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Abstract

Though roles of b-catenin signaling during testis development have been well established, relatively little is known about its
role in postnatal testicular physiology. Even less is known about its role in post-meiotic germ cell development and
differentiation. Here, we report that b-catenin is highly expressed in post-meiotic germ cells and plays an important role
during spermiogenesis in mice. Spermatid-specific deletion of b-catenin resulted in significantly reduced sperm count,
increased germ cell apoptosis and impaired fertility. In addition, ultrastructural studies show that the loss of b-catenin in
post-meiotic germ cells led to acrosomal defects, anomalous release of immature spermatids and disruption of adherens
junctions between Sertoli cells and elongating spermatids (apical ectoplasmic specialization; ES). These defects are likely
due to altered expression of several genes reportedly involved in Sertoli cell-germ cell adhesion and germ cell
differentiation, as revealed by gene expression analysis. Taken together, our results suggest that b-catenin is an important
molecular link that integrates Sertoli cell-germ cell adhesion with the signaling events essential for post-meiotic germ cell
development and maturation. Since b-catenin is also highly expressed in the Sertoli cells, we propose that binding of germ
cell b-catenin complex to b-catenin complex on Sertoli cell at the apical ES surface triggers a signaling cascade that
regulates post-meiotic germ cell differentiation.
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Introduction

b-catenin is highly expressed in fetal Sertoli cells and the germ

cells of mice. Recent studies have shown that perturbation of

b-catenin signaling in embryonic Sertoli cells results in testicular

degeneration, testicular cord disruption, and Mullerian duct

regression [1,2,3]. Similarly, aberrant activation of b-catenin leads

to impaired development of primordial germ cells [4]. b-catenin

expression also persists in Sertoli and germ cells of the adult testis

[5,6]. In particular, b-catenin is found in the ectoplasmic

specialization (ES), a testis-specific adherens junction formed

between Sertoli cells at the basal compartment (basal ES), site of

the blood-testis barrier, as well as between Sertoli/germ cells at the

adluminal compartment (apical ES) of the seminiferous epithelium

[7]. Despite being an integral unit of the ES, which is critical for

germ cell differentiation and maturation, the role of b-catenin in

adult germ cells is not clearly documented. Even less is known

about the expression and function of b-catenin in post-meiotic

germ cells. Since the b-catenin-cadherin complex is essential for

adherens junction formation and stability as well as cell-cell

signaling in epithelial cells [8], we reasoned that b-catenin may

play an important role in germ cell maturation by regulating

adhesion and signaling events at the Sertoli cell-germ cell

interface.

To address b-catenin’s role during germ cell differentiation, we

deleted b-catenin specifically in haploid spermatids. Inactivation of

b-catenin in post-meiotic germ cells resulted in increased germ cell

apoptosis, compromised sperm motility, acrosomal defects,

abnormal chromatin compaction, and loss of Sertoli cell-germ

cell adhesion at the apical ES, leading to impaired fertility. These

defects may be due to altered levels of several genes associated with

cell-cell signaling and cell adhesion in b-catenin-deleted germ cells.

Further supporting the notion that b-catenin may be a critical

regulator of Sertoli cell-germ cell adhesion were our findings that

b-catenin expression was localized to the distal portion of

spermatids (the side normally in close contact with Sertoli cells

[9]) and that b-catenin associated with JAM-C, a protein known to

be crucial for Sertoli cell-/post-meiotic germ cell-adhesion [10].

Deletion of b-catenin also resulted in the dysregulation of an actin-

associated protein Arpc5 that we have recently identified to be a

translational suppressor, which regulates chromatin compaction in

post-meiotic germ cells. Taken together, our results suggest that b-

catenin expression in spermatids regulates specific events necessary

for proper differentiation and maturation of post-meiotic germ

cells.

Results

b-catenin expression in post-meiotic germ cells
The expression of b-catenin in Sertoli cell of the postnatal

mouse testis is well documented [6]; however, its expression in

germ cells, particularly in post-meiotic germ cells, is not clear. To
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determine the expression pattern of b-catenin in testicular germ

cells, we enriched pre- and post-meiotic germ cell by centrifugal

elutriation as described previously [11]. Quantitative real-time

RT-PCR (qPCR) analysis on mRNA from enriched testicular cell

populations showed high levels of b-catenin expression in Sertoli

cells as well as different germ cell populations (including round and

elongating spermatids), when compared with known Sertoli cell,

pre-meiotic germ cell, and post-meiotic germ cell-specific markers

(Table S1). To further substantiate these findings, we performed

immunofluorescence studies on seminiferous tubule sections.

