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Abstract

Background: The holotype and only specimen of the chasmosaurine ceratopsid dinosaur ‘Nedoceratops hatcheri’ has been
the source of considerable taxonomic debate since its initial description. At times it has been referred to its own genus
while at others it has been considered synonymous with the contemporaneous chasmosaurine Triceratops. Most recently,
the debate has focused on whether the specimen represents an intermediate ontogenetic stage between typical young
adult Triceratops and the proposed mature morphology, which was previously considered to represent a distinct genus,
‘Torosaurus’.

Methodology/Principal Findings: The only specimen of ‘Nedoceratops hatcheri’ was examined and the proposed diagnostic
features of this taxon were compared with other chasmosaurine ceratopsids. Every suggested autapomorphy of
‘Nedoceratops’ is found in specimens of Triceratops. In this study, Triceratops includes the adult ‘Torosaurus’ morphology. The
small parietal fenestra and elongate squamosals of Nedoceratops are consistent with a transition from a short, solid parietal-
squamosal frill to an expanded, fenestrated condition. Objections to this hypothesis regarding the number of
epiossifications of the frill and alternations of bone surface texture were explored through a combination of comparative
osteology and osteohistology. The synonymy of the three taxa was further supported by these investigations.

Conclusions/Significance: The Triceratops, ‘Torosaurus’, and ‘Nedoceratops’ morphologies represent ontogenetic variation
within a single genus of chasmosaurine: Triceratops. This study highlights how interpretations of dinosaur paleobiology,
biodiversity, and systematics may be affected by ascribing ontogenetic and other intraspecific variation a taxonomic
significance.
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Introduction

For many years after the description of the first species of

Triceratops (T. horridus) [1], nearly every variation in cranial

morphology between specimens was considered sufficient grounds

to erect new species. By 1949, as many as 16 species of this genus

had been named [2,3,4]. After his initial description of Triceratops,

O.C. Marsh also named two species of a new genus of latest

Cretaceous ceratopsid (‘Torosaurus’), which were found in the same

geological formation and geographic area as the Triceratops

specimens [5]. ‘Torosaurus’ differed from Triceratops in having an

expanded, fenestrated parietal and elongate squamosals. The

resultant high number of apparently coeval taxa had major

implications for interpretations of dinosaur paleoecology and end-

Cretaceous taxonomic diversity [2].

Ostrom and Wellnhofer [2,6] called attention to the apparent

high diversity of Triceratops and proposed an alternative hypothesis:

that the variation used to erect all of these taxa was instead simply

intraspecific variation within T. horridus. They noted similar levels

of variation in populations of extant horned mammals. This idea

was largely supported by the more recent work of Forster [4], who

found morphometric evidence for only two species of Triceratops (T.

horridus and T. prorsus). Ostrom and Wellnhofer further suggested

that ‘Torosaurus’ may actually represent sexual dimorphism within

Triceratops [6]. We recently presented evidence that ‘Torosaurus’

instead represents the mature morphology of Triceratops [7]. As

Triceratops matured, its skull underwent a series of radical

transformations: the postorbital horn cores changed orientation,

the epiossifications (epoccipitals) bordering the parietal-squamosal

frill changed shape, and the frill itself expanded and became

fenestrated [7,8,9,10]. The end-product of this transformation was

the morphology previously considered to represent a distinct

genus: ‘Torosaurus’. Consideration of potential sources of intraspe-

cific variation, including ontogenetic change, has reduced 18 latest

Cretaceous ceratopsid taxa to two (Triceratops horridus and

Triceratops prorsus). This produces a dramatically different view of

horned dinosaur systematics.

One of the 18 proposed taxa, represented by a single skull

(USNM 2412; Figure 1), has had a particularly complex

taxonomic history. It has at various times been considered a

distinct genus (‘Diceratops’; [4,11]), a species of Triceratops

(‘Triceratops hatcheri’; [12]), or variation within Triceratops horridus
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[2,13]. The genus name ‘Diceratops’ was recently found to have

been preoccupied and two new names were proposed: ‘Diceratus’

[14] and ‘Nedoceratops’ [15]. ‘Nedoceratops’, being published first, has

priority [16]. The prefix ‘nedo’ is Russian in origin and means

‘insufficiency’ [15] – thus, ‘Nedoceratops’ roughly translates to

‘insufficient horned face.’

