide a unified interface to

diverse applications and mask from the user the differences,

idiosyncrasies, and implementations of the underlying applications

and data sources (see www-128.ibm.com/developerworks/db2/

library/techarticle/0203haas/0203haas.html). In doing so, federa-

tion provides transparency, heterogeneity, a high degree of function,

autonomy for the underlying federated sources, extensibility,

openness, and the possibility of highly optimized performance.

Here, extensibility is defined as a system design principle where an

implementation takes into consideration future developments. An

extendible system is one that includes mechanisms for expanding or

enhancing the system with new capabilities without having to make

major changes to the system infrastructure.

Ideally, it makes the underlying applications look like a single

system to the user. Enhanced application interoperability is

achieved through the use of flexible high-level scripting languages

to support diverse workflows and low-level application programmer

interfaces and application binary interfaces for performance.

In summary, the CBI architecture provides a template for

software development that, at its core, contains a simulator.

Additionally, the modularity and layering of the architecture

simplifies connection to independent applications indirectly related

to model construction and instantiation and the display and

analysis of simulation output. Figure 3 illustrates the various

modules of the CBI architecture.

The High Level User Interface Layer
Modules in the top level of the CBI architecture (Fig. 3A)

provide user accessible interfaces to simulator functionality

through a Graphical User Interface. Model data are controlled

by the Database Interfaces, whereas, simulations are controlled

by Scripting Libraries & Applications. The various modules and

submodules located in this layer can be instantiated by a

simulator on an as-needed basis. This layer supports the user

interfaces for the first three steps in the ideal user workflow,

including: (1) Construct Model, (2) Design Experiment, and (3)

Run Simulation.

The Graphical User Interface
Based on the distinction between data and control, the GUI

comprises two submodules (illustrated in Fig. 4). One is related to

model data and incorporates model construction and visualization

of simulation results, the other is related to simulation control.

Model Construction and Result Visualization. The

model construction functionality of the GUI allows a user to

define a model in terms of the biological properties supported by

the modeling component (the Biology Model Container, described

below). It also connects to other modeling components to provide

a GUI for database connectors in the module Model Tools and the

Biological and Experimental Model Containers. This GUI can

also be used to inspect or alter a model and instruct the modeling

component to save the model back to disk as a conceptual

representation available for later use.

The result visualization functionality of the GUI provides

different views of a model and supports the possible workflows

between them. It can be divided into generic and application

specific parts. The generic parts are those commonly provided by

external tools such as GNUplot (http://www.gnuplot.info/),

Matlab (http://www.mathworks.com/), or Grace (http://plas-

ma-gate.weizmann.ac.il/Grace/) for display of the temporal

evolution of variables. Examples of the application specific parts

include, user specified visualization of neuron morphology via

Figure 3. Overview of a federated software architecture. Graphical illustration of the primary functional modules defined for the CBI federated
software architecture. Control modules are given to the left and data modules to the right. A. The top layer contains conceptual data and controls
representations of the biology of a model. B. The bottom layer contains representations that are numeric and thus close to the hardware. The middle
or intermediate layer bridges between the biology and the numerics implemented in a CBI compliant simulator. Importantly, as our separation of
concerns shows (see Fig. 2 and text), Control (Scripting Libraries & Applications) and Data (Database Interfaces) modules can interact either directly or
via the Graphical User Interface.
doi:10.1371/journal.pone.0028956.g003

The CBI Federated Software Architecture

PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e28956

http://www-128.ibm.com/developerworks/db2/library/techarticle/0203haas/0203haas.html
http://www-128.ibm.com/developerworks/db2/library/techarticle/0203haas/0203haas.html

morphologically related color coding of variables solved during a

simulation, axons showing propagating action potentials, and

higher level visualizations of network behavior [33,34].

Simulation Control. Simulation control comprises actions

such as the starting and stopping of a single simulation while a

browser provides access to sets of related simulations and results

that can be explored with the Result Visualizer. Various buttons

and dialog boxes allow interaction with the Experiment Model

Container to configure protocol specific inputs and parameters

(see below).

Database Interfaces
There are three primary submodules within the Database

Interfaces module. They are: (1) Model Tools, which provides

functionality for connecting to databases, parameter searches,

and model analysis, (2) The Biology Model Container, which

allows a user to define a model in terms of biological properties

such as spine, morphology, circuits and their connectivity, and

(3) The Experiment Model Container, which enables the

definition of an experiment in terms of actions taken on a

biological model.

Model Tools. Some model tools may already incorporate a

good GUI for model construction (for a typical example see [35]).

The difference with these tools is that in the CBI architecture this

part of the GUI does not export a model in a simulator specific

language. Instead, it interacts directly with the Model Containers

via a low-level application binary interface (ABI). (Note: For simplicity,

where appropriate, we collectively refer to the Biology Model

Container and the Experiment Model Container as the Model

Containers.) The ABI provides a direct coupling between the

implementation technologies of the different software components,

creates a much tighter loop between the GUI, Simulation Control,

and lower level back-end functions (described below); and provides

a richer interactive user-experience.

The Biology Model Container. This module stores three

different versions of a model. (1) A biological representation,

available for inspection by other software modules, e.g. a model

visualizer, (2) A conceptual representation that can be regarded as

an enumeration of biological concepts and their relationships. It

can contain algorithm names and parameters that specify how to

build the model and can be exported and stored on a file system,

and (3) A fully expanded mathematical representation, generated

by algorithms referenced from the conceptual representation,

which, if mathematically complete, can be simulated. However, if

a parameter is missing, e.g. the axial resistance in a neuronal

morphology, the model is still useful for inspection and visual

validation by the Model Construction GUI. Note that most

current simulators do not allow incomplete representations of a

model.

The translation between conceptual and mathematical repre-

sentations involves separate tasks, (1) Linearization of the

hierarchical structure of the biological model for use by the

solvers and (2) Translation of model connectivity to connectivity

between these solvers. We now briefly expand on these tasks.