Consistent with our qPCR results, b-catenin was found to be

highly expressed in both basal (pre-meiotic germ cells) and apical

(post-meiotic germ cells) compartments of the seminiferous

epithelium (Figure 1A). Sub-cellular localization studies on

enriched spermatogenic cell populations revealed that b-catenin

expression in late round spermatids and elongating/elongated

spermatids was confined primarily to the apical and distal side of

the head, respectively, the sides which are normally in close

contacts with Sertoli cells (Figure 1B, panels a-d, and 1C). The

localization of b-catenin in spermatid head is similar to the

expression pattern of JAM-C (Figure 1B, panels e-h), a protein

highly expressed in spermatids and the loss of which causes

disruption of Sertoli-spermatid adhesion resulting in impaired

germ cell differentiation [10]. Next, we determined the sub-

cellular distribution of b-catenin in enriched germ cells. As shown

in Figure 1D, b-catenin expression was predominantly cytoplas-

mic.

b-catenin deletion results in impaired post-meiotic germ
cell development

To address the role of b-catenin in post-meiotic germ cell

development, we generated b-catenin conditional knockout mice

by mating transgenic mice expressing Prm1- promoter-driven cre

recombinase with b-catenin floxed mice (Figure 2A and 2B), which

have been described previously [12,13]. Since expression of the cre

transgene is driven by Prm1 promoter, which we and others have

shown to be active only in round spermatids (as early as postnatal

day 18; Chang et al., unpublished observations, in submission;

[14]), we expected that recombination would be restricted to post-

meiotic germ cells. Indeed, loss of b-catenin expression was

observed only in haploid spermatids, but not in the Sertoli cells of

b-catenin-deleted mice (Figure S1 and S2). Consistent with previous

reports of highly efficient Prm1-cre-mediated recombination of

lox sequence [13], PCR analyses of genomic DNA from pups

produced from matings between Prm1-cre hemizygous-b-catenin-flox

homozygous (labeled as Ctnnb1 FD) males and wild-type control

(labeled as Control; C57BL/66129S1/SvIm mixed background)

females revealed more than 90% of recombination of the b-catenin-

flox allele in the testis (data not shown). To determine whether b-

catenin deletion in post-meiotic germ cells produced any

reproductive defects, we performed fertility analyses of Ctnnb1

FD animals. Eight-week timed mating studies revealed impaired

fertility of Ctnnb1 FD males, as matings between Ctnnb1 FD males

and control females not only resulted in significantly fewer litters

(Control =6Control R = 2.060, Ctnnb1 FD =6Control

R = 1.260.2, Control =6Ctnnb1 F R = 1.960.1, n = 10, *p,0.05;

Figure 2C) but also produced fewer pups per litter (Control

=6Control R = 6.360.6, Ctnnb1 FD =6Control R = 2.360.4,

Control =6Ctnnb1 F R = 7.260.8, n = 10, ***p,0.0001;

Figure 2D). This reproductive defect was specific to Ctnnb1 FD
males, as matings between either control males and females or

control males and Prm1-cre hemizygous-b-catenin-flox homozygous

females (Ctnnb1 F R) produced normal litter sizes and pups per

litter (Figure 2C and 2D). Similarly, matings between Prm1-cre

males and control females (or control males and Prm1-cre females)

also produced normal litter sizes and pups per litter, suggesting

that the reproductive defect did not originate from the Prm1-cre

transgene (Fig. S3). Furthermore, the deficiency in the fertility of

Ctnnb1 FD males was not due to their altered sexual behavior, as

they generated a similar frequency of vaginal plugs as wild type

males (data not shown).