USNM 2412 has been considered unusual in that unlike the

holotypes of Triceratops it expresses a small parietal fenestra and

fenestrated squamosals [11]. Dodson [3] noted that the slightly

elongate squamosals of USNM 2412 bear a closer resemblance to

those of ‘Torosaurus’ than to Triceratops. The specimen also has a

greatly reduced or perhaps absent epinasal [4]. We have

previously noted that several of the unusual features of USNM

2412 appear to be intermediate between those seen in Triceratops

and ‘Torosaurus’, and proposed that the specimen represents a

Triceratops which was beginning to develop the expanded,

fenestrated frill characteristic of the mature morphology, ‘Tor-

osaurus’ [7]. Recently, Farke [17] redescribed USNM 2412 and

considers ‘Nedoceratops hatcheri’ a valid taxon, stating that its unusual

features ‘‘may be explained as a whole suite of abnormalities in a

single aberrant individual of Triceratops, or a suite of autapomor-

phies characterizing a taxon distinct from Triceratops (pg. 6).’’ Farke

favors the latter hypothesis and rejects the hypothesis that

‘Torosaurus’ represents a mature Triceratops (the Ontogenetic

Trajectory Hypothesis [OTH] as he terms it).

The degree to which some proposed dinosaur taxa may or may

not actually represent variation (either ontogenetic or individual)

within established taxa is debated (e.g., [7,17,18,19]). Ontogenet-

ically transitional morphologies in the dinosaur fossil record have

the potential to dramatically affect interpretations of taxonomy

and systematics (e.g., [7,20,21,22,23]). The taxonomic status of

USNM 2412 (as well as ‘Torosaurus’ and Triceratops) has significant

implications for trends in dinosaur diversity preceding the K/Pg

boundary.

Here we will demonstrate that every feature of USNM 2412

proposed to be diagnostic of a distinct genus is found within

Triceratops and thus USNM 2412 more likely reflects variation

within Triceratops. We also provide further evidence for the

synonymy of Triceratops and ‘Torosaurus’ (by ‘Torosaurus,’ we are

referring to ‘Torosaurus latus’, not ‘Torosaurus’ utahensis [7]). Finally,

we discuss the effect of intraspecific variation on interpretations of

dinosaur paleobiology and systematics.

Institutional abbreviations. AMNH, American Museum of

Natural History, New York, New York, USA; ANSP, Academy of

Natural Sciences of Philadelphia, Pennsylvania, USA; CM,

Carnegie Museum, Pittsburgh, Pennsylvania, USA; MOR,

Museum of the Rockies, Bozeman, Montana, USA; MPM,

Milwaukee Public Museum, Milwaukee, Wisconsin, USA; RTMP,

Royal Tyrrell Museum, Drumheller, Alberta, CA; UCMP,

University of California Museum of Paleontology, Berkeley,

California, USA; USNM, National Museum of Natural History,

Washington D.C., USA; YPM, Yale Peabody Museum, New

Haven, Connecticut, USA.

Results

Reassessment of USNM 2412
Farke [17] diagnoses ‘Nedoceratops hatcheri’ as follows:

‘‘Chasmosaurine ceratopsid with the following autapomorphies:

nasal horncore nearly completely undifferentiated from the nasal

bone; greater portion of procurved postorbital horncores forms 90

degree angle with tooth row; and parietal fenestrae extremely

small (occupying less than five percent of the total surface area of

the parietal). Nedoceratops hatcheri is distinguished from Triceratops

spp. in the position of the ventral extremity of the squamosal well

above the alveolar process of the maxilla, and in the presence of

parietal fenestrae, which are lacking in Triceratops species.

Nedoceratops hatcheri is distinguished from Torosaurus latus in

squamosal shape (particularly the reduced jugal notch and lack

of a thickened medial margin in N. hatcheri), and that N. hatcheri has

extremely reduced parietal fenestrae and a low number of

episquamosals relative to T. latus. (pg. 4)’’

Nasal and Nasal Horn. The nasal horn of USNM 2412 is

indeed ‘nearly completely undifferentiated from the nasal bone’,

however similar poorly defined nasal horn morphologies are seen

in several specimens of Triceratops (UCMP 128561, USNM 1208,

USNM 4720, MOR 981, MOR 1122; Figure 2). The nasal horn

of MOR 981 (Figure 2D) is particularly unpronounced, yet not

quite to the degree observed in USNM 2412. It has been suggested

that the epinasal of USNM 2412 was lost either taphonomically or

due to pathology [2,4,9]. Areas of the anterior nasals are obscured

by reconstruction; however there is no clear evidence of breakage

indicating a missing epinasal. Farke [17] suggests that the lack of

an open epinasal suture makes it improbable that the epinasal was

lost due to trauma in life. However the epinasal is known not to

fuse to the underlying nasals until fairly late in ontogeny in some

specimens of Triceratops [9]. If the epinasal was lost in life and the

nasal sutures proceeded to close, there would be no reason to

expect an open epinasal suture. For these reasons, the nasal horn

morphology of USNM 2412, taken on its own, presents insufficient

grounds to distinguish this specimen from Triceratops.