If biological components in a model are assumed to function as

a single biophysical unit they can be grouped, e.g. a spine and a

dendrite, an axon hillock and the soma, or a population of calcium

or potassium channels. For a mathematical solver however, these

groups must be converted to a set of equations at the same level as

other equations of the same type and independent of the

hierarchical structure of the biological component. This requires

translation of the biology of a user defined model to the necessary

flat stream of elements.

In a biological representation of a network model there are

hierarchical projections, each containing their own sub-projections

and connections. However, during a simulation the different back-

ends of the CBI architecture are only connected by a set of serial

communication ports. It is the Connectivity Translator that

Figure 4. Detailed view of the Computational Biology Initiative federated software architecture. Illustration of the functional modules
that is closer to an implementation of the CBI architecture. It illustrates the relationships of sub-modules within each of the primary functional
modules given in Figure 3. North bound interfaces group and conceptualize the details of the modules and interact with south bound interfaces of
higher level modules. Steps 1–3 of the ideal user workflow induce data flows between the software modules of the CBI architecture. This results in
data cycling between the upper layers (blue and green boxes) and lower layers (red box). Ultimately, the two layers team to implement a single
simulation. By design, any type of model including multi-scale models will exhibit this data cycle. See text for explanation and details.
doi:10.1371/journal.pone.0028956.g004

The CBI Federated Software Architecture

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e28956

translates the connectivity between the components of a biological

model to that of the connectivity between low-level back-ends

(described below). This requires the Biology Model Container to

also act as a model component identification system: Given the

identifier of a biological component in the mathematical

representation, the Biology Model Container must be able to

translate it into an identifier for a mathematical variable that can

be used by a solver.

By implementing biological and connectivity translation, the

Model Container decouples the physical implementation of the

low-level back-ends from the biological representation of a model

and the way the user sees the model. The advantages of this

approach are (1) The implementation complexity of the

mathematical solvers is greatly reduced as they have only to deal

with numerics and (2) It enables a more intuitive and user-friendly

representation of a model.

Depending on the simulator application domain, an implemen-

tation may focus on one of the translation functions or both. For

instance a network simulator such as NEST provides better

support for connectivity translation [36], while a single neuron

simulator typically provides better support for biological concept

translation. The GENESIS and NEURON simulators support

both connectivity translation and biological concept translation.

However, their translation functionality is essentially one-to-one

such that the representation of the connectivity of the biological

model exposes the structure of the mathematical equations. This

results from a violation of the data-layering principles identified by

our separation of concerns. One consequence is, the user becomes

responsible for managing network connectivity at the mathemat-

ical level during construction of network models.

The Experiment Model Container. This stores a model of

a stimulus paradigm and desired output parameters and defines

and stores a hierarchical sequence of stimulus-related actions (e.g.

start and stop time of a current injection) and their dependencies.

Scripting Libraries & Applications
This module contains three submodules, (1) Implementation

Libraries containing functions specific to a given application, (2)

Scripting Libraries that provide scripts to control a specific series

of research and tutorial simulations, and (3) The Scheduler, which

combines generic aspects of these scripts to instantiate the

simulation.

Implementation Libraries. Each library has a defined

focus, e.g. the investigation of a synaptic learning rule applied to

a given neuron, or a library of stimulus paradigms representing in-

vitro and in-vivo conditions for a cerebellar Purkinje cell model

[37,38]. The library implementation typically occurs for a set of

research or tutorial simulations. It may also implement ‘glue’

functions to connect to external libraries for other activities such as

result analysis, e.g. via the GNU Scientific Library (http://www.

gnu.org/s/gsl/), the Perl Data Language (http://pdl.perl.org/),

and the Scientific Library for Python (http://sourceforge.net/

projects/scipy/).

Applications. A typical example of an application is a set of

simulator scripts that implement a model tutorial (e.g. [39]).

Scheduler. For stand-alone software components such as the

Model Container and the low-level back-ends to be useful, they

must be ‘glued’ together and activated correctly, such that they

can work together in co-ordination on a single simulation. This is

exactly what the Scheduler does. It typically exploits the

sophistication of modern scripting languages to load software

components on demand and initialize and activate them from a

configuration file. The Scheduler does not have any computational

load and its implementation is both simple and highly

configurable. It can also provide a script-based interface for

interactive user control or the implementation of more

sophisticated user-workflows.

The Low Level Back-End Layer
Modules in the lowest level of the CBI architecture (Fig. 3B)

provide, (1) Solvers that employ specific algorithms for the solution

of numerical equations. They include difference equation solvers

and sequence executors that can discretize and tabulate fixed

mathematical functions according to a user settable accuracy and

(2) Controllers (such as the simulation clock) and Communication

Infrastructures optimized for discrete events and numerics.

Collectively these modules implement the run-time environment

of a simulator.

Mathematical Solvers
Mathematical solvers apply numerical techniques such as

Runge-Kutta [40] or Crank-Nicolson [41] to solve systems of

equations. Dedicated data structures can be employed that adapt

these methods for computational neuroscience. Mathematical

solvers include compartmental, kinetic pathway and Monte Carlo

solvers, and in general any low-level back-end at the numerical or

hardware level. Because of their numerical nature, some solvers

can easily be extended to do the necessary discretization of a

continuous mathematical equation (at a user settable accuracy).

The generation of channel conductance tables is a common

example. Other examples are mesh generation for Monte Carlo

solvers and compartmentalization of a neuronal morphology.

The Command Sequence Executors provide a physical

implementation of an experimental protocol in computo. A

stimulation protocol stored by the Experiment Model Container

originates a Command Sequence Executor and the stimulus events

associated with the given protocol propagate to the input port of a

solver at a given time step. Note, connectivity between command

executors and numerical solvers is provided by the connectivity

translation function of the Model Containers.
Discrete Representations. Existing monolithic simulators

such as NEURON and GENESIS 2 currently require the user to

explicitly code scripts to avoid duplication of one-off data. In

contrast with this GENESIS 3, in compliance with the CBI

architecture, automatically detects duplicate parameterization of

variables such as channel gate kinetics and dynamically shares

their tabulated form as necessary. Solver generated discretisations

that form the numerical representation of a model are internally

published for reuse by other solvers in a process that is invisible to

users, e.g. dendritic morphology meshes and Hines enumeration of

compartmentalized morphology. Annotation of the representation

is necessary, e.g. annotation with the time step used to generate the

representation. The reuse of such representations minimizes the

memory requirements of large simulations.

