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Abstract

siRNA (small interfering RNA) and shRNA (small hairpin RNA) are powerful and commonly used tools in biomedical research.
Currently, siRNAs are generally designed as two 21 nt strands of RNA that include a 19 nt completely complementary part
and a 2 nt overhang. However, since the si/shRNAs use the endogenous miRNA machinery for gene silencing and the
miRNAs are generally 22 nt in length and contain multiple internal mismatches, we tested if the functionality can be
increased by designing the si/shRNAs to mimic a miRNA structure. We systematically investigated the effect of single or
multiple mismatches introduced in the passenger strand at different positions on siRNA functionality. Mismatches at certain
positions could significantly increase the functionality of siRNAs and also, in some cases decreased the unwanted passenger
strand functionality. The same strategy could also be used to design shRNAs. Finally, we showed that both si and miRNA
structured oligos (siRNA with or without mismatches in the passenger strand) can repress targets in all individual Ago
containing cells, suggesting that the Ago proteins do not differentiate between si/miRNA-based structure for silencing
activity.

Citation: Wu H, Ma H, Ye C, Ramirez D, Chen S, et al. (2011) Improved siRNA/shRNA Functionality by Mismatched Duplex. PLoS ONE 6(12): e28580. doi:10.1371/
journal.pone.0028580

Editor: Bin Tian, UMDNJ-New Jersey Medical School, United States of America

Received August 25, 2011; Accepted November 10, 2011; Published December 9, 2011

Copyright: � 2011 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Institutes of Health [grant number AI075419] to NM; and the Paul L. Foster School of Medicine seed grant to HW.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: haoquan.wu@ttuhsc.edu (HW); manjunath.swamy@ttuhsc.edu (NM)

Introduction

siRNA/shRNA is one of the most powerful and commonly used

tool for biomedical research and is also being explored as

therapeutic candidates for a number of diseases. The design of

siRNAs has undergone tremendous improvements over the years

and several algorithms have been developed to roughly predict

functionality by studying large sets of siRNAs [1,2,3,4,5,6,

7,8,9,10,11]. These algorithms commonly choose defined regions

in the target to design siRNAs. Usually more than enough regions

are available to design good siRNA candidates. However, in some

cases, only limited target sequences are available. For example,

highly conserved target regions must be used to design siRNAs for

suppression of viral infections to avoid rapid emergence of escape

mutants and such conserved regions are few and are often not the

ideal sequences predicted by currently available algorithms for

siRNA design. Thus, there is still a need to improve siRNA design.

In mammals, exogenously introduced siRNA and shRNA have

to be processed by endogenous microRNA (miRNA) machinery in

order to be functional. Thus, understanding miRNA biogenesis

can provide insights into designing better RNAi strategies for

application. miRNAs are genomically encoded and are transcribed

as long primary transcripts (pri-miRNAs) that are processed by

Drosha and Dicer into ,65 nucleotides (nt) pre-miRNA and

,22 nt mature miRNA duplex respectively [12,13,14,15,16,

17,18,19,20,21]. Generally one (guide) strand of duplex is loaded

into RISC to repress target gene expression while the other

(passenger) strand is discarded [22,23,24,25]. siRNAs or shRNAs

can be considered as analogs of intermediate products at different

stages of miRNA biogenesis—siRNA representing mature miRNA

duplex and shRNA representing pre or pri-miRNA. Currently,

siRNAs are generally designed as two 21 nt strands of RNA that

include 19 nt completely complementary sequences and 2 nt 39

overhangs [7,26,27,28]. However, the natural substrates of the

miRNA loading system—the endogenously generated miRNA

duplexes are typically 22 nt in length [29,30] and have multiple

internal mismatches. In this study, we find that siRNA

functionality can be improved if conventional siRNA is changed

to have a miRNA duplex-like structure by increasing the length to

22 nt and introducing mismatches into the duplex.

