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Abstract

Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion
channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain
antibody (VHH) libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-
expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant
influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking
activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a
neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection
against a number of variants and subtypes of influenza A viruses.
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Introduction

As a serious public health threat, influenza A virus causes

seasonal epidemics as well as occasional pandemics. It is estimated

that 250,000–500,000 people die from influenza each year

throughout the world [1]. The 1918 Spanish influenza pandemic

infected close to 5% of the world’s population and caused a

devastating effect [2]. Recent outbreaks of H1N1 influenza (Swine

flu) again raised serious concerns about potential influenza

pandemics [3]. Although vaccines and anti-viral drugs are

currently available to control influenza, their prophylactic and

therapeutic effects remain incomplete. Conventional vaccines

mainly target two highly variable determinants; namely, hemag-

glutinin (HA) and neuraminidase (NA). Due to rapid genetic drift

and re-assortment of the viral genome, viral strains evolve

continuously and necessitate frequent updates for vaccine

production. The time delay from monitoring the emergences of

new viral strains to producing effective vaccines at an industrial

scale limits our ability to provide immediate protection when a

pandemic occurs [4]. In turn, the new vaccines would not be able

to provide effective protection for immuno-compromised individ-

uals, young children and the elderly [5]. Besides vaccines, anti-

viral drugs such as NA inhibitors zanamivir and oseltamivir as well

as matrix-2 protein (M2) inhibitors amantadine and its derivative

rimantadine were approved to combat influenza. However,

substantial amount of drug-resistant viruses emerged due to

frequent use of these drugs. Alarmingly, in humans, birds, and

pigs, amantadine-resistant viruses constitute more than 90% of

total [6–8]. Thus, there is a pressing need to develop effective

prophylactic and therapeutic agents against infection of different

variants and subtypes of influenza A viruses.

Influenza M2 is an integral tetrameric transmembrane protein

that functions as a proton channel required for uncoating the virus

in endosomes upon infection, and hence, a functional M2 is

essential for a productive infection to occur [9–12]. Compared to

other viral surface proteins such as HA and NA, the 23-amino acid

extracellular domain of M2 (M2e) is remarkably conserved in all

human influenza A viruses [13]. This distinctive characteristic

makes M2e an attractive target for developing a ‘‘universal’’

vaccine. In recent years, several M2e-based vaccines have been

demonstrated in animal models to protect against human and

avian influenza infections [14–18]. However, inadequate antibody

titers are particular challenging due to the low immunogenicity of

M2e [19], and multiple injections of high-dose immunogens with

an adjuvant are required to achieve high levels of neutralizing

antibodies [20]. Passive immunization has been proven to be an

effective and safe strategy for the prevention and treatment of viral

diseases [21]. Passive transfer of murine anti-M2e antibody 14C2

significantly inhibited influenza A virus replication in mice [22].

Several groups developed M2e monoclonal antibodies (mAbs) and

demonstrated their prophylactic and therapeutic activities against

influenza [20,23–26]. In general, these antibodies mediate

protection by eliminating infected cells through antibody-depen-

dent cell-mediated cytotoxicity (ADCC) or complement dependent

cytotoxicity (CDC), not through neutralizing virions as M2 ion

channel blockers [20,27]. Conceivably, blocking M2 ion channel

would be an effective antiviral approach since M2 is involved in

virus uncoating at an early stage of the viral life cycle. Yet, there is
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no report about the approach designed to generate antibodies

against M2 ion channel function.

Naturally occurring heavy-chain antibodies devoid of light

chains were first discovered in Camelidae [28]. The antigen-binding

site of these antibodies consists of one single domain referred to as

VHH. With a molecular weight of approximately 15 kD, VHHs

are the smallest naturally occurring intact antigen-binding units

with the following noticeable features: (1) long CDR3 that plays a

key role in recognizing structures such as pockets and clefts that

are inaccessible for conventional antibodies [29]; (2) efficiently

produced in prokaryotic and eukaryotic hosts including bacteria

and yeast [30]; (3) generally not immunogenic in primates and can

be humanized if necessary [31]; (4) highly soluble and stable

including resistance to high temperature and proteases [32,33]. A

number of VHHs had been developed for a spectrum of human

diseases, and some of which are currently in late stages of clinical

trials. In this study, we explored the possibility of generating VHH

antibodies specifically targeting native M2 ion channel. By

panning and subtractive selection of synthetic Camel VHH

libraries on native MDCK cells vs virus infected cells, a number

of anti-M2 VHH antibodies were isolated. Among the VHHs,

M2-7A, showed cross-reactive neutralization for both amantadine-

sensitive and resistant viruses in vitro and protection from influenza

A virus infection in mice. Using a cell viability assay, M2-7A was

demonstrated to protect M2-expressing cells from pH shock-

induced cell mortality. Our results suggest M2-7A may neutralize

M2 by interfering with its ion channel function and have the

potential to become cross protective anti-influenza agents.