Postorbital Horn Cores. The left postorbital horn core is

largely reconstructed, yet preserves the base which is slightly

anteriorly inclined (Figure 1). The right postorbital horn core is

more complete, and is fairly erect (varying from the morphology

expressed on the left side of the skull) yet procurved. The

orientation of the postorbital horn cores undergoes a radical

change throughout ontogeny in Triceratops [8]. In the smallest

Figure 1. USNM 2412, the holotype and only specimen of
‘Nedoceratops hatcheri’. A. Left lateral view. B. Right lateral view.
Scale bars equal 10 cm.
doi:10.1371/journal.pone.0028705.g001

‘Nedoceratops’ Is Triceratops
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(‘baby’) specimens, the postorbital horns are erect, in juveniles they

begin to curve posteriorly and then as ontogeny progresses they

become procurved. Procurving of the postorbital horn cores

indicate that USNM 2412 was a fairly mature individual (see

Discussion). Given that the postorbital horn cores transformed so

dramatically throughout ontogeny, variation in orientation

between specimens is expected. Intraspecific variation in the

orientation of the base of the postorbital horn core has been

demonstrated in several taxa of chasmosaurine ceratopsids [24].

Thus, the orientation of horn cores cannot be used to distinguish

USNM 2412 from Triceratops.

Parietal Fenestrae. Arguably the most intriguing feature of

USNM 2412 is the presence of a small parietal fenestra on the

right side of the frill (the left half of the parietal is largely

unpreserved). Farke [17] notes no ventral depression surrounding

the parietal fenestra of USNM 2412, though acknowledges that

the parietal is extremely thin in this region. There is, in fact, a

subtle ventral depression around the parietal fenestra of USNM

2412 which conforms to the shape of the fenestra (though it is

slightly obscured by the metal framework supporting the skull and

not immediately obvious upon observation; Figure 3). Also, there

is a transition in surface texture surrounding the fenestra (Figure 4):

the area immediately adjacent to the fenestra is somewhat less

rugose than the rest of the parietal (though much of the surface

texture is obscured by reconstruction). Parietal fenestrae are

unknown in Triceratops (exclusive of ‘Torosaurus’ specimens) but are

found in specimens referred to ‘Torosaurus’. As we previously noted

[7], if Triceratops matured into the morphology previously

considered diagnostic of ‘Torosaurus’, at some point the parietal

fenestrae would open. It is predicted that the fenestrae would start

off small and expand in size, as is seen in centrosaurine ontogeny

[19,25,26]. Thus, we interpret the small parietal fenestra of

USNM 2412 as a product of the parietal thinning which we

previously demonstrated [7] and not diagnostic of a distinct taxon

(see Discussion).

Squamosal morphology. The ventral extremity of the

squamosal of USNM 2412 is positioned above the alveolar

process of the maxilla. A similar configuration is seen in several

specimens of Triceratops (e.g., UCMP 113697; USNM 1201) and is

thus not diagnostic of a distinct taxon (Figure 5). Similarly, there is

considerable variation in the size of the jugal notch formed by the

squamosal in Triceratops specimens (see Figure 3 in [7]). Indeed,

there is variation in the size of the jugal notch between the left and

right side of USNM 2412 (Figure 1). This is likely due to pathology

[27]. The lack of a thickened median margin of the squamosal (or

‘squamosal bar’ [28]) exhibited by USNM 2412 is expected until

late in ontogeny in Triceratops [7]. The squamosals bear

asymmetrical fenestrae which, as Farke [17] notes, are not

reliable for taxonomic purposes. The squamosal morphology of

USNM 2412 is here interpreted as representing an intermediate

between the short, broad condition typical of immature Triceratops

and the elongate morphology with a thickened median margin

which is found in mature specimens (previously assigned to

‘Torosaurus’).

Episquamosal number. The episquamosal count of USNM

2412 has been estimated as five, with the rostral episquamosals

indiscernible due to tight fusion [17]. Alternatively, we suggest that

the rostral episquamosals are not preserved in this specimen.

Episquamosals are commonly lost taphonomically [9]. The

number of episquamosals preserved on USNM 2412 cannot be

used to distinguish it from Triceratops (as noted by Farke [17]) and

as such does not support the hypothesis that this specimen

represents a distinct genus. The epiparietals of USNM 2412 are

reconstructions [17].