Results

Many conventional siRNAs was nonfunctional
In an earlier study, we have shown that a single siRNA targeting

a highly conserved region in the flaviviral genome can suppress

fatal encephalitis induced by two neurotropic flaviviruses, Japanese

encephalitis virus (JEV) and West Nile virus (WNV) [31]. To

increase the repertoire of such siRNAs, we tested an additional 25

siRNAs targeting highly conserved regions in the viral genome

[32]. Out of these 25 siRNAs, only 7 could inhibit virus infection

by more than 60% (Figure 1a of reference [32]). To understand
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why most siRNAs did not work, we selected 13 siRNAs including

some that worked and many that did not. We performed dual

luciferase assays using target sequences in the Renilla luciferase 39

UTR. Both strands of siRNAs were tested for functionality using

luciferase reporters containing the guide or the passenger strand

target sequences in the 39 UTR. Overall, the siRNA functionality

tested with luciferase assay correlated well with virus inhibition

results. Although neither strand was functional in many cases

where the siRNA was ineffective, in some cases such as siR-13 and

siR-03, the passenger strand was more efficient than the intended

guide strand in target repression (Fig. 1).

The effect of mismatches on the functionality of siRNA
For broad-spectrum antiviral activity, siRNAs targeting highly

conserved target regions that are shared between viruses need to

be used. However, such shared sequences are relatively rare and

this imposes restriction on target regions and sequences to be used

for siRNA design. We hypothesized that designing siRNAs to

mimic the miRNA structure might convert the low or nonfunc-

tional siRNAs to potent siRNAs. In fact, most natural miRNA

duplexes are 22 nt in length [29,30] and have internal mismatches

that are highly conserved across species, suggesting that these are

important structural features of miRNA duplexes. Thus, we tested

if increasing the length to 22 nt and introducing mismatches in the

passenger strand (without changing the guide strand sequence) of

siRNAs to mimic miRNA duplexes might improve the siRNA

functionality. Initially, we redesigned 3 non-working siRNAs by

increasing the length to 22 nt and introducing mismatches at

position 1 and 12, which are generally the most unstable sites in

miRNAs according to Han et al [17]. This was enough to increase

the siRNA functionality in all 3 cases in luciferase assays (Fig. S1).

Encouraged by these results, we attempted to systematically

determine the optimal mismatch structure of siRNA for efficient

gene silencing. We introduced single or multiple mismatches at

various positions shown in Fig. 2a to siR-21, which showed no

functionality with conventional siRNA structure shown in Fig. 1.

Just changing the length of siR-21 to 22 nt by replacing the 39

dTdT with 3 nt that is perfectly complementary to the target sites

without any mismatches (m0) increased the functionality of siR-21.

A single mismatch in the passenger strand corresponding to guide

strand position 1 (m1) or central positions, such as 10, 11, 12

increased the siRNA functionality (Fig. 2a, left). We next tested

combinations of mismatches that results in the highest function-

ality. Introducing 2 or 3 mismatches increased the functionality

further (Fig. 2a, right). To verify the results in another siRNA

context, we introduced mismatches to a siRNA targeting the CS2

region of flavivirus. The CS2 region is the most conserved regions

in all mosquito-borne flaviviruses and is repeated twice in the

genome and thus, it is an ideal target to repress mosquito-borne

flaviviruses across species. In this siRNA, a single mismatch at

position 1, 4 or 10 increased the siRNA functionality, and the

mismatch combinations m1+3+10 and m1+4+10 show the highest

functionality (Fig. 2b).

To confirm the improved functionality of mismatched siRNAs,

we determined the IC50 for different mismatch structures for 2

siRNAs, siR-21 and siCS2 by testing at different concentrations.

As shown in Fig. 2c, the IC50 of mismatched siRNAs was much

smaller than completely complementary siRNA for both the

siRNAs tested, suggesting that mismatches improved efficacy

dramatically. Examination of the siRNA titration curve shown in

Fig. 2d suggests that although an improvement in functionality of

mismatched siRNA was evident at each concentration tested, the

improvement was much more pronounced at limiting siRNA

concentrations (Fig. 2d).

It is generally believed that GC rich sequences (.50%) are not

suitable for siRNA design because of high thermodynamic stability

[7,27,33]. Because mismatches would significantly decrease the

thermodynamic stability, we suspected that adding mismatches

might even be able to convert GC rich sequences into efficient

siRNAs. To test the hypothesis, we designed siRNAs to target an

artificial sequence that consists of 100% GC. Surprisingly,

m1+4+10 structure showed a small, but statistically significant

repression effect while more mismatches did not increase the

functionality (Fig. 2e).