Materials and Methods

Expression and purification of the full length M2 protein
The M2 gene of an influenza virus (A/Hong Kong/8/68,

H3N2) was cloned into pET32a(+) vector (Novagen) and expressed

in E. coli BL21(DE3) (Novagen). The expressed His-tagged protein

was first purified by immobilized metal-ion affinity chromatogra-

phy (IMAC). The Trx tag was then cleaved by thrombin and

further purified by AKTA (GE Healthcare) through ion exchange

chromatography using Source Q column (GE Healthcare),

HisTrap FF affinity chromatography (GE Healthcare), and gel

filtration using Superdex 200 column (GE Healthcare). Detergent

(1% OG) was included in all purification buffers. Protein purity

was detected by Coomassie-stained sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and the concen-

tration was determined by a protein assay kit (Bio-Rad).

Oligonucleotide design for PCR-based gene synthesis
An antibody library was constructed based on the identified

universal VHH framework cAbBCII10 with synthetic diversity

introduced by PCR mutagenesis into all three complementarity

determining regions (CDR1-3) [34]. DNA degeneracy is repre-

sented by the IUB code (D = A/G/T, K = G/T, M = A/C,

N = A/C/G/T, R = A/G, S = G/C, V = A/C/G, W = A/T,

Y = C/T). Degenerate codons are shown in bold text. Mutagenic

oligonucleotides used for library constructions are: Forward

primer, GTC CTC GCA ACT GCG GCC CAG CCG GCC

ATG CAG GTG CAG CTG GTA GAA TCA GGC GG;

Oligo1(FR1), CAG GTG CAG CTG GTA GAA TCA GGC

GGT GGC TYG GTA CAG GCC GAA GGT TCG TTG CGT

TTG TCC TGT RCT GCC TCG GGT; Oligo2(CDR1-FR2),

GGC GGC AAC MAA TTC ACG TTC TTT ACC TGG AGC

CTG GCG GWA CCA ACC MAT ASM AYW ANT RCT VRA
RRT ADA ACC CGA GGC AGY ACA GGA CAA;

Oligo3(CDR2-FR3), ATC ACG TGA AAT AGT AAA ACG

GCC CTT GAC GGA GTC TGC ATA GTN TGT KBT GBC
AYC AYY CVW ABT AAT GGC GGC AAC MAA TTC ACG

TTC; Oligo4(FR3), CGT TTT ACT ATT TCA CGT GAT

AAT GCC AAA AAT ACT GTC TAT TTG CAG ATG AAT

ART TTG AAA CCA GAA GAT ACT GCC RTT TAT TAC

TGT; Oligo5(CDR3-FR4), TGA TGA GAC AAT GAC MTG
GGT CCC TTG GCC CCA GTA MNN (6–17) GGC AKY
ACA GTA ATA AAY GGC AGT AT; Reverse primer, GAG

TCA TTC TCG ACT TGC GGC CGC TGA TGA GAC AAT

GAC MTG GGT CCC.

VHH library construction
Library construction was done according to the provider’s

instructions with minor changes (GE Healthcare, previously

Amersham Biosciences). Synthetic oligonucleotides were assem-

bled and amplified by overlap PCR extension, as illustrated in

Fig. 1. The purified final PCR products and pCANTAB 5E

phagemid vector (GE Healthcare) were digested with NotI and SfiI

(New England Biolabs), and subsequently gel-purified using a

QIAquick Gel Extraction Kit (Qiagen). The resulting VHH

fragments (,5 mg) were ligated into pCANTAB 5E (,10 mg) with

T4 DNA ligase (New England Biolab) at 16uC for 16 h. The

ligated material was transformed into competent TG1 cells (GE

Healthcare) by several electroporations using a Bio-Rad Gene

Pulser (Bio-Rad Laboratories). Each library was grown at 30uC
overnight on plates containing 26YT medium, supplemented with

ampicillin (100 mg/mL) and glucose (2% w/v) [35]. Colonies were

scraped from the plates and stored in 26YT, 1% glucose, 50%

glycerol at 280uC. Recombinant phage particles were prepared as

previously described [36]. Briefly, the library stock was grown to

log phase, infected with M13KO7 helper phage (GE Healthcare),

and amplified overnight in 2-YTAK (2YT containing 100 mg/mL

ampicillin and 50 mg/mL kanamycin) at 37uC. Phages were

further purified and concentrated by polyethylene glycol (PEG)

precipitation.

Selection of VHHs
161012 plaque-forming units of phage-VHHs prepared from

each library were combined for panning against the expressed full

length M2 protein coated on Maxisorp immunotubes (Nunc).

10 mg of M2 protein was used in the first round and reduced to

1 mg in the following rounds. Non-specifically absorbed phages

were removed by intensive washing with PBS-T (0.1% Tween-20).

Bound phages were eluted with 100 mM triethylamine, immedi-

ately neutralized with 1 M Tris-HCl (pH 7.4), and subsequently

amplified by infecting exponentially growing E. coli TG1. The

selected phages were amplified with helper phage M13KO7 and

purified using polyethylene glycol (MW6000)/NaCl precipitation

for further rounds of selection as described [32] . Randomly picked

phage-VHH clones were subjected to subtractive binding to native

Madin-Darby canine kidney (MDCK) cells (ATCC, CCL-34) and

influenza virus infected MDCK cells by ELISA after four rounds

of panning. Briefly, MDCK cells (4.56104/well) were cultured in

DMEM containing 10% FBS in 96-well flat bottom plates for

approximately 12 h to form confluent cell monolayers and then

infected with influenza A virus (MOI = 1) in serum-free DMEM at

room temperature for 30 min. The cells were then washed and

cultured in DMEM containing 0.5% BSA and 1 mg/ml Tosylsul-

fonyl phenylalanyl chloromethyl ketone (TPCK)-treated trypsin

for 24 h. Uninfected cells were used as a negative control. Cells

were blocked with PBS containing 4% nonfat milk and then

incubated with phage-VHHs in PBS containing 2% BSA.