Next, we investigated the reason for the severe sub-fertility in

Ctnnb1 FD male mice. Ctnnb1 FD mice had significantly reduced

testis weight and modestly reduced testis size compared to control

mice (Control = 4.4360.07 mg/g, Ctnnb1 FD= 3.8460.24 mg/g,

n = 9, *p,0.05; Figure 2E and Figure S4), suggesting the

compromised fertility in Ctnnb1 FD mice was likely due to a

testicular defect. To determine if targeted deletion of b-catenin in

post-meiotic germ cells affected spermatid development, we counted

sonication-resistant spermatids (the most differentiated spermatids)

in Ctnnb1 FD testes. Light microscopic examination of sonicated

testes revealed that Ctnnb1 FD mice possessed significantly fewer

sonication-resistant spermatids than their control littermates

(Control = 2.9960.136107, Ctnnb1 FD= 2.1060.106107, n = 3,

**p,0.01; Figure 2F). In agreement with the impaired spermatid

maturation, Ctnnb1 FD mice had significantly reduced caudal sperm

count (Control = 1.3860.156107, Ctnnb1 FD= 0.8660.116107,

n = 9, *p,0.05; Figure 2G) and forward motility (Con-

trol = 30.662.9%, Ctnnb1 FD= 18.564.4%, n = 9, *p,0.05;

Figure 2H) compared to control mice.

Increased spermatid apoptosis in Ctnnb1 FD mice
We next assessed whether reduced germ cell output in Ctnnb1

FD testis was due to increased germ cell death. In normal testes,

either spermatogonia or meiotic spermatocytes undergo apoptosis

[15]. In agreement with this, we observed that in normal wild-type

testis sections only pre-meiotic germ cells underwent apoptosis,

as judged by the TUNEL assay (Figure 3A, panel a). In Ctnnb1 FD
mice the number of TUNEL-positive spermatogonia and

spermatocytes increased dramatically (Figure 3A, panels b-d,

and 3B). This is surprising, given that the b-catenin is deleted

specifically in the post-meiotic germ cells. In addition to pre-

meiotic germ cells, Ctnnb1 FD mice had TUNEL-positive cells near

the lumen, indicating dying round/elongating germ cells, which

normally do not undergo apoptosis (Figure 3A, panel b).

Consistent with this, light microscopic examination of the Ctnnb1

FD testes sections revealed that a significant number of tubules

exhibited severe defects characterized by epithelial vacuolization

and marked loss of elongated spermatids (Figure 3C).

Chromatin compaction defects in Ctnnb1 FD mice
Because normal mice with significantly reduced sperm count

can still maintain fertility [16,17], we reasoned that other factors

must also contribute to the severe hypofertility of Ctnnb1 FD
mice. The state of sperm chromatin compaction is one important

independent prognostic characteristic that is associated with

fertility. Differentiating post-meiotic germ cells undergo a

dynamic sequence of events resulting in condensed chromatin.

Increasing evidence indicates that proper chromosomal organi-

zation in the sperm nuclei is directly correlated with fertility

potential of spermatozoa [18]. To examine whether loss of b-

catenin in post-meiotic germ cells may affect this process, caudal

sperm from Ctnnb1 FD and control mice were acid-treated,

followed by staining with acridine orange (AO). AO is a DNA

intercalating dye that fluoresces green when bound to double-

stranded DNA and red when bound to single-stranded DNA. As

sperm with partially compacted chromatin will be more

susceptible to acid denaturation, they will exhibit yellow to

b-Catenin in Spermatid Differentiation
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orange fluorescence (green plus red), and therefore can be

readily distinguished from fully compacted chromatin with green

fluorescence [19]. Flow cytometric analyses of AO-stained sperm

heads revealed a significant increase (more than two-fold) of red

fluorescence in acid-treated Ctnnb1 FD sperm (Figure 4A and

4B).