The results presented above are consistent with two recent

studies that showed that central mismatches facilitate RISC

loading, and additional mismatches within the seed were needed

to facilitate RISC maturation in Drosophila as well as mammalian

cells [34,35]. Although the above studies found that mid region

mismatches promote RISC loading, we found that introducing

one more mismatch in position 15 did not increase the

functionality. In summary, it appears that introducing mismatches

Figure 1. The functionality of conventional siRNAs targeting conserved regions in the flaviviral genome. Dual luciferase assay
performed 24 hours after co-transfection of indicated siRNAs with the reporter vector psiCHECK2 harboring the siRNA target sequences. Target
sequences of guide strand (white bars) or passenger strand (black bars) were inserted into the 39 UTR of Renilla luciferase gene to test the intended or
passenger strand functionality. The ratio of Renilla luciferase (Rluc, reporter) to firefly luciferase (Fluc, internal control), normalized to the negative
control siRNA (siGFP) is shown. The experiments were performed in triplicate. Error bar = 1 S.D.
doi:10.1371/journal.pone.0028580.g001

MicroRNA Mimicking siRNA
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in certain positions of siRNA, such as the position 1, seed region

(position 4–7), and central region (position 9–12), can increase

siRNA functionality.

Optimized structure could increase the functionality of
siRNA in general

Next, we tested if the optimal structure could be generalized to

other siRNAs. Based on Fig. 2 results, we choose m1+4+10 as the

relatively optimal siRNA structure to test the hypothesis. Seven

WNV siRNAs that did not work in Fig. 1 were redesigned to have

the optimal structure—22 nt in length and mismatch in the

passenger strand corresponding to guide strand positions 1, 4 and

10 (m1+4+10). siRNAs without mismatches, but with the length

increased to 22 nt (m0) were also included to test the effects of

mismatches. In almost all cases, the redesigned siRNAs with

mismatches at position 1, 4 and 10 (m1+4+10) had significantly

higher functionality in the reporter luciferase assays compared to

the conventional siRNAs (Fig. 3a). Consistent with previous

observation with siR-21, just changing the length of siRNAs to

22 nt by replacing the 39 dTdT with 3 nt that is perfectly

complementary to the target sites without any mismatches (m0)

generally increased the functionality siRNAs but introducing

m1+4+10 mismatches further improved the functionality com-

pared to m0 in 5 out of 7 siRNAs tested (Fig. 3a). The 8 redesigned

siRNAs were also tested for their ability to inhibit West Nile Virus

infection. Consistent with the results obtained with the luciferase

assay, the redesigned siRNAs inhibited viral replication more

efficiently compared to the conventional siRNAs in most cases (see

Figure 1a of reference [32] and Fig. 3b). In 6 out of 8 cases,

m1+4+10 showed significantly higher inhibition efficacy compared

with the no mismatch 22 nt siRNAs (Fig. 3b).

Next, we randomly selected 27 targets from c-myb 39 UTR with

GC content ranging from 40 to 75% and designed siRNAs with no

mismatch passenger strand or mismatched passenger strand at

position 1, 4 and 10 (m1+4+10). The target sequences with GC

content lower than 40% were purposely not selected because siRNAs

with low GC content tend to disassociate when multiple mismatches

are introduced. As shown in Fig. 3c, siRNAs with m1+4+10

structure showed significantly higher functionality compared to the

no mismatch structure (m0) in 56% siRNAs (15 out of 27). Of note,

none of the siRNAs with m1+4+10 structure showed significantly

lower functionality compared with m0 structure.

In summary, introducing mismatches at position 1, 4 and 10

could increase siRNA functionality in a majority of siRNAs tested.

However, it did not improve siRNA functionality in some siRNAs.