Specifically bound phages were detected by addition of horserad-

ish-peroxidase-conjugated mouse anti-M13 (GE Healthcare) with

Influenza M2 Neutralizing Single-Domain Antibody
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the color developed by adding TMB substrate. VHH phage clones

with A450 value.1.0 were scored as positive; whereas, A450,0.2

was considered as negative for binding to virus-infected cells.

Expression and purification of VHHs
The VHH genes from the selected clones were re-cloned into

pET22b (+) vector (Novagen) and transformed into E. coli

BL21(DE3) (Novagen). Large-scale production of recombinant

VHHs was performed in shaker flasks by growing the bacteria in

26YT supplemented with ampicillin until OD600 reached

between 0.6 and 0.9. VHH expression was induced with 1 mM

IPTG for 16 h at 28uC. Cells were pelleted, resuspended, and

subjected to osmotic shock. The supernatant was loaded onto a Ni-

nitrilotriacetic acid (Ni-NTA) superflow Sepharose column (Qia-

gen), washed, and eluted with 250 mM imidazole. The eluted

fractions were concentrated on Millipore concentrators with a

molecular mass cut-off of 3 kD and dialyzed in PBS.

ELISA
10 mg/ml A/Puerto Rico/8/34 (H1N1) virus was passively

adsorbed onto 96-well plates in 100 ml PBS/well overnight at 4uC.

The virus-coated plates were blocked with PBS containing 4%

BSA for 1 h at 37uC. After washing with PBST (16PBS with 0.1%

tween), 50 ml of VHHs and 50 ml blocking agent (16PBS with 4%

BSA) were added to each well and incubated for 1 h. Binding of

VHHs was detected with HRP-conjugated rabbit anti-his antibody

(Abcam), visualized with TMB substrate (Thermo-Fisher), and

quenched with 1 M H2SO4. The plates were read at 450 nm.

ELISA for the expressed full-length M2 protein or the 23mer

synthetic peptide of M2e conjugated to KLH was done essentially

the same as described above with the concentration of the

corresponding protein at 1 mg/ml. The mouse monoclonal anti-

M2e antibody, 14C2, was purchased from Santa Cruz Biotech-

nology (Santa Cruz, California).

Surface plasmon resonance
The binding kinetics and affinity of the VHH M2-7A and 14C2

antibody for the purified full length M2 protein were measured by

surface plasmon resonance (SPR) using a Biacore 3000 instrument

(GE Healthcare). Recombinant M2 protein was immobilized on to

a CM5 sensor chip in 10 mM sodium acetate buffer, pH 4.0, via

amine groups using an Amine Coupling Kit (Pharmacia

Biosensors). One channel on the chip was not coated and used

as a negative control. Binding kinetics for VHH M2-7A was

collected at six concentrations in 2-fold serial dilution down from

1000 nM to 31.25 nM. At the end of each injection, running

buffer (10 mM HEPES, 0.3 M NaCl, 3.4 mM EDTA, 0.005%

surfactant P20, pH 7.4) was applied for 300 s, followed by the

regeneration of CM5 chip using 6 ul of 50 mM NaOH. Binding

kinetics were evaluated using a 1:1 Langmuir binding model with

mass transfer control.

Construction of M2 expressing cell lines
The wild-type M2 gene (M2wt, amantadine-sensitive) of the

influenza virus A/Hong Kong/8/68 (H3N2) was synthesized at

Takara (Dalian, China). The mutant M2 gene (M2mu, amanta-

dine-resistant) carrying S31N/L26I double substitutions were

generated by PCR-directed site-specific mutagenesis (Quik-

ChangeH,Stratagene) on M2wt DNA template. The genes were

inserted into the pCDNA4/TO plasmid (Invitrogen, Carlsbad,

CA, USA) between BamH I and Xba I sites. T-REx-293 cells

(Invitrogen) were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal calf serum and

penicillin-streptomycin (100 U/ml and 100 mg/ml, respectively).

Figure 1. Schematic flow chart for the assembly of the synthetic oligonucleotides. Synthetic VHH genes were generated by PCR extension
of oligonucleotides represented by oligo1-5 (FR1, CDR1-FR2, CDR2-FR3, FR3, CDR3-FR4), forward and reverse primers. The final PCR products were
purified from agarose gels, digested sequentially with SfiI and NotI, and cloned into the pCANTAB 5 E phagmid vector.
doi:10.1371/journal.pone.0028309.g001
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T-REx-293 cells were transfected at 80% confluence in a 60 mm

dish with 5 mg of plasmid DNA in 10 ml of lipofectamine 2000

(Invitrogen). 24 hours after transfection, cells were passaged at

1:10 dilution into fresh growth medium containing 200 mg/ml of

zeocin (Invitrogen). After 14 days of zeocin selection, tetracycline

(Sigma-Aldrich) at a final concentration of 1 mg/ml was added to

the cell culture for 24 h to induce M2 expression. The expressed

M2 protein was subject to western blotting analysis.