Controllers & Communication
This module contains several submodules related to the low-

level control of a simulation.
Communication Infrastructure. The Communication

Infrastructure establishes run-time communication between

different solvers and input and output elements working on the

same model during a simulation. It can be optimized for either

discrete event communication or communication of array based

numerical data. There is a differential implementation for serial as

opposed to parallel hardware. As it can be part of the run-time

system during a simulation, the Communication Infrastructure

can have a significant impact on run-time performance.

Depending upon the simulation and hardware involved,

The CBI Federated Software Architecture

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e28956

Communication Infrastructure deals with issues of (1)

Parallelization, such as whether solvers are collocated on the same

CPU and whether this is made transparent to the solver

implementation, (2) Efficiency of the infrastructure for commu-

nicating neighboring lists of values, e.g. all the membrane potentials

of a compartmentalized neuronal morphology, and (3) Efficient

storage and distribution of discrete events used for action potential

generation and axonal propagation.

Controller. The Controller maintains the operation of all

simulator functions. It contains core functions such as the global

simulation time clock and the functions that start and stop the

advance of simulation time. The main function of the Controller is

to schedule and synchronize the back-ends that participate in the

simulation by requesting the numerical level to update its internal

states. To leverage the operation of sophisticated solvers and

enhance their maintainability, the Controller can also implement

facilitatory functions for arithmetic control such as floating point

exceptions.

The Intermediate Layer
The intermediate layer comprises the bridges for function and

data bindings that assist with the vertical flow of information

during the translation of biological concepts into numerical

equations.

Data Bindings
Data bindings translate the expanded representation of a model

into data structures that are specific for one type of solver. They

interface the Biology Model Container with the numerical back-

end and allow a natural and efficient code for the solution of the

numerical equations. Note that a data binding implementation can

choose to bind a solver to only one of the two translation functions

of the Biology Model Container. For example, a single neuron

solver only needs to access the task of biological model translation.

The most important characteristic of a data binding is that it

contains no specific algorithms. Instead, it provides a one-to-one

mapping of selected data extracted from the Biology Model

Container. The data selection can omit certain properties of the

biological model, i.e. geometrical coordinates are commonly not

used for the numerical solution of an equation.

A library of functions in the Biology Model Container assists in

the translation of values from a continuous mathematical domain

to a numerical domain. Examples include, the scaling of a

conductance density to a maximal conductance or the scaling of

the membrane capacitance density to the actual membrane

capacitance with respect to the surface area of a given

compartment. Superficially, this seems easy, although it is not

always the case, e.g. when spines are present in a model the

capacitance density must be scaled to account for the additional

spine surface area, while for a conductance density the spine

surface area is commonly not taken into account [38].

Other data bindings translate a sequence of stimulus actions and

output definitions to commands of a Command Sequence

Executor. They decouple the sequencer back-end implementation

from the Experiment Model Container such that the commands

from complex stimulus paradigms can be correctly sorted on both

non-parallel and parallel architectures.

Function Bindings
The function bindings connect user actions with functions of the

Controller such as to start and stop a simulation. They also

translate application specific control statements to events or

actions for the Controller.

A Short CBI Architecture Implementation Guide
Software implementations are formal structures that map user

requirements to technological solutions. However, an application

can only meet those requirements when this technological

mapping exists. In other words, it is the available technology that

defines the scope and boundaries of the user-workflows that can be

implemented in software solutions. As a consequence the

development of entirely new software architectures is best started

from the lowest layer and constructed upwards to implement user-

workflows and satisfy user requirements.

The lowest layer of the CBI architecture comprises numerical

solvers, thus implementation of a CBI compliant simulator can

start with the implementation of a numerical solver. Firstly, source

code files can be populated with the mathematical functions that

implement the solutions of the targeted equations. Secondly,

functions are required for interaction with the Controller module.

After these two steps, the new solver is useful for the simulation of

simple models. Thirdly, functions are required for communication

with other solver software components. Implementation of an

interface with a Biology Model Container makes the solver

available for simulation of more realistic models. Finally,

connecting with an Experiment Model Container and Scripting

Libraries allows applications such as tutorials and research projects

to be developed.

Behavioural View of the CBI Architecture
Figure 4 provides an expanded view of Figure 3 and illustrates

in more detail the structural relationships between the different

modules and sub-modules that comprise the CBI architecture. We

introduced their functionality above. The behavior of the CBI

architecture is defined by the functional and dynamic connectivity

provided by these individual modules. We now describe this

behavior within the context of our ideal user workflow.

Data-flows in the CBI Architecture. A (G)UI translates

user actions into a family of events that propagate to other

components of a software architecture, impact the internal states

of these components, and direct the data flows between them. In

Step 1 (Construct Model) and 2 (Design Experiment) of the ideal

user workflow, users combine models and experimental data that

are stored in files and databases. In Step 3 (Run Simulation) the

back-ends, such as the numerical Solvers and the Communication

Infrastructure, perform the calculations of a simulation, then save

the output back to files and databases. When combined, these

steps of the ideal user workflow imply a cyclic data flow from files

and databases to the back-ends. Here we explain how user actions

and data flows relate to one another in the CBI architecture and

define the overall behavior of an implemented software system.

In Step 1 of the ideal user workflow, the GUI is opened and a

cell model is selected from a database listing of available models.

Internally, model selection is translated into an event that instructs

the Biology Model Container to load a selected model from a

database and store it in memory using data structures for efficient

storage and retrieval by other modules. During initial inquiry, a

user may typically be interested in derived model parameters such

as the total surface area of a neuron, with and without spine

correction, while a sophisticated GUI can also present a table of

the channels employed in the model along with their conductance

densities and reversal potentials. More dedicated queries related to

specific brain areas or neuron types are supported by the Scripting

Libraries & Applications module.

A typical example of Step 2 of the ideal user workflow is the

design of an experiment that applies current injection pulses to a

neuron’s soma and defines simulation output as the somatic

membrane potential and somatic transmembrane currents. The

The CBI Federated Software Architecture

PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e28956

Experiment Model Container stores the definition of the current

pulse amplitude and duration, which is translated by a Sequencer

Bridge to a sequence of simulation-time events prior to the start of

a stimulation. These events are then executed by the Command

Sequence Executor during a simulation.