Figure 2. The effect of mismatches on siRNA functionality. (a) Keeping the guide strand sequence intact, single (left) or multiple (right)
mismatches were introduced to the siR-21 passenger strand at the indicated positions corresponding to the guide strand 59 end and functionality
was assessed as in Fig. 1. C indicates 21 nt completely complementary siRNA, m0 represents 22 nt siRNA with no mismatch, m1 represents a single
mismatch at position 1, m1+9 represent 2 mismatches at position 1 and 9 and so on. The bar graphs represent mean of triplicate. Error bar = 1 S.D. (b)
Single or multiple mismatches were introduced to siCS2, a siRNA targeting highly conserved CS2 region of all mosquito-borne flaviviruses, at the
indicated positions and the functionality was assessed as in Fig. 1. (c) IC50 was calculated for siR-21 and siCS2 with different mismatch structures
based on the graph generated by testing different mismatched structures at indicated concentrations in (d). (e) Single or multiple mismatches were
introduced to a siRNA targeting an artificial 100% GC sequence at the indicated positions and the functionality was assessed as in Fig. 1.
doi:10.1371/journal.pone.0028580.g002
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Optimized structure can also decrease passenger strand
RISC loading

One of the concerns with siRNA application is the off-target

effect caused by the passenger strand loading into RISC. Often,

passenger strand is also loaded [33,36,37,38,39,40]. In this study,

the passenger strand was even more efficient than the intended

strand in target repression in the case of siR-03 and siR-13 (Fig. 1).

It has been reported that the end thermodynamic stability

dominates strand selection. Because introducing mismatches at

position 1, 4, and 10 changes the thermodynamic stability of the

siRNA, the loading of the passenger strand might be decreased

resulting in reduced off-target effects. To test this hypothesis, we

determined the passenger strand functionality in 4 siRNAs in

which the functionality of the intended strand had been tested. In

2 of 4 siRNAs, the functionality of passenger strand was

significantly decreased (Fig. 4). Thus, introducing mismatches to

the passenger strand might reduce the off-target effect caused by

passenger strand loading, at least in some cases.

Introducing mismatches could also increase the
functionality of shRNA

We hypothesized that the optimal mismatch structures might

also be applied to shRNA design to enhance functionality since the

shRNAs would be processed into duplexes and finally subjected to

RISC loading. Currently shRNAs are commonly designed to

generate perfectly complementary strands [41,42,43,44,45]. Thus,

we tested if introducing m1+4+10 mismatches can enhance

functionality compared to perfectly complementary shRNAs. For

this purpose, we converted two siRNAs, siR-21 and a siRNA

targeting the most conserved regions in HIV 59 UTR [46], into

Figure 3. Introducing mismatches at position 1, 4 and 10 could generally increase siRNA functionality. (a) siRNAs that were not highly
functional in Fig. 1 were redesigned to have 22 nt length and mismatches at position 1, 4 and 10 (m1+4+10) and tested for efficacy as in Fig. 1. (b)
The redesigned siRNAs in Fig. 3a were tested for inhibition of West Nile virus replication. BHK21 cells were transfected with the indicated siRNAs and
8 h later, infected with WNV (moi = 1). Three days after infection, cells were stained with anti-West Nile Virus/Kunjin Envelope antibody and analyzed
by flow cytometry to determine inhibition of virus replication. FVEjw siRNA [31] was used as positive control and the data were normalized using a
negative control siLuc siRNA. The bar graphs represent mean +/2 SD of triplicates. (c) siRNAs targeting c-myb 39 UTR were designed to have either no
mismatches (m0, white) or mismatches at position 1, 4 and 10 (m1+4+10, black). The siRNA numbers represent the starting position of target
sequence in c-myb 39 UTR. The functionality was assessed as in Fig. 1. P values between m0 and m1+4+10 were shown below the figure.
doi:10.1371/journal.pone.0028580.g003
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shRNAs with a pri-miR-150 backbone. Compared with no

mismatch structure (m0), the efficacy significantly improved with

m1+4+10 mismatches introduced in the passenger strand (Fig. 5).

Of note, the results with shRNA were consistent with synthetic

siRNAs (Fig. 2a and Fig. S2).