Flow cytometry
M2wt-T-REx-293 cells were cultured in DMEM containing

10% FBS and induced for M2 expression with tetracycline at

2 mg/ml. Cells were harvested after 24 h and washed with PBS/

2.5 mM EDTA. Aliquots of 16106 cells were resuspended in

0.1 ml PBS containing 0.5% BSA and incubated with 5 mg of M2-

7A, 6D or 0.5 mg of 14C2 control antibody at room temperature

for 60 min. The uninduced M2wt-T-REx-293 cells were also

incubated with antibodies in the same manner. Cells were washed

three times with PBS, followed by immunostaining with 1 ml of

rabbit anti-His-FITC antibody (Abcam) or goat-anti-mouse IgG-

FITC in 0.1 ml PBS containing 0.5% BSA for 30 min. Cells were

washed as above and analyzed on a BD FACSCaliburTM. For

each sample, at least 5000 events were collected and the data

analysis was performed with CellQuest program (BD).

Immunofluorescence staining
MDCK cells (ATCC, CCL-34) were cultured on sterile glass

cover slips overnight at 37uC, treated with A/Puerto Rico/8/34 at

a multiplicity of infection (MOI) of 1 for 2 h at 37uC. The culture

media was then replaced and the infected MDCK cells were

cultured for an additional 24 h. Cells were fixed in 4%

paraformaldehyde for 20 min, permeabilized with 0.5% Triton

X-100 for 10 min at room temperature, and washed with PBS.

The cover slips were incubated with the VHH antibodies in

PBS+5% BSA solution at room temperature for 1 h. The cells

were washed in PBS four times for 5 min each, stained with rabbit

anti-His-FITC antibody for 1 h in dark, washed four times with

PBS, and counterstained with 1 mg/ml DAPI for 2 min.

Photographs were taken on a Leica microscope.

In vitro plaque reduction assay
MDCK cells were cultured on 12-well plates (Costar) and

incubated overnight at 37uC with 5% CO2 to near-confluence.

Equal number of A/Hong Kong/8/68 (amantadine-sensitive) or

A/Puerto Rico/8/34 (amantadine-resistance) influenza A virus

(approximately 40–60 pfu) was diluted into 0.3 ml DMEM

containing 0.5% BSA and incubated with VHH M2-7A of various

concentrations for 30 min at 37uC. The plates were washed once

with phosphate-buffered saline (GIBCO), pH 7.2, and the virus-

VHH mixture was added to each well. Following a 1 h infection at

37uC, the viral inoculum was removed from the cell monolayer.

The cells were washed once with phosphate-buffered saline

(GIBCO), pH 7.2 and then overlaid with MEM containing

0.5% BSA, 0.8% agarose, 1 mg/ml TPCK-treated trypsin, the

corresponding concentration of M2-7A, 6D and amantadine.

Plates were incubated at 37uC for 2–3 days, and cells were fixed

with 4% paraformaldehyde containing 0.01% Triton X-100 for

1 h. The agar overlay was removed and blocked with 16 PBS

containing 5% BSA and 0.05% Tween 20 for 1 h at room

temperature. The cells were then incubated overnight with mouse

anti-NP monoclonal antibody (Southern biotech). The cell

monolayer was washed with PBS, incubated for 1 h at room

temperature with HRP linked anti-mouse secondary antibody,

then washed three times with PBS and stained with AEC staing

KIT (Sigma). The average number of plaques per sample was

determined and the percentage for plaque inhibition was

calculated by (1-b/a)100%, where b represents plaque number

of treatment group, a for the untreated control.

Cell viability based assay
M2-T-REx-293 cells (16104) were seeded into 96-well micro-

titer plates and grown in medium with 1 mg/ml of tetracycline for

24 h. The cells were incubated with M2-7A, amantadine, or

control VHH, 6D (in PBS, pH 7.4) for 30 min at 37uC after

replacing the medium, then treated with pH 5.8 buffer (50 mM

MES, 25 mM HEPES in PBS) containing the above samples for

3 h, followed by recovery in complete medium for 24 h. 10 ml of

Cell Counting Kit-8 (CCK-8, Dojindo, Japan) was added to each

well for 3 h to measure the A450 by UVstar-Microplates Synergy

HT.

VHH efficacy in mice
All animal studies were conducted according to protocols

approved by the Institutional Animal Care and Use Committee of

Guangzhou Institute of Biomedicine and Health (GIBH), Chinese

Academy of Sciences (Animal Welfare Assurance: #A5748-01;

IACUC Permit Number: 2010039). Four groups of mice (10 per

group, female 6- to 8-week-old BALB/C) were intranasally

inoculated with 106LD50 A/Puerto Rico/8/34 (H1N1). At 24

and 48 h postinfection, the mice were received i.p. injections of a

200 mg/100 ml dose of VHH M2-7A (binding to M2), control

VHH 6D (No binding to M2), and the control group received PBS

injections only. Mice were weighed daily for 2 wk and euthanized

when weight loss exceeded approximately 30% of the preinfection

body weight. To determine the lung viral titer, the infected lungs

were collected from three animals per group on days 6 after

infection, snap frozen in liquid nitrogen and homogenized in cold

MEM containing BSA (MEM/BSA). The plaque assay, as

described above, was used to measure viral titers from the clarified

lung homogenates.