Discussion

Taxonomic Status of ‘Nedoceratops hatcheri’
All of the features and conditions used to diagnose ‘Nedoceratops’

are found in Triceratops. The nasal horn, if present, is greatly

Figure 2. Nasal horn variation in Triceratops. A. USNM 4720, originally named the holotype of Triceratops ‘obtusus.’ This specimen preserves a
very low, blunt nasal horn. B. USNM 2412, the holotype of ‘Nedoceratops hatcheri.’ The nasal horn of this specimen (if present – see discussion) is a
low, smooth boss. C. UCMP 128561, originally named the holotype of ‘Ugrosaurus olsoni.’ The nasal horn of this specimen is a low rugose boss. D.
MOR 981 (previously ‘Torosaurus’). This specimen bears a low boss which is undifferentiated from the nasals. Scale bars equal 10 cm.
doi:10.1371/journal.pone.0028705.g002

‘Nedoceratops’ Is Triceratops
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reduced but given the variation in nasal horn morphology in

Triceratops ([2,17,29],[30] contra [31]) and the fact that other

specimens possess nasal horns which are not much larger than that

expressed by USNM 2412, we interpret this as variation within

Triceratops. Alternatively, as noted above, the epinasal may have

been lost in vivo – in which case this feature would not be useful

for taxonomic diagnoses. The squamosal morphology (particularly

that of the right side of the skull, the left squamosal apparently

being pathologic [27]) does not fall outside the range of variation

found in Triceratops (see [7]). The horn cores are procurved yet the

right horn core is more erect than is typical in Triceratops. A

similarly erect horn core is found in the holotype of Eotriceratops

xerinsularis (RTMP 2002.57.7; [32]). We interpret this variation in

postorbital horn core orientation as a result of the morphological

change which these elements undergo throughout ontogeny [8].

Variation between the orientations of the left and right postorbital

horn cores in USNM 2412 further suggests that this feature is of

limited taxonomic utility. Indeed, even if ‘Torosaurus’ is not

synonymous with Triceratops, the only feature which unambigu-

ously distinguishes ‘Nedoceratops’ from Triceratops is the small parietal

fenestra. However, we think it is more likely that had the animal

not died when it did that this fenestra would have continued to

develop and the frill would have continued to expand, resulting in

a morphology indistinguishable from mature Triceratops (‘Tor-

osaurus’).

Taxonomic Status of ‘Torosaurus latus’
Radical ontogenetic changes in cranial morphology have been

noted in several dinosaur taxa (e.g., [19,21,22,33,34]). Triceratops

underwent a dramatic cranial transformation throughout ontog-

eny - the postorbital horn cores completely changed orientation

and prominent triangular epiossifications of the cranial frill

increased in size in juveniles and subadults and then became

resorbed and flattened in more mature individuals [8,9]. We have

proposed that the cranial transformation of Triceratops included an

expansion of the parietal-squamosal cranial frill, ultimately leading

to the thin, fenestrated condition previously considered diagnostic

of ‘Torosaurus latus’ [7]. The proposed synonymy of Triceratops and

‘Torosaurus’ (the ‘OTH’ [17]) has been challenged based on

observations about the number and position of epiossifications on

the cranial frill and cranial surface texture [17].

Variation in epiossification number and position. As

Farke notes, Triceratops specimens typically express five to seven

episquamosals, whereas ‘Torosaurus’ specimens have seven

[7,17,35]. Farke states that ‘‘even squamosals from ‘‘baby’’ and

juvenile Triceratops have between five and seven scallops for

attachment of episquamosals . . . corresponding precisely to the

number found in most adult-sized individuals (pg. 7).’’ This also

corresponds to the number of episquamosals found in ‘Torosaurus’

specimens (e.g., MOR 1122, MPM VP6841). Thus, variation in

episquamosal number does not falsify the OTH. The alternative is

to ascribe different species names to specimens with five, six, or

seven episquamosals. As the number of episquamosals has been

found to vary between the left and right sides of individuals [7] and

Figure 3. Ventral view of the right half of the parietal of USNM
2412. A. When viewed with offset lighting, the rim of a shallow
depression surrounding the small fenestra is apparent. B. Extent of the
depression is outlined. The area within the outline is markedly thinner
than the remainder of the parietal. The extent of the depression is
partially obscured by the framework which supports the skull. Scale
bars equal 10 cm.
doi:10.1371/journal.pone.0028705.g003

Figure 4. Dorsal view of the parietal fenestra of USNM 2412.
Although much of the parietal is obscured by reconstruction, a
transition in surface texture from the posterior margin (white arrow)
to the area immediately adjacent to and surrounding the fenestra (red
arrows) is apparent. Scale bar equals 10 cm.
doi:10.1371/journal.pone.0028705.g004

‘Nedoceratops’ Is Triceratops
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these elements are easily lost taphonomically [9], assigning species

names based solely on this criteria would very likely be erroneous.

Triceratops has been diagnosed as possessing both a midline

epiparietal and epiossifications which span the parietal-squamosal

contacts [4]. Specimens typically possess five or six epiparietals,

not including the epiossifications which cross the parietal-

squamosal contacts (e.g., [4,7]). ‘Torosaurus’ specimens, on the

other hand, have been found to express evidence for between 10

(MOR 981) and 12 (MOR 1122) epiparietals [28]. These

specimens do not express a midline epiparietal or epiossifications

spanning the parietal-squamosal contacts. Thus, if ‘Torosaurus’

represents the mature morphology of Triceratops it means that a

significant reconfiguration of epiparietals occurred throughout

ontogeny.