All 4 Argonaute proteins can load both si and miRNA
structured oligos to generate active RISC

The four Argonaute proteins Ago1–4 constitute key compo-

nents of RISC in mammalian cells [47]. In Drosophila, it has been

reported that siRNAs are sorted into Ago2 while miRNAs with

mismatches are sorted into Ago1 [48,49,50]. In mammals, such

sorting does not occur and both mi and siRNAs can associate with

all Ago proteins. However, a recent report suggests that while

miRNA duplexes could be bound as well as unwound by all Ago

proteins, siRNA duplexes could only be efficiently unwound by

Ago2, although Ago1, 3 and 4 could also bind the siRNA in vitro

[34,35]. If this is the case, conventional siRNA should only be

selected into Ago2, while miRNA-mimicking siRNAs should be

able to be selected into all 4 Ago proteins, which might explain

why designing siRNA to have a miRNA structure could increase

the functionality. We therefore tested the repression efficacy of

complementary and mismatched siRNA duplexes in mouse ES

cells knocked out for all Agos followed by reconstitution with

individual Agos [51] as well as in the parental NM5 ES cells

expressing all 4 Ago proteins. We chose a siRNA, FVEjw that did

not show any functional difference when mismatches are

introduced into the passenger strand. For this experiment,

luciferase reporter containing completely complementary target

sequences in the 39UTR were cotransfected with FVEjw siRNAs

with or without mismatches in the passenger strand (thus the guide

strand of both siRNAs had completely complementary target

sequences in the reporter) into ES cells containing Ago1, Ago2,

Ago3, Ago4 or the parental ES cells containing all Ago proteins

(NM5). As expected, the Ago2 cells showed the greatest repression

corresponding to its cleavage activity, whereas in Ago1, 3 and 4

cell lines, miRNA like repression accounted for the (not so

profound as Ago2) reduction in target activity (with both siRNAs

with or without mismatches in the passenger strand). Although the

degree of repression varied between Ago2 and Ago 1, 3 and 4 cells,

it is important to note that the functionality between m0 and

m1+4+10 structure displayed no significant differences in Ago 1, 2,

3, or 4 cells, suggesting that all individual Ago proteins could load

complementary as well as mismatched siRNA to generate active

RISC similarly (Fig. 6a).

The results in another two siRNAs were consistent with FVEjw

results (Fig. 6b and 6c). In these two siRNAs, although

mismatched siRNAs showed higher functionality in all cells, no

mismatch siRNAs was clearly also functional in Ago 1, 3 and 4

cells just like in Ago2 and parental cells. Taken together, our

results suggest that irrespective of the extent or mechanism of

target knockdown (cleavage or miRNA like repression), both si and

miRNA structured oligos (siRNA with or without mismatches in

the passenger strand) are loaded into all Ago proteins and thus, the

Ago proteins do not differentiate between si/miRNA-based

structure for loading or maturation.

It is not surprising that the repression was more marked in Ago2

ES cells because Ago2 could cleave the target while Ago1, 3 and 4

could only repress the target by translational repression. However,

it is interesting that the repression efficacy was significantly higher

in Ago2 ES cells than in parental ES cells with all the Ago proteins.

A recent paper reported that Ago2 was the primary rate-limiting

determinant of siRNA efficacy and Ago 1, 3 and 4 could compete

with Ago2 for siRNA loading [52]. This might explain the higher

repression efficacy seen in Ago2 only expressing ES cells compared

to the parental cell expressing all Ago proteins.

The effect of mismatch might depend on the siRNA
sequence context

To further dissect the contribution of mismatches at different

positions in different siRNA context, we picked 5 siRNAs from the

siRNAs targeting c-myb 39 UTR that showed significant

improvement when mismatches are introduced and compared

the functionality with different mismatch structures. As shown in

Fig. 7, introducing mismatch at the end (m1) or m1+4 increased

the functionality to similar extent. However, introducing mis-

matches at more internal positions in m1+10 or m1+4+10 led to a

significantly enhanced functionality for almost all the siRNAs

Figure 4. Mismatched structure could decrease the loading of
passenger strand. The passenger strand functionality was compared
between no mismatch (m0, white bars) and mismatched (m1+4+10,
black bars) structure by co-transfecting the indicated siRNAs with
psiCHECK2 vector harboring the corresponding perfectly complemen-
tary passenger strand target sequences. The ratio of Renilla luciferase
(Rluc, reporter) to firefly luciferase (Fluc, internal control), normalized to
the negative control siRNA (siGFP) is shown. The experiments were
performed in triplicate. Error bar = 1 S.D.
doi:10.1371/journal.pone.0028580.g004