Results

Identification of anti-M2 single-domain antibodies
(VHHs)

To generate VHHs against M2 ion channel, we constructed

synthetic antibody libraries based on a universal VHH framework,

cAbBCII10 [34]. Overlapping PCR strategy was employed to

orderly link all oligonucleotides (Fig. 1). The library diversity relied

on diverse composition of amino acids in the CDR3 regions and

was further expanded through combination of sub-libraries

(around 1010 for each sub-library) of different CDR3 lengths (9–

20 amino acids). To select VHHs with specificity toward native

M2 tetramer, we used full length M2 protein as a coating antigen.

In the presence of detergent (1% OG), purified full length M2

protein formed oligomer complexes (unpublished observation).

After four rounds of panning, the selected VHH clones were tested

for binding to M2 protein expressed on the surface of MDCK cells

infected with influenza A/Hong Kong/8/68 (H3N2). About one

hundred clones were obtained that bound to infected but not

mock-infected MDCK cells. Six enriched VHHs with strong

binding activities (ELISA A450.2.0) were expressed in E. coli and

purified by immobilized metal affinity chromatography. The

binding activity and specificity of the VHHs to M2 protein were

confirmed by ELISA and the neutralizing activity for influenza A

virus was examined by plaque inhibition assay. One of the isolated

VHHs, M2-7A, showed more potent virus inhibition activity than

others, and was further investigated in this study.

Influenza M2 Neutralizing Single-Domain Antibody
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Binding properties of VHH M2-7A
M2-7A was selected on the basis of its binding to full length M2,

influenza-infected MDCK cells, and its ability to inhibit virus

replication. To further analyze its binding to M2 protein, M2-7A

was expressed in E. coli BL21(DE3) and purified to homogeneity.

Binding of M2-7A to viral particles (A/Puerto Rico/8/34, H1N1),

full length M2 protein, and M2e peptide conjugate were evaluated

by ELISA. VHH 6D was used as a negative control, which has the

same framework sequence and length as M2-7A but no detectable

binding to M2 protein. The M2e-specific murine mAb 14C2 [23]

was employed as a positive control. As shown in Fig. 2, M2-7A

bound well to both purified A/Puerto/Rico/8/34 (H1N1) virus

and the full length M2 protein but weakly to the 23-amino acid

M2e peptide conjugate. In contrast, 14C2 bound with similar

strengths to both M2e peptide conjugate and recombinant full

length M2 protein. Interestingly, 14C2 did not show strong

binding to A/Puerto Rico/8/34 virus whose M2e is identical to

that of the full length M2 (A/Hong Kong/8/68) and the 23-amino

acid M2e conjugate (Fig. 2A). The control VHH 6D, showed little

binding to either virion, full length M2, or M2e peptide conjugate.

These results indicate that M2-7A recognizes an epitope on the

native M2 protein but not on the M2e peptide.

The binding affinity of M2-7A for M2 protein was measured by

surface plasmon resonance (SPR) using a Biacore 3000 instrument

(GE Healthcare). The recombinant full length M2 protein was

directly immobilized on a CM5 sensor chip. M2-7A and14C2

were serially diluted and injected over the chip. To reduce non-

specific binding, 0.3 M NaCl was added to the running buffer.

The data output represented the value of the observed response

units (RU) from the sample cells minus the RU from a reference

cell. The association (ka), dissociation (kd) rate constants, and the

dissociation constants (Kd = kd/ka) were evaluated using BIA

evaluation 3.1 software (GE Healthcare). M2-7A and 14C2 have

ka values of 1.16104 and 2.276105 M21 s21, kd values of

4.3461024 and 9.3461025 s21, respectively. The corresponding

Kd value of 14C2 for M2 protein is 4.12610210 M, comparable

to previously published data [20], and the Kd of M2-7A is

3.9561028 M (Table 1), which is within the range of Kd values

most VHHs have for their targeted antigens. This result showed

the moderate binding affinity of M2-7A to the full length M2

protein, consistent with previous ELISA data (Fig. 2B). It should

be noted that the Kd of M2-7A determined by Biacore may not

truly reflect its binding affinity to M2 tetramer, since the

immobilized M2 protein sample on the sensor chip also contained

M2 monomer, in addition to oligomers including tetramer and

octamer (Unpublished observation). Preferential binding of native

M2 protein over M2e-KLH conjugate by M2-7A suggested that

the actual binding affinity of M2-7A to native M2 tetramer could

be stronger than being measured under the current experimental

conditions.

Recognition of native M2 on the cell surface by M2-7A
The 14C2 mAb showed weak binding to A/Puerto Rico/8/34

viral particles (Fig. 2A) which was in agreement with the previous

publication [25]. A small number of M2 molecules on the virion

could affect the measurement by ELISA, and another possibility is

that the extracellular domain of M2 on the virion is not accessible

to 14C2. To address these issues, we next developed a eukaryotic

expression system to direct M2 protein onto cell surface where M2

forms a tetrameric ion channel as on the virion. T-REx-293 stable

cells expressing M2 upon the induction by tetracycline were

established. We then utilized flow cytometry to analyze the

binding of M2-7A to M2 protein. As shown in Fig. 3, both 14C2

and M2-7A were able to bind to M2-expressing cells; whereas,

Figure 2. Binding properties of M2-7A. (A) Purified influenza virus
(A/Puerto Rico/8/34), 10 mg/ml, (B) Recombinant full length M2 protein,
1 mg/ml, (C) 23-mer synthetic peptide of M2e conjugated to KLH, 1 mg/
ml, were coated on ELISA wells and incubated with M2-7A ,14C2
(murine anti-M2 antibody), or 6D (control VHH). The assay was done as
described in Methods. Secondary antibodies used: HRP-labeled goat
anti-his for M2-7A and 6D; HRP-labeled goat anti-mouse for 14C2.
doi:10.1371/journal.pone.0028309.g002

Table 1. Kinetic rate and dissociation constants of M2-7A and
14C2 to the full length M2 protein.