The most complete ‘Torosaurus’ parietal is that of MOR 1122, a

specimen which clearly expresses 12 epiparietals. Direct compar-

isons of this specimen to (non-‘Torosaurus’) Triceratops suggest an

increase of at least six epiparietals throughout ontogeny. Is such a

transformation feasible? Farke [17] notes that an addition of

epiossifications is apparently not found in ontogenetic series of

centrosaurines (though he acknowledges variation by as many as

two epiparietals and one episquamosal between juveniles and

adults, a difference which he considers individual variation). We

question whether direct comparisons of frill epiossifications of

chasmosaurines and centrosaurines are, in this regard, appropri-

ate. In so far as chasmosaurine ceratopsids, Forster et al. [36] and

Godfrey and Holmes [37] noted an apparent increase in

episquamosals throughout ontogeny in Agujaceratops mariscalensis

and Chasmosaurus spp. (respectively). Thus the suggestion of an

addition of epiossifications throughout ontogeny in chasmosaur-

ines is by no means unprecedented. These two examples may

alternatively be interpreted as individual variation [17].

Triceratops frill epiossifications undergo dramatic changes in

morphology throughout ontogeny [8,9]. They expand, elongate,

and eventually flatten. Forster [35] noted that in one specimen of

Triceratops (CM 1221) these elements ‘fuse into a continuous

epoccipital rim (pg. 252).’ A specimen at the MOR (MOR 2975)

exhibits an episquamosal with two peaks, which is suggestive of

erosion of the midline of the element and eventual division had

elongation continued (Figure 6). If the six epiparietals of a (non-

‘Torosaurus’) Triceratops were each to elongate and divide through-

out ontogeny, it would produce 12 epiparietals. Osteohistological

studies have already established that dinosaur cranial adornments

were capable of dramatic transformations throughout ontogeny

(likely due to metaplastic transformation [10,22]); continued

erosion of the epiossifications to eventually divide the elements is

thus not an unfeasible mechanism for the apparent addition of

epiossificatons throughout ontogeny which has been previously

hypothesized [7,12,36,37].

Another factor which must be considered in concert with

ontogenetic transformation is stratigraphic variation [38]. MOR

1122, which expresses 12 epiparietals, was collected from the

bottom of the Hell Creek Formation in eastern Montana. No other

Triceratops specimens have been reported from this low in the

formation. MOR 981, originally referred to ‘Torosaurus’ [28], was

collected from slightly higher in the formation. As Farke [28]

noted, MOR 981 exhibits evidence of only ten epiparietals. MPM

VP6841, a large specimen previously referred to ‘Torosaurus’ [39],

was collected from significantly higher in the formation [40]. It

does not exhibit a complete set of epiparietals, however the one

most completely preserved epiparietal is approximately 35 cm in

length. Given the total width of this specimen’s parietal (204 cm),

the maximum number of epiparietals it could have accommodated

– assuming no spaces between each epiparietal – is approximately

six, a number comparable to that found in specimens of (non-

‘Torosaurus’) Triceratops [9]. There is likely a stratigraphic

component to epiparietal count; the count suggested by MPM

VP6841 is in agreement with Triceratops.

Furthermore, the presence of an epiossification spanning the

parietal-squamosal contact, though previously unreported, is

clearly present in a specimen of ‘Torosaurus’ (ANSP 15192; see

Figure 5. Lateral views of USNM 1201 and USNM 2142. A. Left lateral view of USNM 1201, originally named the holotype of Triceratops ‘elatus.’
Note that the ventral extremity of the squamosal (denoted by upper horizontal line) is positioned well above the alveolar process of the maxilla
(denoted by lower horizontal line). B. USNM 2412, right lateral view (reversed for direct comparison with USNM 1201 which only preserves the left
side of the skull; the right squamosal of USNM 2412 is more elevated than the left). The alveolar process of the maxilla is positioned on the lower
horizontal line, allowing for a direct comparison with USNM 1201. Note that the squamosal is not elevated to the extent found in USNM 1201. The
position of the ventral extremity above the alveolar process of the maxilla can thus not be used to distinguish ‘Nedoceratops hatcheri’ from
Triceratops. Scale bars equal 10 cm.
doi:10.1371/journal.pone.0028705.g005

Figure 6. Episquamosal of MOR 2975. The presence of two peaks is
suggestive of midline erosion. Scale bar equals 5 cm.
doi:10.1371/journal.pone.0028705.g006

‘Nedoceratops’ Is Triceratops
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Figure 8 in [7]). There is also evidence suggesting a midline

epiparietal was present on MOR 1122, though unpreserved:

vascular traces on the ventral surface of the parietal appear to lead

directly from the anterior region of the parietal to each epiparietal

(Figure 7). Pronounced vascular traces clearly terminate at the

midline of the parietal, suggesting that blood was supplied to a

midline epiparietal. If so, this further supports the synonymy of

these taxa.