Figure 5. The optimal mismatch structure could also be applied
to design shRNAs. shRNAs were constructed on murine pri-miR-150
backbone with no (mo) or m1+4+10 mismatches. The functionality was
tested as in Fig 1. Control indicates pri-miR-150 with scrambled mature
miR-150 sequence with the secondary structure kept intact. The
experiments were performed in triplicate. Error bar = 1 S.D.
doi:10.1371/journal.pone.0028580.g005
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tested, suggesting that internal thermodynamic stability strongly

influences siRNA efficacy. It is noteworthy to point out that

m1+10 was significantly better than m1+4+10 in siR-109 and siR-

m659, suggesting that the exact optimal mismatch structure may

depend on the siRNA sequence context.

Discussion

Currently, the common practice to obtain a potent siRNA is to

design several siRNAs according to the siRNA design algorithm

and test their functionality. However in some cases, siRNAs have

to be designed to target particular sequences. For example, highly

conserved sequences shared by different virus species have to be

used for broad-spectrum antiviral activity. Such conserved regions

are few and are often not the ideal sequences predicted by the

currently available algorithms for siRNA design. Our method

provides an alternative method wherein generally any given

sequence, regardless of predictability by algorithms can be

optimized for gene silencing just by introducing mismatches in

the passenger strand. It has been reported previously that

introducing mismatch to the end of siRNA could enhance the

intended strand functionality [22,53,54,55]. In this study, we

systematically examined the effects of introducing both end and

internal mismatches and found that internal mismatches, in

combination with end mismatches can significantly increase the

functionality of siRNA. This method could also be applied to

shRNA design.

Why does introducing mismatches improve siRNA function?

Since siRNA has to be loaded into RISC to be functional,

mismatches may increase the loading efficiency and thereby

improve functionality. One of the major discoveries related to

RISC loading of siRNA is that end thermodynamic stability

dominates strand selectivity of RISC loading with the strand with

less stable 59 end showing the greatest propensity for loading

[22,53]. While this rule appears to be generally true, it is not rare

that siRNAs that defy this rule are also potent in gene silencing.

Moreover, siRNAs with perfect asymmetric thermodynamic ends

might also not function well [56,57]. Our study showed that in

addition to the end thermodynamic stability, changing the internal

thermodynamic stability by introducing mismatches at certain

internal positions can further increase siRNA functionality.

Kawamata et al reported that mismatches at the central position

enhance siRNA loading into pre-RISC while mismatches at the

seed region and mid region enhance siRNA unwinding [34,35,58].

It has also been reported that potent conventional siRNAs usually

have lower internal thermodynamic stability [7,59]. A recent

paper showed that lowering the thermodynamic stability in the

central position (position 9–12) by either introducing mismatches

or chemical modifications, could significantly improve the siRNA

potency [60]. Gu et al also showed that decreasing internal

thermodynamic stability of shRNA could enhance RISC matura-

tion by noncleaving Ago proteins, suggesting that unwinding of the

2 strands by Agos 1, 3 and 4 was enhanced by decreasing

thermodynamic stability [61]. Taken together, these studies

suggest that the overall thermodynamic pattern of siRNA is what

really determines the siRNA functionality, not only the end

thermodynamic stability. Introducing mismatches at certain

positions could optimize the overall thermodynamic pattern to

make the siRNA a better substrate for RISC loading and

maturation.