Ab ka (M21 s21) kd (s21) Kd (M)

M2-7A 1.106104 4.4361024 3.9561028

14C2 2.276105 9.3461025 4.12610210

doi:10.1371/journal.pone.0028309.t001
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control VHH 6D did not show any binding. Furthermore, we

investigated the binding of antibodies to M2 on infected cell

surface by immunofluorescence staining. Both 14C2 and M2-7A

gave strong fluorescence staining on MDCK cells infected with A/

Puerto Rico/8/34 virus (Fig. 4). In sharp contrast, control VHH

6D, showed no staining. Taken together, these results demon-

strated M2-7A as well as 14C2 bound to native M2 protein on the

cell surface.

In vitro viral neutralization activity of M2-7A
The 14C2 mAb has been demonstrated to inhibit influenza

virus replication in vitro by plaque inhibition assay [23]. However,

this antiviral effect occurred only against certain strains such as A/

Udorn/72 and A/HK/8/68 but not A/PR/8/34 and A/WSN/

33. Likewise, we utilized this assay to determine whether M2-7A

possesses viral inhibition activity. Purified M2-7A was incubated

with either A/HK/8/68 (amantadine-sensitive) or A/PR/8/34

(amantadine-resistance) viruses and the antibody-virus mixtures

were then added to MDCK cells for infection. The overlaid

agarose also contained M2-7A during remaining periods of the

assay. The control VHH 6D and amantadine were similarly

tested. The viral titer and optimal antibody concentration were

determined by pilot experiments. As shown in Fig. 5, M2-7A

reduced plaque number with similar potency for both amantadine-

sensitive and resistant viral strains. The inhibition was dose-

dependent with a minimal inhibitory concentration at 1.2 mM of

M2-7A (12.5 mg/mL). Control VHH 6D had little effect on plaque

inhibition. These results demonstrated that M2-7A was able to

inhibit replication of both amantadine-sensitive and resistant

influenza strains. The ability to contain amantadine-resistant

influenza A virus would give M2-7A an advantage fighting a larger

spectrum of influenza infection.

Protection by M2-7A from lethal viral infection
We next set out to determine the protective activity of M2-7A

in a lethal challenge model of influenza infection in mice.

Published studies showed that early treatment within 24 h post-

infection and multiple doses were critical for efficacy [20]. Similar

therapeutic regimens were applied in our study. Mice were

challenged with a lethal dose (106LD50) of mouse adapted

influenza A/Puerto Rico/8/34 and the viability as well as weight

change were monitored daily. Mice treated with 200 mg of

Figure 3. Staining of M2-expressing 293 cells with anti-M2 antibodies. The analysis was performed by flow cytometry with FITC-anti-His tag
(M2-7A and 6D) and FITC-anti-mouse IgG (14C2). Cells were non-induced (A) or induced with 2 mg/ml tetracycline for 24 h (B).
doi:10.1371/journal.pone.0028309.g003
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Figure 5. In vitro plaque inhibition of viral infection by M2-7A. MDCK cells were infected with A/Hong Kong/8/68 (H3N2, amantadine
sensitive) (Plate A), and A/Puerto Rico/8/34 (H1N1, amantadine resistant) (Plate B). In both plate A and B, well 1 was mock-infected; Well 2: virus only;
Well 3: virus +PBS; Well 4: virus+6D (5 mM,VHH control); Wells 5–8: virus+M2-7A (5, 2.5, 1.25, 0.625 mM); 9–12: virus+amantadine (5, 2.5, 1.25,
0.625 mM). The percentage of neutralization was determined by (1-b/a)6100%, where b represents plaque number of treatment group, a for the
untreated control (well 2), and shown in graph C for M2-7A and D for amantadine, respectively.
doi:10.1371/journal.pone.0028309.g005

Figure 4. Immunofluorescent staining of influenza infected cells. MDCK cells were infected with A/Puerto Rico/8/34 at an MOI of 1 for 2 h,
cultured for 24 h, and fixed with 10% paraformaldehyde. The infected cells were then incubated with control VHH 6D, M2-7A, and 14C2 antibodies
then stained with either FITC-rabbit-anti-His IgG (6D and M2-7A) or FITC-goat-anti-mouse IgG (14C2).
doi:10.1371/journal.pone.0028309.g004
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M2-7A 24 h after viral challenge followed by an additional

treatment at 48 h time point were mostly protected from a lethal

dose of viral infection (Fig. 6A). In contrast, none of the PBS-

treated or the control VHH 6D-treated mice survived the

infection. Two-day consecutive treatment showed higher protec-

tive efficacy (80% survival) than a single dose treatment (60%

Figure 6. Therapeutic efficacy of M2-7A in mice. Mice (n = 10) were infected by intranasal inoculation with 106LD50 A/Puerto Rico 8/34 (H1N1),
followed by 2 i.p. injections with mAbs at 24 h, 48 h, post-infection and weighed daily for 14 d. (A) Percentage of survival; (B) Percentage of weight
change; (C) Lung viral titers were determined from three mice per group at 6d postinfection. 6D serves as VHH control.
doi:10.1371/journal.pone.0028309.g006
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survival), suggesting that not only early intervention but multiple

treatments as well are effective in subduing the viral infection.