The parietal of USNM 2412 as intermediate between

Triceratops and ‘Torosaurus’. If the parietal-squamosal frill

of Triceratops eventually adopted the morphology previously

considered diagnostic of ‘Torosaurus’ through ontogeny, the

discovery of intermediate morphologies would be expected. The

existence of such intermediate specimens has been previously

documented: throughout ontogeny the squamosals elongated and

the parietal developed thin regions in the same areas where

specimens of ‘Torosaurus’ have fenestrae [7,10]. USNM 2412

represents an important specimen in that it exhibits a small

parietal fenestra in the same region of the parietal where thin areas

(histologically revealed to have been actively becoming thinner at

the time of death [7,10]) are found in Triceratops. We consider these

regions ‘incipient fenestrae.’ Farke suggests that these thin areas

were instead areas for muscle attachment [17,41]. As noted above,

both a ventral depression and transition in surface texture are

found around the parietal fenestra of USNM 2412. A transition in

surface texture has been noted around the developing fenestrae of

AMNH 5116 (Triceratops [7]) and in centrosaurines [19,26].

AMNH 5116 expresses a striated surface texture over much of

the parietal, and a ‘pebbly’ surface texture in the regions which we

hypothesize represent developing fenestrae. USNM 2412 differs

slightly from this, in that no striated texture appears to be present

on the parietal (though, as noted, much of the parietal’s surface is

obscured by reconstruction). Instead there is a transition from

rugose (‘adult’) surface texture to the less rugose texture around the

fenestra.

The presence of rugose surface texture on the parietal of USNM

2412 has been noted as evidence of an ‘old-adult’ ontogenetic

status for the specimen [17]. Centrosaurine frills appear to have

passed through three sequential ontogenetic stages: 1) ‘long-

grained’ surface texture in juveniles; 2) mottled surface texture; 3)

smooth/rugose ‘adult’ texture [19,26,42]. Transformation of

ceratopsid frill surface texture which does not follow this sequence,

or reverts back and forth between these surface textures, has not

previously been described (however Ryan and Russell [43] note a

‘modified long-grain bone texture’ on cranial elements of large

Centrosaurus brinkmani). It is important to emphasize that surface

textures represent expressions of the histological growth and

remodeling processes which were occurring at the time of the

animal’s death [42]. ‘Long-grained’ or striated texture, for

example, is associated with rapid bone expansion [19,26,42,44].

The parietal of MOR 981 (‘Torosaurus’) expresses a striated texture

over much of its surface [7]. Histological examination of this

parietal reveals that it was expanding at the time of death [10].

Based on this observation, it might be predicted that MOR 981

was less mature – perhaps significantly so – than MOR 1122, a

‘Torosaurus’ specimen which expresses histological evidence of

extreme maturity and exhibits rugose surface texture on its parietal

[7]. However, examination of the osteohistology of the postorbital

horn core of MOR 981 reveals extremely dense, multigenerational

‘Haversian’ tissue indicative of maturity equivalent to that seen in

MOR 1122, and greater than that expressed in (non-‘Torosaurus’)

Triceratops (Figure 8). The presence of surface striations indicative

of rapid expansion of the parietal in very mature specimens of

Triceratops (‘Torosaurus’) supports the hypothesis that the short,

thickened frill of a young adult Triceratops expanded and thinned

late in ontogeny.

Farke notes that surface textures associated with bone

resorption, such as those observed on the parietals of Triceratops

and other ceratopsids, are not unambiguously associated with the

formation of fenestrae [17]. This is true, as resorption occurs in all

bones – it is a general feature of growth and remodeling [44], thus

the presence of mottled surface textures in areas of ceratopsid

Figure 7. Ventral view of the parietal of MOR 1122. A. The entire
parietal with midline denoted by vertical line. Dashed rectangle
indicates area of interest in B and C. B. Impressed vascular traces are
found over the entire ventral surface of the parietal. Epiparietals are
indicated by arrows. MOR 1122 does not appear to possess an
epiparietal over the midline of the parietal. C. Major vascular traces are
highlighted in red. Note that the most prominent vascular traces lead to
the epiparietals (highlighted in blue). Two large vascular traces lead to
the midline of the parietal (denoted by red arrow), suggesting that an
epiparietal occupied this position but was lost taphonomically. Scale
bars equal 10 cm.
doi:10.1371/journal.pone.0028705.g007
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skulls that do not form fenestrae (such as the parietal midline [26])

does not imply the formation of fenestrae but it does indicate that

bone resorption was occurring in those areas at the time of death.