Figure 1. b-catenin is highly expressed in post-meiotic germ cells. (A) b-catenin is expressed at the apical ectoplasmic specializations (ES) and
basal compartment in testis seminiferous tubules. Testis sections were labeled with anti-b-catenin (1:200; Sigma; panels a-c) or anti-vezatin (a protein
reported to be expressed only at the apical ES [76]; 1:200; Santa Cruz; panels d-f), followed by FITC-conjugated goat anti-rabbit secondary antibody
(1:150; Zymed). Sections were counterstained with DAPI (blue) for nuclear staining. Arrowheads indicate the apical ES, and arrows indicate the Sertoli
cell/germ cell cytoplasm at the basal compartment. Scale bar, 50 mm. (B) b-catenin localization in elongated spermatids. Purified spermatids were
labeled with anti-b-catenin (1:50; Upstate; panels a-d) or anti-JAM-C (1:50; Santa Cruz; panels e-h). Secondary antibodies were FITC-conjugated goat
anti-rabbit (1:100) for b-catenin and FITC-conjugated goat anti-rat (1:100; Zymed) for JAM-C. Spermatids were counterstained with DAPI (blue) for
nuclear staining. Areas in red boxes are magnified in insets. Scale bar, 50 mm. (C) Immunofluorescence staining of b-catenin in late round spermatids.
Slides were treated as described in (B). Scale bar, 10 mm. (D) b-catenin is localized to the cytoplasm in the testis. Western blot of germ cell nuclear and
cytoplasmic fractions using anti-b-catenin antibody (1:3000; Sigma). The blot was stripped and reprobed with anti-a-tubulin (1:2000; Sigma) to show
the purity of the fractions.
doi:10.1371/journal.pone.0028039.g001
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Figure 2. Post-meiotic germ cell-specific inactivation of b-catenin and associated reproductive defects. (A) Schematic of the b-catenin-
flox allele before (Ctnnb1F) and after (Ctnnb1FD) Prm1-cre-mediated recombination. b-catenin exons are numbered. F1, F2, R1, and R2 represent
primers used for genotyping. (B) PCR genotype analyses of tail or testis genomic DNA using primers F1 and R1 or F2 and R2, respectively. Sequences
and product sizes have been previously described [12]. (C) and (D) Prm1-cre hemizygous-b-catenin-flox homozygous (Ctnnb1 FD) male mice are
severely sub-fertile. (C) Mean number of litters (n = 10, *p,0.05) and (D) mean number of pups per litter (n = 10, ***p,0.0001) obtained from eight-
week timed matings of 6 to 8-week old Ctnnb1 FD mice and control littermates. (E) Ctnnb1 FD male mice exhibited significantly reduced testis to
body weight ratio (n = 9, *p,0.05). (F) Ctnnb1 FD mice had significantly lower sonication-resistant spermatids count (n = 3, **p,0.01). (G) Caudal
epididymal sperm count showed significantly fewer sperm in Ctnnb1 FD mice (n = 9, *p,0.05). (H) Significantly reduced number of caudal epididymal
sperm with forward motility in Ctnnb1 FD mice (n = 9, *p,0.05).
doi:10.1371/journal.pone.0028039.g002
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Loss of Sertoli cell-germ cell adhesion in Ctnnb1 FD mice
Since b-catenin is highly expressed in both Sertoli cells and

germ cells and is reported to be an integral part of basal as well as

apical ectoplasmic specialization (ES) [7], we wondered whether

loss of b-catenin in spermatids had any effect on Sertoli cell-germ

cell adhesion. Electron microscopic analyses revealed disruption of

Sertoli cell-germ cell adhesion at the apical ES in the Ctnnb1 FD
mice testes (Figure 5A, panels b-c). In contrast, seminiferous

tubules from wild-type mice showed intact apical ES (Figure 5A,

panel a). This is significant as apical ES is believed to play critical

roles in the maturation of differentiating germ cells by controlling

orientation, positioning and head morphology of the spermatid, as

well as its release to the lumen [7]. Consistent with this notion,

ultrastructural studies showed failure of sperm release (Figure 5A,

panel d) and acrosomal defects in step 9 or 10 spermatids

(Figure 5A, panel e) in Ctnnb1 FD mice testes. These defects were

not observed in wild type animals. Furthermore, increased

incidence of apoptosis involving pachytene spermatocytes

(Figure 5A, panel f) and mature spermatids (Figure 5A, panel g)

in Ctnnb1 FD mice were also evident in our ultrastructural studies.

b-catenin and spermatid polarity
In addition to Sertoli cell-germ cell adhesion, the apical ES is

believed to play important role in facilitating proper orientation of

developing spermatids, such that the head of elongating/elongated

spermatids point toward the basement membrane. This spermatid

polarization is critical for the proper maturation of differentiating

germ cells [20]. The loss of apical ES in Ctnnb1 FD mice prompted

us to investigate whether b-catenin may also play a role in

spermatid polarization. Since b-catenin and JAM-C, which is

known to be critical for spermatid polarization [10], are both

localized to the distal side of the head in elongating/elongated

spermatids, we wondered if b-catenin may also play a role in

spermatid polarization by interacting with JAM-C. Indeed,

immunofluorescence and co-immunoprecipitation studies revealed

that b-catenin interacted with JAM-C in elongating spermatids

(Figure 5B and 5C). Consistent with this, many spermatids showed

impaired orientation in Ctnnb1 FD testes when compared to

control suggesting b-catenin to be one of the important constituent

of spermatid polarity complex (Figure 5D).