The M2-7A-treated mice exhibited weight loss from day 4 to 8

post-infection followed by a gradual weight gain in surviving

animals through the end of the study on day 14 (Fig. 6B). The

lung viral titers were measured on day 6 after infection. The

administration of M2-7A in both regimens substantially reduced

viral titers in the lung compared to the control group (Fig. 6C).

These results indicate that M2-7A protects mice from influenza A

viral infection and may be further developed as a promising

therapeutic agent in human.

Effect of M2-7A on viability of M2-expressing cells
As an integral membrane protein of influenza A virus, M2 forms

a proton-selective ion channel. Previous studies have shown that

low pH can activate the channel and cause M2-expressing cells to

die [37,38]. A cell viability-based assay has been developed to

identify drug candidates that antagonize M2 protein [39]. We set

out to use this assay to test whether M2-7A could block the

function of M2 ion channel and maintain the viability of M2-

expressing cells. To this end, both wild-type and mutant (double

substitutions S31N/L26I, amantadine-resistant) M2-expressing

stable T-REx-293 cells were established. Wild-type and mutant

M2 stable cells were induced by tetracycline for 24 hours, treated

with PBS at pH = 5.8 for 3 hours, and then cultured for another

24 hours. Cell viability was determined by the use of CCK-8 kit.

As expected, amantadine protected M2wt-T-REx-293 cells from

death but showed less protection for M2mu-T-REx-293 cells.

However, the viabilities of both wild-type and mutant M2-

expressing cells were maintained by M2-7A in a dose-dependent

manner (Fig. 7). Under the same conditions, control VHH 6D

provided no protection for either wild-type or mutant M2-

expressing cells from pH-induced cell death. These results indicate

that M2-7A interferes with M2 ion channel function, likely by

blocking the inflow of protons.

Discussion

Neutralizing antibodies provide immediate treatment options

for influenza pandemic emergency, particularly, for acutely

exposed people while more time-consuming developments of

vaccines and new drugs are ongoing [21]. Despite numerous

epidemics and two major pandemics, the ectodomain of M2 (M2e)

protein has shown remarkable conservation; namely, it remains

essentially unchanged since the first influenza strains were isolated

in 1918 [13]. The M2 protein of influenza A virus has thus

become a target for both vaccine and antibody development to

achieve broad protection from infection of influenza A variants

[15,16,40]. However, current influenza vaccines have not

achieved a significant anti-M2 humoral response due to low

immunogenicity of M2e and fewer number of M2 molecules

presented on influenza virus particles [40–42]. A multivalent M2e

vaccine is in clinical trial which may show great promise

[18,27,43], but perhaps not be effective for poorly responding

populations such as the elderly, very young children and immuno-

compromised individuals [5]. Passive immunization with mono-

clonal antibodies would complement such a vaccine, allowing the

treatment of disadvantaged people [21]. Indeed, a number of

M2e-specific antibodies have been generated in recent years that

showed anti-influenza A virus activities both in prophylactic and

therapeutic settings. The mechanisms of action by these antibodies

are mostly by ADCC or CDC, targeting infected cells but not

directly neutralizing the viruses, which could limit their efficacies

in eliminating infections [25,26].

Single-domain antibody (VHH) fragments are emerging as new

versatile reagents for the diagnosis and also the therapy of

infectious diseases such as RV-induced diarrhea, HIV, and foot-

and-mouth disease [44–46]. In comparison to conventional

antibodies, one of the unique features of VHH is that it is

particularly suitable for binding to the pocket or cleft of targeted

antigen owing to its small size and long CDR3 [29]. Therefore,

VHHs were chosen to target tetrameric M2 ion channel. Synthetic

VHH phage display libraries were constructed using universal

framework cAbBCII10, which is expressed well, stable in bacteria,

and has the plasticity allowing transfer of donor antigen binding

sequences without compromising their binding capabilities [34].

VHH libraries with variable CDR3 length (9 to 20 amino acids)

were independently constructed and mixed for panning against

recombinant full length M2 protein. VHH phages after four

rounds of panning were further selected based on their binding to

M2 protein on the cell membrane of influenza infected MDCK

cells. The candidate VHHs were then evaluated by plaque

inhibition assay. This screening/selection approach was designed

to isolate VHHs that bind native M2, the tetramer structure

essential for its ion channel activity.