In areas where fenestrae do form, histological evidence of

resorption would be expected and has been demonstrated

[7,10]. The histological evidence suggests that reversion from a

rugose (‘adult’) surface texture to a striated texture occurred in

Triceratops. Therefore, the presence of rugose surficial texture on

the parietal of USNM 2412 does not indicate that it had stopped

growing, or that its parietal would not have undergone further

changes had it not died when it did.

The suggestion that the thin regions of the parietal in Triceratops

were areas for muscle attachment [17,41] would be supported by

the presence of abundant extrinsic fibers in these areas [45].

Examination of the microstructure of these areas in Triceratops

reveals no evidence of extrinsic fibers and thus suggests that these

were not regions of indirect muscle attachment. However, it is

possible there was a direct attachment to the periosteum [45]. This

is a somewhat more difficult hypothesis to test histologically with

fossil material. Significantly, if the cranial ornamentation of

marginocephalians developed through metaplastic transformation,

as has been suggested [10,22], it would indicate the absence of a

periosteum at some point in ontogeny and thus direct muscle

attachment would be unlikely. Regardless of whether or not there

were muscle attachments in these regions at some point in

ontogeny, the fact that USNM 2412 exhibits a fenestra within this

area of the parietal confirms that resorption leading to eventual

fenestration occurred here. We interpret USNM 2412 as a

transitional morphology between the solid parietal of immature

Triceratops and the fenestrated condition of mature individuals

(‘Torosaurus’).

Juvenile ‘Torosaurus latus’. Until a clearly juvenile

‘Torosaurus’ is recovered - with backwards curving postorbital

horn cores, delta-shaped frill epiossifications, elongate squamosals,

and a fenestrated parietal – it appears more likely that either: a)

juvenile ‘Torosaurus’ were largely indistinguishable from Triceratops

and differences in morphology between these two taxa only

became apparent later in ontogeny, or b) ‘Torosaurus’ and

Triceratops are synonymous. We favor the latter hypothesis for

reasons previously discussed in detail [7]. An extensive, unbiased

survey of the fossils of the Hell Creek Formation resulting in the

collection of numerous rare ontogenetic stages of dinosaur taxa

failed to recover evidence of juvenile ‘Torosaurus’ clearly

distinguishable from Triceratops [7,23,46].

Farke [17] suggests that YPM 1831 (initially described as the

holotype of ‘Torosaurus gladius’ [5]) may represent a subadult

‘Torosaurus.’ He notes that the frill of this specimen exhibits a

smooth surface texture, no epiossifications are readily visible, and

that several cranial elements are unfused. The frill of YPM 1831

exhibits a striated surface texture similar to that observed in MOR

981. As noted previously [7], this surface texture is found in several

specimens expressing indicators of ontogenetic maturity. As

discussed above, MOR 981 itself exhibits extremely mature bone

histology, thus the surface texture of the frill of YPM 1831 does not

indicate subadult status. The postorbital horn cores of YPM 1831

are procurved, which is further indicative of ontogenetic maturity.

The fact that epiossifications were not fused to the frill margin does

not indicate a subadult status as many young adult/adult

Triceratops do not retain all of their epiossifications (e.g., AMNH

5116, MOR 981, MOR 1122, MOR 2702, MPM VP6841, YPM

1830). As noted previously, epiossifications appear to have been

easily lost taphonomically. There is considerable variation in the

timing of apparent cranial fusion in Triceratops [7]. Several large

specimens exhibit open sutures and unfused cranial elements (e.g.,

MOR 2702, MOR 2952, MOR 2971) and there are also smaller,

less mature specimens in which several sutures of the skull appear

closed (e.g., MOR 1120, MOR 2982, YPM 1822).Therefore,

apparent cranial fusion is likely one of the least reliable ontogenetic

indicators in Triceratops. It is also worth noting that YPM 1831 is,

as O.C. Marsh [47] described it, ‘‘gigantic.’’ For these reasons, it is

unlikely that YPM 1831 represents a subadult ‘Torosaurus.’

Transitional Morphologies and Dinosaur Systematics
The ongoing dialogue regarding the taxonomic status of USNM

2412 highlights questions of whether suggested autapomorphies

for some dinosaur taxa may in fact represent ontogenetic or other

intraspecific variation. The potential for dinosaurs of different

ontogenetic stages to be mistaken for distinct taxa has been

recognized for over half a century [20]. In a landmark study,

Dodson [21] demonstrated that lambeosaurines underwent

dramatic changes in cranial morphology relatively late in

ontogeny. This late stage morphological change was comparable

to what is seen in some extant avian dinosaurs (birds) which retain

an immature cranial morphology until late in development [21].

As such, specimens of ‘adult-sized’ dinosaurs may have still

undergone considerable changes in morphology had they survived

to reach full maturity (eg., [7,10,22]).