b-catenin target genes in post-meiotic germ cells
To further understand the mechanism by which b-catenin may

regulate differentiation/maturation of post-meiotic germ cells, we

performed gene expression analysis on RNA isolated from purified

round spermatid as well as whole testis from 6 to 8-week

old control and Ctnnb1 FD mice. Our analysis revealed altered

expression of a number of genes encoding proteins involved in

cellular movement, tissue morphology, cell signaling, and

molecular transport (raw data available at NCBI GEO, accession

#GSE30773). One group of genes of particular interest was those

involved in the mitogen-activated protein kinase (MAPK)

pathway, which has been shown to be involved in cytoskeletal

rearrangements [21,22,23]. A number of kinase genes in the

MAPK pathway, including Map2k7 (MKK7) and Mapkapk2 (MK2)

were found to be upregulated, while phosphatase genes such as

Dusp26 was downregulated (Table S2 and Figure 6A). Another

group of genes with altered expression are those involved in

receptor recycling and degradation such as Lrrn3 and Vps33a

(Table S2 and Figure 6A) [24,25,26]. In addition, the expression of

Dtl, a member of the E3 ubiquitin ligase family, was altered (Table

S2 and Figure 6A). Dtl is involved in the degradation of various

cell cycle proteins, including those that regulate chromatin

compaction [27,28,29]. Finally, b-catenin knockout resulted in

increased expression of Arpc5 (Table S2 and Figure 6A), which we

recently showed to play an important role in chromatin

compaction by regulating translational activation of post-meiotic

germ cell transcripts including protamines (Chang et al., unpub-

lished observations, in submission).

Discussion

Developing germ cells must be in intimate contact with Sertoli

nurse cells for the successful completion of spermatogenesis. This

cellular interaction is facilitated by adherens junctional complexes

such as ectoplasmic specializations (ES), which is critical for both

adhesion and signaling between Sertoli cells and between Sertoli

Figure 3. Increased germ cell apoptosis in Ctnnb1 FD mice
testes. (A) TUNEL analysis of apoptotic germ cells in control (panel a)
and Ctnnb1 FD (panels b-d) mice testes sections. Scale bar, 50 mm.
(B) Number of TUNEL-positive cells per seminiferous tubule (n = 6,
*p,0.05). (C) Light micrographs of epox-embedded and toluidine blue-
stained testicular sections from control and Ctnnb1 FD mice. Tubular
profiles from a control mouse testis showing Sertoli cells and germ cells
at various phases of development that support normal spermatogen-
esis (panel a). Tubular profiles from a Ctnnb1 FD mouse showing
epithelial vacuolization and complete loss of elongated spermatids
(panels b and c). Scale bar, 50 mm.
doi:10.1371/journal.pone.0028039.g003
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cells and germ cells [7]. The importance of Sertoli cell-germ cell

interaction is evidenced by the fact that abnormal or disrupted ES

contributes to spermatid sloughing and oligospermia in patholog-

ical conditions associated with reduced fertility potential, including

varicocele, hyperprolactinemia, diabetes and idiopathic oligosper-

mia [5,30,31]. Despite its critical importance, underlying mech-

anisms that regulate Sertoli cell-germ cell adhesion and signaling

remains to be completely understood. Historically, Sertoli cells

were believed to be the sole contributor to adhesion and signaling

functions required for germ cell differentiation and maturation.