Running the simulation in Step 3 of the ideal user workflow

starts with the Biology Model Container examining a stored model

to determine model time constants or other parameters that are

relevant for the accuracy of a numerical simulation. The Solvers

then fill their data structures with parameter values optimized for

simulation, for instance a Crank-Nicolson solver can multiply the

membrane capacitance with the time step during this initialization

phase instead of at every simulation time step [42]. For this, the

memory image of a model must first be expanded into a

representation that includes the mathematical equations and

parameters relevant to the given simulation but, for instance, does

not include the spatial layout of segments as this is not required by

the Solvers. (Note: ‘Segment’ is a high level term employed to

describe different parts of the biological model of a dendritic

morphology. The equivalent low level (computational) term is

‘compartment’. It refers to the numerical representation of a

segment.) This behavior is different from that of existing

simulators, e.g. GENESIS 2. Such simulators do not make an

explicit distinction between internal data structures for model

representation and data structures for computation. Consequently,

they often generate redundant data during the initialization of a

simulation.

In network simulations the Solvers employ the Connectivity

Translator to initialize its simulation-time communication data

structures and to connect to the Communication Infrastructure.

When a user instructs the simulator to start a simulation, for

instance by pushing a button in a GUI, the Controller generates a

list of instantiated Solvers. It then advances the simulation clock

and requests each Solver to update its internal state. The

Communication Infrastructure connects the Solvers for efficient

communication of the solved variables. Solvers that were

configured for output, save results to a file. When the simulation

finishes, either by user action or following a preset simulation

period, output buffers are flushed to disk.

The independence of the Solvers in the CBI architecture not

only allows for better optimized implementations, but also enables

additional simulator functionality such as serialization of the model

state to a file. This allows a simulation to be resumed at a later

time and reduces the total simulation time of a complex model if it

requires a calibration phase prior to the application of an

experimental protocol.

As a result of Steps 1–3 of the ideal user workflow, data flows

both through and between software components that conform to a

CBI architecture: the data cycles between databases and files, and

back-end Solvers. Here we have described this cycle for a single

neuron model and, as we briefly noted, it also occurs for network

models. By design any type of model including multi-scale models

will exhibit this data cycle.

In Steps 4 and 5, the availability of any model data from the

Model Container and the functionality of Scripting Libraries &

Applications can connect the CBI architecture with external tools

while maintaining the integrity of the separation of concerns.

Scripting Libraries & Applications connect to external tools such

as Matlab to implement output analysis. They also allow

simulation output data to be combined with the model

parameters and structure available in the Biology Model

Container to implement Step 5 of our ideal user workflow, for

instance to provide automated script generators for the

generation of batch simulations. Importantly, at this stage of

the workflow, the back-ends of the CBI architecture (indicated

below the dotted horizontal line in Figures 3 and 4) are

unavailable. Once Step 3 is completed, all the data of the

dynamic state of the model are available through databases and

files. Consequently, there is no requirement to query the software

components that deal with numerical data. This ultimately

prevents the implementation of diagonal interactions in the

software and the creation of a monolithic simulator.

Discussion

Considerable experience with both user and technical concerns

related to simulator functionality and efficiency has been gained

from over twenty years of following user requirements during the

development of bottom up models of neurons and neural circuits

within the framework of the GENESIS software platform. This

has allowed us to identify an ideal user workflow. We employed

this workflow to constrain the separation of concerns analysis that

lies at the heart of the new software architecture we describe here.

By analyzing and decomposing a software system into separate

functions, it becomes straightforward to define the individual

software modules of the architecture. Clear delineation of

individual components in a modular software architecture allows

interfaces and their accompanying behaviors to be defined and the

communication between software layers to be specified.

We employed the results of our separation of concerns analysis

to develop the software architecture for a next generation neural

simulator. The resulting CBI architecture provides three signifi-

cant advantages for software development: (1) Modules can be run

separately on different machines. For example, the GUI and

modeling environment might run locally, while the simulator is

run elsewhere either serially or in parallel on more powerful

machines. (2) Decomposition of an application into multiple

software components allows reuse and extension of individual

modules. This clearly facilitates model development and research

progress. (3) Individual components can be independently

updated, enhanced, or replaced when needed, thus the life cycle

of a modular architecture is less complicated than that of a non-

scalable application.

Our approach has the advantage that the mathematical and

optimization internals of a solver need not be exposed to a user.

The resulting biological and numeric layers can further be

individually optimized to provide significant enhancements in

overall system performance. For low-level data and control, such

optimizations consist of running simulations more rapidly, e.g. by

achieving high cache hit ratios [42] and parallel implementation

[43]. For high-level data and control, optimization involves

increased support for biological concepts and usability by

employing both domain specific and scripting languages, as

opposed to low-level languages [44]. This improves support for

user-workflows and gives a richer user-experience [45].

Comparison of the CBI Architecture to Software Industry
Standards

The CBI Architecture is based on a three-tier software

architecture, a widely used commercial client-server paradigm

[46]. This paradigm has the dual advantages that servers can be

shared by users and software on both the client and server is easily

upgraded. Service-oriented architecture (SOA) is a widespread

commercial implementation of a three-tier architecture where

service based information exchange, reusability, and composability

defines a software federation for an application by uniting

resources while maintaining their individual autonomy and self-

governance [47].

The CBI Federated Software Architecture

PLoS ONE | www.plosone.org 9 January 2012 | Volume 7 | Issue 1 | e28956

User Experience
Dedicated industry standards have been developed for SOAs.