Ontogenetically transitional specimens can greatly affect

interpretations of dinosaur systematics (e.g., [21,22,48,49]). The

largest, and presumably most mature, dinosaurs are relatively rare

in the fossil record and when they are recovered are easily

mistaken for new, distinct taxa based on the state of features which

transform throughout development [23]. At the same time,

specimens initially described as adults of new, small taxa [50,51]

may actually represent juveniles of other previously described taxa

[48,49]. In the absence of large sample sizes or monospecific bone

beds, transitional specimens may be extremely difficult to

recognize for what they are. The resulting overestimation of

dinosaur diversity may produce an erroneous view of the

paleoecology of these animals [21].

New insights into Triceratops ontogeny are the result of a very

large sample size produced in part by extensive field exploration of

the uppermost Cretaceous Hell Creek Formation [7,23]. Each

specimen of Triceratops is valuable for insights that may be provided

regarding individual, ontogenetic, and stratigraphic variation [7].

Figure 8. Osteohistology of the postorbital horn core of MOR
981. The dense, multigenerational ‘Haversian’ tissue is indicative of a
mature individual.
doi:10.1371/journal.pone.0028705.g008
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The potential for transitional morphologies to be mistaken for

unique taxa underscores the need for large scale field explorations

in which numerous specimens of various growth stages are

collected in order to test systematic hypotheses and clarify which

morphological characters are in fact taxonomically informative.

Conclusions
The evidence thus far collected supports the hypothesis that

Triceratops, ‘Torosaurus’, and ‘Nedoceratops’ are synonymous and that

‘Torosaurus’ represents the mature morphology of Triceratops.

Features suggested to indicate an ‘old adult’ ontogenetic status

for USNM 2412 (rugose surface texture on frill, apparent fusion of

cranial elements) are found in non-fully mature Triceratops and

hence do not indicate that the ontogenetic transformation of

USNM 2412 was complete. If anything, the small parietal fenestra

found in this specimen supports the hypothesis that it was in the

process of transitioning between the classic Triceratops and

‘Torosaurus’ morphologies. Farke [17] states that the hypothesis

that USNM 2412 represents a taxon distinct from Triceratops would

be refuted by ‘‘the identification of undisputed specimens of

Triceratops that . . . preserve a mélange of character-states that are

intermediate between known Triceratops specimens and Nedoceratops

(pg. 6).’’ As we have presented here, there are numerous specimens

of Triceratops which preserve such character-states in their nasal

horn, squamosal, postorbital horn core and frill morphology thus

refuting a distinct taxonomic position for ‘Nedoceratops.’

It might be argued that although the individual characters

supposedly diagnostic of ‘Nedoceratops’ may be found to some

degree in specimens of Triceratops and ‘Torosaurus’, it is the unique

combination of these characters which distinguishes ‘Nedoceratops’

as a distinct taxon. But if this is true then nearly every specimen of

Triceratops is referable to a distinct species and/or genus, for every

specimen possesses some unique (if subtle) combination of

characters which distinguishes it from others of the same taxon.

This is the approach employed by Marsh and others which

resulted in the naming of 16 species of Triceratops [2,6].

Consideration of the radical nature of ontogenetic change that

occurred in marginocephalians [7,8,22,33,34] is critical to

systematic interpretations. Dinosaur specimens representing var-

ious transitional growth stages may easily be misinterpreted as

distinct taxa [20,21]. The debate which has surrounded USNM

2412 over the last century is inherently tied to the fact that it

exhibits many intermediate features, and most likely represents an

ontogenetically transitional morphology. Its small parietal fenestra

is exactly what is predicted to be present at some point in

Triceratops ontogeny as the fenestrae expanded and developed into

the ‘Torosaurus’ morphology. Even if ‘Torosaurus’ was not synony-

mous with Triceratops, it would be more parsimonious to ascribe

USNM 2412 to an immature ‘Torosaurus’ than to designate it as the

holotype of a separate genus.

The synonymy of Triceratops, ‘Torosaurus’, and ‘Nedoceratops’

reduces perceived latest Cretaceous ceratopsid diversity, and

affects our interpretations of these animals’ paleoecology. This,

along with other ontogenetic synonymies [22,48], also supports the

hypothesis that latest Maastrichtian dinosaur diversity was reduced

relative to that found earlier in the Cretaceous [52,53].

Materials and Methods

The holotype skull of ‘Nedoceratops hatcheri’, USNM 2412, was

examined first-hand in order to compare proposed autapomor-

phies with the condition expressed in other ceratopsids. Histolog-

ical samples were prepared as has been previously described [7].

Specimens were embedded in polyester resin, sectioned with a

precision saw, ground to a desired optical contrast using a lap

wheel, and polished.
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