Here, we provide evidence that germ cells play an equally

important role in Sertoli cell-germ cell adhesion and signaling

necessary for the generation of fertilization-competent spermato-

zoa. Our results revealed that spermatid-specific deletion of b-

catenin, which we show to be highly expressed in post-meiotic

germ cells (Figure 1B-1D), resulted in significantly reduced sperm

Figure 4. Defective chromatin compaction in Ctnnb1 FD sperm. (A) and (B) Flow cytometric analyses showing increased number of sperm
with chromatin defects in Ctnnb1 FD mice. (A) Bivariate histograms of green versus red fluorescence for untreated and acid-denatured AO-stained
sperm heads prepared by sonication from control and Ctnnb1 FD mice. Percentage inside the gated area (determined after running three control
untreated samples) represents sperm with normal chromatin compaction, while percentage outside the gated area represents sperm with impaired
chromatin compaction. (B) Percentage of non-gated/total events of acid-treated AO-stained sperm head from control and Ctnnb1 FD mice as in
(A) (n = 4, *p,0.05).
doi:10.1371/journal.pone.0028039.g004
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Figure 5. Disruption of apical ES and compromised spermatid polarity in Ctnnb1 FD mice testes. (A) Ultrastructural defects in Ctnnb1 FD
mice. Portions of a step 10 spermatid from a control mouse shows normal morphology (panel a). The acrosome extends over the apex and over the
dorsal curvature of the head. ES is well recognized and is seen over the entire acrosome region. Step 10 spermatids (asterisks) from a Ctnnb1 FD
mouse show disruption and loss of ES (arrows; panels b and c). A stage X tubule from a Ctnnb1 FD mouse shows a mature spermatid that should have
been released at stage VIII (asterisk; panel d). Portion of a stage XII tubule from a Ctnnb1 FD mouse shows normal and abnormal early step 10
spermatids with nuclear and acrosomal abnormalities (asterisks; panel e). Ctnnb1 FD mouse show apoptotic pachytene spermatocytes (asterisks;
panel f) and mature spermatids (asterisks; panel g). Scale bar, 0.5 mm (panels a-d and g) or 1.4 mm (panels e and f). (B) JAM-C colocalizes with b-
catenin in spermatozoa. Caudal spermatozoa were air dried on slides and fixed with 4% paraformaldehyde followed by labeling with anti-b-catenin
(1:25; Sigma; panel b) and anti-JAM-C (1:50; panel c). Secondary antibodies were AlexaFluor 488-conjugated goat anti-rabbit (1:400; Invitrogen) for b-
catenin and AlexaFluor 594-conjugated goat anti-rat (1:400; Invitrogen) for JAM-C. Spermatids were counterstained with DAPI (blue) for nuclear
staining. Areas in red boxes are magnified in insets. Scale bar, 10 mm. (C) JAM-C associates with b-catenin. Co-immunoprecipitation was performed as
described in Materials and Methods, and protein was visualized by western blot analyses using anti-JAM-C (1:500). One-tenth of lysate used for co-
immunoprecipitation was loaded as input. (D) Loss of spermatid polarity in Ctnnb1 FD testes. Testes were stained with hematoxylin and eosin (HE).
Control testes sections show elongating spermatid heads pointing uniformly toward the basement membrane (black arrows; panels a-j). Ctnnb1 FD
testes sections show less organization in the direction elongating spermatid heads were pointing, and contained misaligned spermatid heads
pointing towards the lumen (red arrows; panels c-j). Areas in red boxes are magnified (panel c in panels g and h; panel e in panels i and j). Solid line,
basement membrane; dotted line, lumen. Scale bar, 50 mm.
doi:10.1371/journal.pone.0028039.g005
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count, compromised sperm motility, and impaired fertility in mice

(Figure 2C-2H). These defects are due to increased germ cell

apoptosis (Figure 3A-3C), defective chromatin compaction

(Figure 4A and 4B), disruption of adherens junctions (apical ES),

and impaired spermatid polarization observed in our b-catenin-

deleted mice (Figure 5A and 5D).

Because b-catenin is also known to be highly expressed in

Sertoli cells [6], we reasoned that loss of adherens junction in our

Figure 6. Altered gene expression in Ctnnb1 FD testes. (A) QPCR analyses of genes in Table S2 on purified round spermatid RNA pooled from
four mice using primers in Table S3. (B) Model of b-catenin signaling cascade at the apical ES. Since MAPK signaling proteins play a role in actin
restructuring [21,22,23], we propose that b-catenin may stabilize the actin cytoskeleton network on germ cell surfaces by activating negative
regulators (Dusp26) and inhibiting positive regulators (MKK7 and MK2) of MAPK signaling. We also posit that the junction restructuring event at the
apical ES is affected by b-catenin’s ability to regulate factors such as Lrrn3 and Vps33a, which are implicated in recycling and degrading proteins
through endocytosis [24,25,26]. Since b-catenin is known to play an important role in cadherin recycling at the epithelial cell surface [77], we propose
that b-catenin deletion would result in altered recycling and degradation of cadherin on the germ cell surface leading to loss of Sertoli cell-germ
adhesion at the apical ES. In addition to Sertoli cell-germ cell adhesion, b-catenin may also directly influence vesicle trafficking (and subsequently
junction export and acrosome formation) and germ cell polarity by interacting with polarity proteins JAM-C and Cdc42. Finally, b-catenin may
regulate chromatin compaction during spermatid development by affecting the expression of Dtl and Arpc5, which we and others have shown to
regulate chromatin compaction of differentiating germ cells.
doi:10.1371/journal.pone.0028039.g006
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b-catenin-deleted mice may be due to disruption of the Sertoli cell