They allow routine implementation of business logic with an

optimal user-experience. (For example, the Business Process

Execution Language–BPEL–was approved by the industry in

2007. See http://en.wikipedia.org/wiki/Business_Process_Execu-

tion_Language.) SOAs often store control tables for meta-data

describing user workflows [48]. In this way, control software is

replaced with software for data management and the technical

implementation becomes focused on data management. Conse-

quently, SOA code development is highly focused on database

queries, result integration, and presentation. This provides a sharp

contrast to preliminary developments in computational neurosci-

ence for the standards of educational tutorials, research project

frameworks, and declarative neuronal modeling standards such

SED-ML [49]. Control, as defined for the CBI architecture, is not

a major aspect of SOA implementations. As a result, SOAs are

architectured using data-centric and technical concerns such as

database transactions and data routing, logging and debugging

rather than the principle concerns of data and control that we

employ here.

Software Structure and Run-time Parallellization
In three-tier architectures it is not uncommon for the second

tier, comprising so called middle-ware, to be distributed over

multiple hardware servers. However, any parallel structure is

specific to a given business application and the business logic is

fixed during the application design phase. This is not usually the

case for neuroscience simulators which often use the CPU load of

the mathematical model to calculate an ideal partitioning for each

simulation. This makes the parallel structure potentially different

for each simulation run [50]. In other words, the static parallel

structure of a three-tier application can be contrasted with the

dynamic parallel structure of a CBI compliant simulator where the

parallel structure of the run-time environment may depend on

model structure and simulation number [14,51].

It is for this reason that an optimal implementation of a CBI

compliant simulator includes functionality to automatically

partition a model and to transparently distribute simulations

within a parallel computing environment [43,50,52].

Differences in Backend Focus
Importantly, the implementation of business logic as control

tables results in the back-ends of SOAs consisting of database

engines that typically embed specialized algorithms and data

structures for information query optimization and performance. In

contrast with SOAs, the CBI architecture provides explicit support

for control functions throughout all layers of a CBI compliant

simulator through the Scripting Libraries and Communication

modules.

CBI Simulator Extension
When compared to the current generation of simulators,

simulator extension has a greatly enhanced meaning for a CBI

compliant simulator. Firstly, simulator extensions can be imple-

mented as modifications of and additions to existing software

components. As an example it can be relatively easy to enhance a

simulation controller such that it prints the simulation time to the

screen. Similarly, it is easy to enhance an existing compartmental

solver to compute the average membrane potential of a defined

section of a cell or its dendrites.

A second class of simulator extension is the addition of new

software components. For instance, to connect the simulator to a

morphology database and a channel model database two database

connectors can be written. They convert the database formats to

application programming interface (API) calls to the Biology Model

Container. Simple extension of this module allows it be used for

analysis of morphological characteristics and for quantification of

model components.

These different types of extensions stem from the modularity of

the CBI architecture. Current simulators typically only support a

restricted set of extensions. For example, extending the GENESIS

2 simulator with new solvers is not possible because its basic

architecture is not suitably modularized.

CBI Simulator Interoperability
Historically, the emergence of monolithic neuronal software has

led to simulator interoperability in computational neuroscience

being addressed as Type 1 interoperability between stand-alone

applications. It has also been proposed that Type 2 interopera-

bility can be achieved through the development of declarative

markup languages such as NeuroML and NineML [21].

A CBI compliant simulator easily supports Type 1 interoper-

ability through implementation of the appropriate database

interface software component. Such an interface maps the

concepts of declarative languages to concepts supported by the

Biology Model Container, which can also be used to connect the

simulator to external databases that provide support for these

declarative languages.

Type 2 interoperability has recently been implemented as the

capability to communicate simulation data at run-time between

different simulators using procedural paradigms[24,26]. However,

this approach requires the modeler to understand some of the

internals of the model, the simulator, and the implementation of

the procedural paradigm. While monolithic software applications

are typically too complicated to extend, this additional layer of

complexity makes the modeler’s task next to impossible.

Ultimately, the CBI architecture moves interoperability prob-

lems from a context of communication between large monolithic

applications to communication between well defined and simpler

software components. Here, it is the communication infrastructure

of the CBI architecture that addresses the run-time communica-

tion of simulation data. It is within the context of the CBI

architecture, that the support of both Type 1 and 2 interopera-

bility becomes a practical possibility.

The Ideal User Workflow Revisited
The steps of the ideal user workflow can be categorized as user-

workflow oriented and data-oriented. We briefly showed above the

relationships between the ideal user workflow and the CBI

software architecture from this viewpoint.

The steps for model construction and experiment design

naturally correspond to the configuration definitions of the

Biology Model Container and the Experiment Model Container,

respectively. The integration of these two steps, provides a single

simulation that can be run by the mathematical Solvers, the

Communication framework, and the Scheduler. Each of these

components needs appropriate peripheral configuration. The

methods used to analyze the results are specific to the scientific

question at hand, and can be configured in the component

Scripting Libraries & Applications. When combined, these

configuration definitions determine one run of a simulation.

The separation of the steps for biological model construction

and experiment design allows the modeler to build separate

libraries of biological models and experimental protocols. In

principle this allows any model to be combined with any

appropriate experimental protocol without the requirement that

The CBI Federated Software Architecture

PLoS ONE | www.plosone.org 10 January 2012 | Volume 7 | Issue 1 | e28956

the protocol was specifically designed for the given model. The

automation of this process would be useful to identify the

strengths, weaknesses, or deficits of a specific model.

Finally the Iterate step defines the differences in configuration

between the simulations belonging to the same simulation project,

research project, educational tutorial or scientific publication. It is

with this step that the ideal user workflow is integrated with the

scientific workflow.

Structuring Scientific Communication
In the scientific workflow a mental model of a biological system

translates through a conceptual model to a mathematical

representation and a low-level software implementation. This

process takes many intermediate representations that are deter-

mined by the different choices made by an investigator. Examples

include, the value of a parameter, such as the maximal electrotonic

length of a compartment, or the algorithm chosen for the

numerical methods. Sometimes these choices are predicated on

the empirical phenomenology of neuroscience. A good example is

the hypothesis formulated by Hodgkin and Huxley that the

activity of transmembrane ion channels is controlled by biophys-

ical gates [53].

The sequence of such choices describes a stepwise translation of

a high-level mental model into a computer implementation. This

translation connects mental models with their implementation

directly and provides a model with a richer structure and meaning

than its purely mathematical counterpart. From this viewpoint,

through its implementation, every model is intimately connected

with the simulator used to run it. We note that it is important to

make this connection more explicit than is currently the case [54].