Several previous studies have tried to improve functionality and

strand-selecting accuracy of siRNAs. Chen et al reported that 59

phosphate is an important determinant for strand selection and 59-

O-methylation of siRNA passenger strand could effectively reduce

passenger strand functionality [38]. Several other chemical modifi-

cations have also been used to enhance functionality and decrease

the selecting of passenger strand [28,37,55,60,62,63,64,65].Other

methods used to improve functionality and strand-selecting accuracy

include incorporating 2 nt overhangs only in the guide strand,

making the passenger stand into two pieces or by shortening the

passenger strand by 3–4 nt [36,39,40]. However, none of these

methods can be applied to shRNA design. Our strategy provides yet

another way to enhance the functionality and strand selecting

accuracy of both si and shRNAs.

It is intriguing that introducing mismatches improved function-

ality in some siRNAs while not in other siRNAs. Our data

Figure 6. SiRNAs with and without mismatches are functional
in the context of individual Ago proteins. (a–c) The siRNAs with or
without mismatches were tested for functionality (as in Fig 1) in ES cells
expressing individual Ago proteins. The functional efficacy for siRNA
FVEjw (a), siR-21 (b) and siR-HIV 59 UTR (c) is shown. The experiments
were performed in triplicate. Error bar = 1 S.D.
doi:10.1371/journal.pone.0028580.g006
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presented in this study could not provide a clear explanation,

although some of our data might provide clues to the question.

As shown in Fig. 2a, b, introducing a single mismatch at a

certain position in two different siRNA appears to have different

effects. For example, introducing a mismatch at position 4

showed no improvement in siR-21 compared to m0, but it had a

significant functionality improvement in siCS2. Moreover,

different mismatch combinations have very different effects on

siR-21 and siCS2, suggesting that the effect of mismatches on

siRNA functionality might be siRNA sequence-dependent.

Different siRNA sequences need mismatches at different

positions to improve the thermodynamic feature. Our results

shown in Fig. 7a, also supports this hypothesis. It is also worth

mentioning that introducing mismatches did not further improve

the functionality in conventional siRNAs that already worked

well (such as FVEjw as shown in Fig. 6a). The reason might be

that the thermodynamic pattern of these potent siRNAs might

already be optimal and can’t be further improved by introducing

mismatches. Thus, whether introducing mismatches to improve

functionality and in which position mismatches should be

introduced might depend on siRNA sequences. A larger scale

of study on the effect of mismatch-mediated thermodynamic

pattern changes in different siRNA sequences might shed light

on what is the optimal thermodynamic stability structure of

siRNA for RISC loading.

How the guide strand of siRNA or miRNA is loaded into

Argonaute proteins has been under intensive investigation. All 4

mammalian argonaute proteins are ubiquitously expressed and are

involved in miRNA-mediated gene repression (reviewed in

reference [47]). Recently, Wang et al reported that bacterially

expressed human Ago1 and Ago2, but not Ago3 and Ago4, possess

strand-dissociating activity of miRNA duplexes and passenger

strand cleavage activity of siRNA duplex [66]. However, Yoda et al

reported that although all 4 human Ago proteins showed

remarkably similar structural preferences for miRNA-like duplex-

es, only Ago2 could load and unwind siRNA duplexes efficiently to

generate mature RISC in vitro [35]. Our results, however suggest

that the different Ago proteins do not differentiate between si/

miRNA-based structure to generate mature RISC. The discrep-

ancy between these studies might be due to the different

experimental systems used. Since we performed experiments in

cell lines rather than Ago proteins purified in vitro, our conclusion

might reflect a more physiological context.

In summary, introducing mismatches in the passenger strand

generally improves the efficacy of siRNA by changing the end as

well as internal thermodynamic stability. Moreover this method

can also be applied to shRNA design to improve efficacy.

Materials and Methods

Cells, oligos, transfection and luciferase assay
293FT cells (Invitrogen) were cultured according to the

manufacturer’s instructions. The day before transfection, 293 FT

cells were trypsinized and diluted to 105 cells/ml and seeded in 96

well plates in a volume of 100 mL/ well. 2 pmol siRNA and 0.1 mg

psiCHECK2 plasmid harboring the target regions of testing

siRNA were co-transfected with lipofectamine 2000 (Invitrogen)

per the manufacturer’s instructions with modifications. First, the

siRNAs were mixed immediately with diluted lipofectamine 2000.

Second, plasmids and siRNAs complexes were made separately.