b-catenin complex binding to the b-catenin complex on the germ

cell surface. Supporting this notion, the interaction of b-catenin-

cadherin complexes between adjacent cells is reported to be

essential for cell-cell adhesion in epithelial cells [32,33]. Previous

studies have suggested that Sertoli cell-germ cell adherens

junctions restructuring (adhesion and dissociation), which is

essential for germ cell maturation and spermiation [7,34,35,36],

is likely facilitated by signaling and cell adhesion events acting in

tandem. We propose that b-catenin may be one such molecule

that couples physical adhesion and signaling at Sertoli cell-germ

cell interfaces. One mechanism by which b-catenin can accom-

plish this is by regulating the stability and promoting rapid

presentation of cadherin at the ES surface, as it acts as a chauffeur

to facilitate the transport of cadherin out of endoplasmic reticulum

to the cell surface [32]. In addition to playing a direct role, b-

catenin may indirectly regulate the restructuring process by

coordinating cross-talk among different signaling pathways.

One example of a b-catenin-regulated pathway may be the

MAPK cascade, components of which showed altered expression

in b-catenin-deleted mice. Gene expression analyses revealed that

b-catenin deletion resulted in elevated expression of Map2k7

(MKK7) and Mapkapk2 (MK2) (Table S2 and Figure 6A), which

may be directly involved in actin restructuring and adherens

junction kinetics by activating downstream JNK and p38 MAPK

(Figure 6B) [37,38,39,40,41,42,43,44,45,46]. Furthermore, mem-

bers of this kinase cascade have been shown to be activated by

Axin and Dishevelled [47,48], factors that regulate b-catenin

signaling [49], or by Rho small GTPases Cdc42 and Rac1

[50,51,52,53], which have all been implicated in actin cytoskeleton

restructuring (Figure 6B) [54,55]. In addition, b-catenin knock-

down reduced the expression of Dusp26, a member of the dual

specificity protein phosphatase family known to negatively regulate

p38 MAPK (Table S2 and Figure 6A) [56,57,58]. Together, these

results suggest that b-catenin stabilizes the actin cytoskeleton

network on germ cell surfaces by activating negative regulators

and inhibiting positive regulators of MAPK signaling (Figure 6B).

Another group of genes that showed altered expression in b-

catenin-deleted germ cells are those that mediate receptor

recycling and degradation through endocytosis. Several genes

involved in these processes, such as Vps33a and Lrrn3, were found

to be downregulated in b-catenin-deleted testes (Table S2 and

Figure 6A). Vps33a is involved in recruitment of endosomes and

multivesicular bodies to lysosomes [24,25], while Lrrn3 is believed

to facilitate the internalization of EGFR [26], a known binding

partner of cadherin [59]. Since adherens junctions between Sertoli

cell and germ cell must undergo extensive restructuring to

facilitate germ cell maturation [7], it is economical not to

synthesize proteins de novo each time junctional restructuring takes

place. Instead, rapid recycling of the signaling proteins is likely to

coordinate the restructuring processes. Therefore, it is possible that

the reduced expression of Vps33a and Lrrn3 in b-catenin-deleted

mice may impair the process of b-catenin-mediated recycling of

cadherin on the germ cell resulting in loss of Sertoli cell-germ

adhesion at the apical ES (Figure 6B).

Our results reveal that in addition to adhesion, b-catenin may

play a critical role in spermatid polarization. Since JAM-C

colocalized with b-catenin on the on the distal side of germ cells

(Figure 5B), the side which is in constant contact with Sertoli cells

[9], it is likely that b-catenin-JAM-C-Cdc42-mediated assembly of

spermatid polarization complex is directly associated with Sertoli

cell-germ cell adhesion (Figure 6B). Consistent with this, cell-cell

adhesion is reported to induce epithelial cell polarity via cadherin

and b-catenin [60,61]. Moreover, the loss of Par6, which is a

polarity complex protein, is associated with destabilization of actin

filament at the apical ES and the loss of adhesion function [62].