If we refer to the choices made during translation of a mental

model to its computer implementation as model structure, and to

the parameters as model quantities, then a model’s history is

defined by the history of its structure and quantities. From this

perspective, a modeling environment becomes a tool useful for

formally tracking advances in the scientific understanding of a

biological system, expressed as changes made to a model. It is in

this way that the structure and quantities of a model document

advances in the formal scientific understanding of a given

biological system. Ultimately, the user workflow integrates a

simulator into the scientific workflow such that any CBI compliant

simulator provides direct support for scientific publication and

communication.

Materials and Methods

In this section we define the elements of our ‘‘workflow

philosophy’’. It is this workflow that guides development of the

CBI architecture. It is presented as a glossary of the technical

terms, typically specialized for computer science, that are

commonly employed in the description and discussion of the

architecture. It is followed by a brief technical glossary of terms

related to software development.

The Workflow Philosophy
Monolithic software and federated software, described below, are

the two extremes of a continuum. The philosophical goal of the

CBI architecture is to move simulator design away from the

extreme of monolithic software towards the extreme of federated

software.

Monolithic Software. A monolithic software application is one

in which the user interface, data access code, and computational

algorithms are combined into a single application where the

smallest software component is the whole application. It is typically

comprised of a set of tightly coupled functions where the

modification or extension of one function requires either

corresponding alterations throughout or intimate knowledge of

the rest of the software code to avoid breaking existing software

functionality.

In the past neural simulators were developed or strictly

supervised by a single programmer, a situation that typically led

to monolithic applications [7]. As a consequence, the functionality

offered by simulation software and the scientific problems that

could be addressed were inherently limited in scope by the

capacity of a single person to manage the required software project

[55].

Federated Software. As an alternative to monolithic

software, federated software design allows different individuals to

work in parallel on the same software application [56]. In

particular, federated software supports the scientific enterprise in

general and scientific research in particular, by allowing individual

scientists to work on software dedicated to their own research

projects.

Concerns. One dictionary definition of concern is ‘‘a matter for

consideration’’ [57]. More specifically for software, the concerns

for a system are defined as ‘‘… those interests which pertain to the

system’s development, its operation or any other aspects that are

critical or otherwise important …’’ [58]. A more general definition

is ‘‘any matter of interest in a software system’’ [59]. On this basis,

concerns are considered to be fundamentally conceptual. They

include, but are not limited to, for example, generality,

independence, appropriateness, completeness, and ease of use

[60]. Further, considerations in the typing of concerns may

include: Logical versus physical concerns and simple concerns

versus concern groups, also kinds of access, consistency and

integrity, and extensibility and stability [59]. To this list we can

add interoperability.

Concerns often penetrate into the different layers of a software

architecture. Such concerns are called ‘cross-cutting’ concerns,

and, because of this property, are hard to implement and

maintain. Often special technology is required to implement this

type of concern properly.

Separation of Concerns. The separation of concerns is an

important general design principle in software engineering

[61,62]. It aims to control the complexity of programs that are

continually elaborated. In summary, it promotes the separation of

different interests in a problem, solving them separately without

requiring detailed knowledge of the other parts, and finally

combining them into one result. In practice, this principle actually

corresponds to finding the right decomposition or modularization

of a problem. The aim is to design systems that allow different

functionalities to be optimized independently. Ultimately, a

competent separation of concerns should make it easier to

understand, design, and manage complex interdependent

software systems.

Module versus Component. Modular programming aims to

create software composed of separate interchangeable parts

identified by a separation of concerns. This improves software

maintainability by enforcing logical boundaries between software

modules. We refer to each independent part of the CBI architecture

as a module which may contain independent submodules, whereas,

following implementation a module is referred to as a component,

which may also contain subcomponents. These components

communicate with each other by interfaces. An important

attribute of a component is that one component can replace

another without disabling the system within which it operates. This

greatly simplifies and encourages software reusability. It is

important to note that a component can only exist within a well

The CBI Federated Software Architecture

PLoS ONE | www.plosone.org 11 January 2012 | Volume 7 | Issue 1 | e28956

defined framework such as that provided by a software architecture

(see below).

As an example of the way we distinguish between modules and

components, the GUI module in the CBI architecture contains

independent submodules, whereas, the GUI component of a

simulator implemented in compliance with the CBI architecture

contains independent subcomponents dealing with simulation

control, the model, and results (see Fig. 3).
API and ABI. An application programming interface (API) is an

interface implemented by a software program that enables it to

interact with other software. It facilitates interaction between

different software programs. An API provides a library to be used

directly via simple function calls.

An application binary interface (ABI) describes the low-level details

of an interface between an application (or any type of) program

and another application. ABIs cover details such as data type, size,

and alignment, calling conventions which control how functions’

arguments are passed and return values retrieved and sometimes

the binary format of object files and program libraries.

A complete ABI allows a program from one operating

environment supporting that ABI to run without modifications

on any other such system, provided that the necessary run-time

prerequisites such as shared libraries are fulfilled. For an example,

see the Intel Binary Compatibility Standard (http://www.

everything2.com/index.pl?node = iBCS).

An ABI should not be confused with an API which defines a

library of routines to call, data structures to manipulate, and/or

object classes to use in the construction of an application using that

particular (often language specific) API.

Both APIs and ABIs play a crucial role in the implementation of

a federated software platform.

Scripting Languages. With an increasing requirement for

software integration, the use of scripting languages is providing an

important programming paradigm. Low-level system

programming languages are well suited for building functional

software components where there is a requirement for computing

speed, whereas, high-level scripting languages are well suited for

binding software components to build applications where the

complexity is in the connections. This division of labor provides a

natural framework for reusability. When well-defined interfaces

exist between components and scripts, software reuse becomes

easy. In this sense scripting and system programming are

symbiotic. Used together, they produce programming

environments of exceptional power where applications can be

developed up to an order of magnitude more rapidly than when a

system programming language alone is used.

Software Architecture. As the last step of our workflow

philosophy, a software architecture defines a framework that logically

organizes a collection of modules where each module implements

one or more concerns, but no concern is identified with more than

one module. When modules are implemented as software

components and bound together with scripting languages, the

components form an application.