Third, the siRNAs were diluted at room temperature medium, not

37uC. Dual-Glo luciferase assays (Promega) were performed per

the manufacturer’s instructions one day after transfection.

To determine IC50, the siRNAs were serial diluted and tested

for functionality. In each dilution, control siRNA duplex was

added to ensure the presence of a constant amount of nucleic acid

in each transfection reaction.

For shRNA functionality test, 0.1 mg shRNA construct and

0.1 mg psiCHECK2 harboring the target sequence were co-

transfected into 104 293FT cells/well in a 96 well plate with

lipofectamine 2000 per the manufacturer’s instructions. Dual-Glo

luciferase assay was performed 24 hours later.

25 conventional stabilized siRNAs targeting highly conserved

region of various Flavivirus have been described [32]. All the other

RNA oligos were ordered from Sigma and sequences were listed in

Table S1.

Constructs
All the DNA oligos used for constructing psiCHECK2 target

reporters were listed in Table S2. DNA oligos were obtained from

IDT and Sigma. The oligos were annealed and inserted into

psiCHECK2 at XhoI and NotI site. Constructs were made for both

sense and antisense targets separately to test strand selection. New

constructs were made when mismatches were introduced into

passenger strands to make sure that the target sites were perfectly

complementary to the mismatched passenger strand. Full length c-

Figure 7. Both end and internal thermodynamic stability influence the siRNA efficacy. siRNAs targeting c-myb 39UTR (see Fig. 3c)
designed with indicated mismatches were tested for functionality as in Fig. 1.
doi:10.1371/journal.pone.0028580.g007
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myb 39 UTR reporter was a kind gift from Dr. Changchun Xiao’s

lab.

Murine pri-miR-150 was used as the backbone for all the

shRNAs. 30 nt flanking sequence at both ends of pre-miR-150 was

included to ensure proper Drosha processing. The sequences of

shRNA were shown in Table S3. The shRNAs were inserted into

pLL3.7 vector at HpaI and XhoI site under the control of U6

promoter as described earlier [31].

Testing siRNA for antiviral activity
The assay was performed as previously described [31]. Briefly,

BHK21 cells were seeded in six well plates at 105 cells per well one

day before transfection. The siRNAs were transfected into cells

with lipofectamine 2000 per the manufacturer’s instructions.

8 hours after transfection, the cells were infected with West Nile

virus (WNV) (moi = 1). 72 hours later, the cells were stained with

anti-West Nile Virus/Kunjin Envelope antibody (clone 3.67G,

Millipore), followed by flow cytometric analysis to determine

inhibition of virus replication.

Testing structural preference of Ago proteins
Ago1–4 expressing ES cells were cultured as described

previously [51]. 2 pmol siRNA and 0.1 mg psiCHECK vectors

harboring the target sequences were reverse transfected with

46104 cells per well in 96 well plates. Dual-Glo luciferase assay

were performed the next day.

Statistical analysis
Student’s t test (two-tailed, assuming equal variances on all

experimental data sets) was used to compare two groups of

independent samples.

Supporting Information

Figure S1 Mismatches increase functionality. Three

siRNAs that did not effectively inhibit West Nile virus replication

in our previous study (Figure 1a of reference (31)) were redesigned

by increasing the length to 22 nt and introducing mismatches in

the passenger strand corresponding to guide strand position 1 and

12 (m1+12) and tested for functionality as described in Fig. 1. C

represents conventionally designed 21 nt siRNA with no mis-

match.

(TIF)

Figure S2 siRNA targeting highly conserved regions in
the HIV 59UTR with and without mismatches were
tested for efficacy as in Fig. 1.

(TIF)

Table S1 The sequences of various mismatched siR-
NAs. ‘‘AS’’ represent the guide strand while ‘‘S’’ represent the

passenger strand.

(XLS)

Table S2 DNA oligos used to construct psiCHECH2
vector to determine siRNA repression efficiency. The

forward and reverse strands were annealed and cloned into

psiCHECK2.

(XLS)

Table S3 shRNA sequences. Mature duplex sequences are

marked in bold. Small cap represents the mismatched nucleotides.

(XLS)
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