M2-7A, one of the six VHH candidates, showed strong affinity

not only for the recombinant full length M2 protein but also the

native M2 protein on the virion (Fig. 2A and B). However, it failed

to bind a 23-amino acid synthetic M2e peptide (Fig. 2C). Flow

cytometry and immunofluorescence staining showed M2-7A also

Figure 7. M2-7A protects M2-expressing cells from pH-induced
cell mortality. M2wt-T-REx-293 cells (A) and M2mu-T-REx-293 cells (B)
were induced by tetracycline for 24 h, incubated with M2-7A,
amantadine, or control VHH 6D (in PBS, pH 7.4) for 30 min at 37uC,
and then treated with pH 5.8 PBS containing antibodies or amantadine
for 3 h. Cells were maintained in complete medium for another 24 h
and then assayed using Cell Counting Kit-8 according to the provider’s
instruction.
doi:10.1371/journal.pone.0028309.g007

Influenza M2 Neutralizing Single-Domain Antibody

PLoS ONE | www.plosone.org 9 December 2011 | Volume 6 | Issue 12 | e28309



recognized M2 expressed on the cell surface (Fig. 3 and 4). Our

results demonstrated that M2-7A specifically recognized native

M2. We further observed that M2-7A inhibited replication of both

A/Hong Kong/8/68 (H3N2, amantadine-sensitive) and A/PR/

8/34 (H1N1, amantadine-resistant) viruses (Fig. 5). The finding is,

to our knowledge, the first report for an antibody that is capable of

targeting both wild-type and amantadine-resistant influenza A

viruses in vitro. In a mice challenge model, M2-7A was able to

protect mice from a lethal dose of A/PR/8/34 when given 1 or 2

days post-infection. The two-day consecutive M2-7A treatment

was more efficacious than a single dose treatment (Fig. 6), in

support of findings by others [47,48]. Different from many

conventional anti-M2e antibodies whose antiviral activities in vivo

are mediated through ADCC or CDC, the protection by M2-7A

lack of Fc fragment is likely through blockage of M2 ion channel

on the virion and influenza-infected cell surface. The in vivo

efficacy of M2-7 led to the reasonable prediction that M2-7A-Fc

would be more potent than traditional anti-M2 antibodies, owing

to the combination of neutralization capability with ADCC or

CDC activity.

Other factors such as binding affinity and half-life could also

affect in vivo efficacy of M2-7A, which has a moderate binding

strength (Kd = 39.5 nM) for M2 protein. Further affinity matura-

tion based on M2-7A CDRs can be done as described previously

[49]. Alternatively, multivalent M2-7A can be engineered, for

example, a peptide linker can be placed between two monomers to

generate a bivalent VHH with high affinity or avidity and half-life,

similar to an anti-vWF nanobody (camel VHH, Ablynx) on phase

II clinical trial.

M2-7A was generated with the framework that has high degree

of human antibody sequence homology, thus expected low

immunogenicity when used in humans. Due to the small size,

M2-7A can be easily humanized to lower or avoid immunogenic-

ity. No B- or T-cell responses have been detected in mice and

baboons treated with camel VHHs. In addition, camel VHHs

against RANKL and vWF have already successfully passed phase I

clinical trial (Ablynx NV), indicating that they were not

immunogenic to human.

Influenza A virus M2 protein is a 97-residue single-pass

membrane protein with its amino termini towards the outside

and carboxyl termini inside the virion. It is a homotetramer in its

native state with four transmembrane helices forming a channel

for proton conductance. The opening of M2 ion channel is

essential for viral uncoating inside the host cell. The detailed

mechanism of M2 ion channel opening and closing remains to be

resolved, despite a general agreement on its channel pore structure

and function [50,51]. Transmembrane residues, His37 and Trp41,

are critical for channel activity serving respectively as a pH sensor

and gate. Amantadine, an antiviral drug against influenza A virus,

affects the opening of M2 ion channel, and the resistance to

amantadine occurs with high frequencies. Although amantadine-

resistant mutations are mainly in the transmembrane pore,

amantadine binding was surprisingly found at the channel’s

lipid-exposed outer surface [50]. A possible explanation is that

binding by amantadine causes conformational change of distant

M2 transmembrane pore, affecting the open and close of the

channel, whereas mutations suppress the drug action. Our study

has demonstrated that M2-7A protected M2-expressing cells from

pH shock-induced cell death, and the protection is equally

effective for both M2wt- and M2mu (amantadine-resistant)-

expressing cells (Fig. 7), strongly indicating at least a partial

blockage of proton influx by M2-7A. Although the exact

mechanism of the blockage remains to be investigated, we

hypothesized that the binding of the extracellular portion by

M2-7A causes a conformational change of the M2 ion channel

transmembrane helices, thereby, preventing the opening of the

channel for proton influx. The binding epitope of M2-7A might be

conformational since our selection strategy against native M2

protein was favorable in generating conformation-dependent

VHHs. This notion was supported by the ELISA data showing

the weak binding of M2-7A to M2e peptide conjugate. Moreover,

long CDR3 of M2-7A could form the structure that fits the pocket

or cleft formed by extracellular regions of M2 tetramer.

Interestingly, CDR3 of M2-7A has 18 amino acids

(IHMRSHGHTKQNRTTY) with multiple histidine residues

and showed no homology to other five anti-M2 VHHs. The roles

of these residues in binding to and blocking M2 ion channel

protein requires further investigation.

In conclusion, this study demonstrated the feasibility of

generating a novel class of antiviral drugs using synthetic VHH

libraries and utility of function-based screening/selection ap-

proach for neutralizing antibodies. VHH M2-7A, showed

preferred binding to native M2, and potent neutralizing activities

for both wild-type and amantadine-resistant influenza A viruses,

likely through direct interference with M2 ion channel function. In

vivo efficacy of M2-7A warranted its further study as a clinical

candidate for broad protection against influenza infection in

human.
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