Acknowledgments

We thank the Computational Biology Initiative at UTSA (http://www.cbi.

utsa.edu) for their support when installing, using, and updating G-3 on

their computers.

Author Contributions

Wrote the paper: HC ADC. Philosophical discussion: HC ADC JMB.

References

1. Lapicque L (1907) Recherches quantitative sur l’excitabilitie électrique des nerfs

traitée comme une polarisation. General Pathology and Pathological Physiology

9: 620–625.

2. Hodgkin A, Huxley A (1952) A quantitative description of membrane current

and its application to conduction and excitation in nerve. Journal of Physiology

(Lond) 117: 500–544.

3. Rall W (1957) Membrane time constants of motoneurons. Science 126: 454.

4. Marr DA (1982) Vision: A Computational Investigation into the Human

Representation and Processing of Visual Information. Cambridge, MA: MIT

Press.

5. Rall W (1959) Branching dendritic trees and motoneurons membrane resistivity.

Experimental Neurology 1: 491–527.

6. Schwartz E (1990) Computational Neuroscience. Cambridge, MA: MIT Press.

7. Moore JW (2010) A personal view of the early development of computational

neuroscience in the usa. Frontiers in Computational Neuroscience 4: 20.

8. Hines M (1993) NEURON–A program for simulation of nerve equations. In:

Eeckman F, ed. Neural Systems: Analysis and Modeling. Norwell, MA: Kluwer.

pp 127–136.

9. Hines M (1984) Efficient computation of branched nerve equations. Interna-

tional Journal of Bio- Medical Computing 15: 69–76.

10. Hines M (1989) A program for simulation of nerve equations with branching

geometries. International Journal of Bio-Medical Computing 24: 55–68.

11. Wilson M, Bhalla U, Uhley J, Bower J (1989) GENESIS: A system for simulating

neural networks. In: Anderson D, ed. Advances in Neural Information

Processing Systems, American Institute of Physics: New York. pp 485–492.

12. Wilson M, Bower J (1988) A computer simulation of olfactory cortex with

functional implications for storage and retrieval of olfactory information. In:

Anderson D, ed. Advances in Neural Information Processing Systems, American

Institute of Physics: New York. pp 114–126.

13. Wilson M, Bower J (1989) Computer simulation of oscillatory behavior in

cerebral cortical networks. In: Anderson D, ed. Advances in Neural Information

Processing Systems, American Institute of Physics: New York. pp 84–91.

14. Migliore M, Cannia C, Lytton W, Markram H, Hines M (2006) Parallel network

simulations with neuron. Journal of Computational Neuroscience 21: 119–129.

15. Hereld M, Stevens R, van Drongelen W, Lee H (2004) Developing a petascale

neural simulation. In: 26th Annual International Conference of IEEE

Engineering in Medicine and Biology Society (EMBS). volume 2. pp 3999–4002.

16. Diesmann M, Gewaltig M (2002) NEST: An environment for neural systems

simulations. In: Plesser T, Volker M, eds. Forschung und wisschenschaftliches

Rechnen, Beitr̈age zum Heinz- Billing-Preis 2001, Göttingen: Gesellschaft f̈ur

wissenschaftliche Datenverarbeitung, volume 58 of GWDG-Bericht. pp 43–70.

17. Touretzky D, Ladsariya A, Albert M, Johnson J, Daw N (2003) HHsim: An open

source, real-time, graphical Hodgkin-Huxley simulator. Society for Neurosci-

ence Abstracts 29: 24.13.

18. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, et al. (2006) COPASI–A COmplex

PAthway SImulator. Bioinformatics 22: 3067–3074.

19. Hucka M, Finney A, Bornstein B, Keating S, Shapiro B, et al. (2004) Evolving a
lingua franca and associated software infrastructure for computational systems

biology: The Systems Biology Markup Language (SBML) project. Systems

Biology 1: 41–53.

20. Stiles J, Bartol T (2001) Monte Carlo methods for simulating realistic synaptic
microphysiology using MCell. In: De Schutter E, ed. Computational

Neuroscience: Realistic Modeling for Experimentalists, CRC Press: Boca Raton.
pp 87–127.

21. Cannon R, Gewaltig M, Gleeson P, Bhalla U, Cornelis H, et al. (2007)

Interoperability of neuroscience modeling software: current status and future
directions. Neuroinformatics 5: 127–138.

22. Stodden V (2009) The legal framework for reproducible scientific research:

Licensing and copyright. Computing in Science and Engineering 11: 35–40.

23. Gleeson P, Crook S, Cannon R, Hines M, Billings G, et al. (2010) NeuroML: A
language for describing data driven models of neurons and networks with a high

degree of biological detail. PLoS Computational Biology 6: e1000815.

24. Subhasis R, Bhalla U (2008) PyMOOSE: Interoperable scripting in Python for
MOOSE. Frontiers in Neuroinformatics 2: 6.

25. Djurfeldt M, Hjorth J, Eppler J, Dudani N, Hellas M, et al. (2010) Run-time

interoperability between neuronal network simulators based on the MUSIC
framework. Neuroinformatics 8: 43–60.

26. Davison A, Brüderle D, Eppler J, Kremkow J, Muller E, et al. (2008) PyNN: A

common interface for neuronal network simulators. Frontiers in Neuroinfor-
matics 2: 11.

27. Cannon RC, Hasselmo ME, Koene RA (2003) From biophysics to behavior:

Catacomb2 and the design of biologically plausible models for spatial navigation.
Neuroinformatics 1: 3–42.

28. Cornelis H, Rodriguez A, Coop A, Bower J (2012) Python as a federation tool

for GENESIS 3.0. PLoS ONE 7(1): 29018.

29. Apostel L (1961) Towards the formal study of models in the non-formalsciences.
In: Freudenthal H, ed. The Concepts and the Role of the Model in Mathematics

and Natural and Social Sciences. Dordrecht: The Netherlands: D. Reidel

Publishing Company. pp 1–37.

The CBI Federated Software Architecture

PLoS ONE | www.plosone.org 12 January 2012 | Volume 7 | Issue 1 | e28956

30. Belhajjame K, Collet C, Vargas-Solar G (2001) A flexible workflow model for

process-oriented applications. In: 2nd International Conference on Web
Information Systems Engineering IEEE, volume 1. pp 72–80.

31. Cornelis H, De Schutter E (2002) Tutorial: Simulations with Genesis using

Hsolve. Course material. Available from http://genesis-sim.org/filemanager/
active?fid = 95, accessed 2011 Dec 11.

32. Dijkstra E (1982) On the role of scientific thought. In: Dijkstra E, ed. Selected
Writings on Computing: A Personal Perspective. New York, NY: Springer-

Verlag. pp 60–66.

33. De Schutter E, Bower J (1994) Simulated responses of cerebellar Purkinje cells
are independent of the dentritic location of granule cell synaptic inputs.

Proceedings of the National Academy of Sciences USA 91: 4736–4740.
34. Robbins KA, Robinson M, Senseman D (2004) Visualizing cortical waves and

timing from data. IEEE Visualization. pp 401–408.
35. Gleeson P, Steuber V, Silver R (2007) neuroConstruct: A tool for modeling

networks of neurons in 3D space. Neuron 54: 219–235.

36. Nordlie E, Plesser HE (2009) Visualizing neuronal network connectivity with
connectivity pattern tables. Frontiers in Neuroinformatics 3: 39.

37. De Schutter E, Bower J (1994) An active membrane model of the cerebellar
purkinje cell I. Simulation of current clamp in slice. Journal of Nerurophysiology

71: 375–400.

38. De Schutter E, Bower JM (1994) An active membrane model of the cerebellar
purkinje cell II. simulation of synaptic responses. Journal of Nerurophysiology

71: 401–419.
39. Bower JM, Beeman D, eds (1998) The Book of GENESIS: Exploring Realistic

Neural Models with the GEneral NEural SImulation System. Springer-Verlag,
New York, second edition.

40. Abramowitz M, Stegun I (1965) Handbook of Mathematical Functions. Dover

Publications, New York.
41. Crank J, Nicholson P (1947) A practical method for numerical evaluation of

solutions of partial differential equations of the heat conduction type.
Proceedings of the Cambridge Philosophical Society 43: 50–67.

42. Borg-Graham LJ (2000) Additional efficient computation of branched nerve

equations: Adaptive time step and ideal voltage clamp. Journal of Computa-
tional Neuroscience 8: 209–226.

43. Hines M, Markram H, Schuermann F (2008) Fully implicit parallel simulation of
single neurons. Journal of Computational Neuroscience 25: 439–448.

44. Mernik M, Heering J, Sloane AM (2005) When and how to develop domain-
specific languages. ACM Comput Surv 37: 316–344.

45. Law E, Roto V, Hassenzahl M, Vermeeren A, Kort J (2009) Understanding,

scoping and defining user experience: A survey approach. In: Proceedings of
Human Factors in Computing Systems conference. Boston, MA , USA, pp

719–728.

46. Eckerson W (1995) Three tier client/server architecture: Achieving scalability,

performance, and efficiency in client server applications. Open Information
Systems 10, 1 3: 1–20.

47. (2008) Service-oriented architecture. World Wide Web. http://en.wikipedia.

org/wiki/Serviceoriented architecture, accessed 2011 Dec 11.
48. Humby E, ed. Programs from Decision Tables. New York: American Elsevier.

49. Köhn D, Le Novère N (2008) SED-ML–An XML format for the implemen-
tation of the MIASE guidlines. In: Heiner M, Uhrmacher A, eds. Proceedings of

the 6th International Conference on Computational Methods in Systems

Biology. Rostock, Germany: Springer. pp 176–190.
50. Hines M, Eichner H, Schuermann F (2008) Neuron splitting in compute-bound

parallel network simulations enables runtime scaling with twice as many
processors. Journal of Computational Neuroscience 25: 203–210.

51. Howell F, Dyhrfjeld-Johnsen J, Maex R, Goddard N, De Schutter E (2000) A
large-scale network model of the cerebellar cortex using PGENESIS.

Neurocomputing 32: 1041–1046.

52. Cornelis H, De Schutter E (2007) Neurospaces: Towards automated model
partitioning for parallel computers. Neurocomputing 70: 2117–2121.

53. A H, A H (1952) A quantitative description of membrane current and its
application to conduction and excitation in nerve. Journal of Physiology 117:

500–544.

54. Hines M, Morse T, Migliore M, Carnevale N, Shepherd G (2004) ModelDB: A
database to support computational neuroscience. Journal of Computational

Neuroscience 17: 7–11.
55. Brooks FJ (1995) The tar pit. Addison-Wesley Professional, 20th anniversary

edition. pp 3–6.
56. DeRemer F, Kron H (1975) Programming-in-the large versus programming-in-

the-small. In: Shooman M, Yeh R, eds. Proceedings of the International

Conference on Reliable Software IEEE. pp 114–121.
57. Merriam-Webster. Merriam-Webster Collegiate Dictionary. URL http://www.

merriam-webster.com/. Accessed 2011 Dec 11.
58. IEEE ArchitectureWorking Group (2000) IEEE recommended practice for

architectural description of software-intensive systems (IEEE Std 1471-2000).

59. Sutton Jr. S, Rouvellou I. Issues in the design and implementation of a concern-
space modeling schema. URL http://www.research.ibm.com/hyperspace/

workshops/icse2001/Papers/sutton.pdf. Accessed 2011 Dec 11.
60. Sutton Jr. S, Rouvellou I (2004) Concern modeling for aspect-oriented software

development. In: Filman R, Elrad T, Clarke S, Akit M, eds. Aspect-Oriented
Software Development. Boston: Addison-Wesley. pp 479–505.

61. Dijkstra E (1976) A Discipline of Programming. Englewood Cliffs, NJ: Prentice

Hall.
62. Parnas D (1972) On the criteria to be used in decomposing systems into modules.

Communications of the Association of Computing Machinery 15: 1053–1058.

The CBI Federated Software Architecture

PLoS ONE | www.plosone.org 13 January 2012 | Volume 7 | Issue 1 | e28956