Future studies aimed at understanding the role of b-catenin target

genes will provide greater insight into the mechanism by which b-

catenin regulates spermatid polarization events.

The apical ES is first formed between Sertoli cells and round/

elongate spermatids at step 8 of the seminiferous epithelial cycle

and stays throughout the epithelial cycle until step 16 in mice [9], a

stage when most morphological changes including elongation of

round spermatid nuclei and compaction of their chromatin occur.

Our results demonstrating defective chromatin condensation in

differentiating germ cells of b-catenin-deleted mice suggest a

specialized role for b-catenin in this process (Figure 4A and 4B).

One molecule that may play a crucial role in this process is actin-

associated protein Arpc5 that shows induced expression in our b-

catenin-deleted mice (Table S2 and Figure 6A) [63,64,65]. We

have recently shown that Arpc5 regulates chromatin compaction

event by controlling the distribution of germ cell mRNAs,

including protamines, between translationally active and inactive

pool (Chang et al., unpublished observations, submitted). Another

gene that may be associated with altered chromosome compaction

in b-catenin-deleted mice is Dtl (Table S2 and Figure 6A), a

member of the CRL4 E3 ubiquitin ligase complex [27] that

prevents premature chromatin condensation during S phase [28].

Our results show that b-catenin deletion in spermatids resulted

in increased apoptosis of both post-meiotic and pre-meiotic germ

cells (Figure 3A-3C). While apoptosis of post-meiotic germ cells is

conceivable, it is intriguing that pre-meiotic germ cells also

underwent increased cell death in our b-catenin-deleted mice. One

plausible explanation could be that there is a bi-directional cross

talk between basal ES/tight junction at the blood-testis barrier and

apical ES; such that disruption of apical ES due to b-catenin

deletion may lead to perturbed signaling at the basal ES/tight

junction, resulting in impaired pre-meiotic germ cell development

and apoptosis. In agreement with this, recent studies have shown

that disruption of Sertoli cell-spermatid adhesion at the apical ES

due to blockage of laminin-333 activity results in impaired

functioning of basal ES/tight junction at the blood-testis barrier

[66]. Moreover, junctional protein complexes at the basal ES such

as catenin-cadherin, nectin-afidin and integrin-laminin are also

present at the apical ES [67,68,69], further supporting the idea

that junctional restructuring events at one end must be affecting

restructuring events at the other end of the Sertoli cell.

In conclusion, our findings suggest that b-catenin is a key

molecule that couples cell adhesion with signaling events to ensure

proper germ cell differentiation. Our studies reveal that b-catenin

in post-meiotic germ cells plays an important role in wide array of

specific events during germ cell maturation including Sertoli cell-

germ cell adhesion at the apical ES, spermatid polarization and

chromatin condensation. Future studies will shed lights on the

precise mechanism by which b-catenin target genes mediate

Sertoli cell-germ adhesion at the apical ES and germ cell

differentiation events.

Materials and Methods

Animals, genotyping, and reproductive phenotype
analyses

All animal experiments were performed in accordance with the

National Institutes of Health Guide for the Care and Use of

Laboratory Animals. Approval of animal use for this study was

granted by The Institutional Animal Care and Use Committee of

The University of Texas Health Science Center at San Antonio

(Animal Welfare Assurance #A3345-01; Protocol #07057-34-

b-Catenin in Spermatid Differentiation

PLoS ONE | www.plosone.org 9 November 2011 | Volume 6 | Issue 11 | e28039



02-A). Prm1-cre and b-catenin-flox mice were obtained from

Jackson Laboratories [12,13], housed in a barrier facility, and

placed on 12 h light and 12 h dark cycles. Primers used for

genotyping are previously described [16,70]. To obtain sperm

count and motility, 6 to 8-week old male mice were euthanized

by CO2, and caudal epididymides were harvested in modified

Krebs-Ringer (mKR) medium. Small cuts were made in the

epididymides and sperm were allowed to disperse into the

medium for 15 min at 37uC. Sperm was diluted 1:10 before

counting on a hemocytometer. For motility, an aliquot of sperm

in mKR medium was loaded into a pre-warmed counting

chamber and examined in triplicate. Sperm were scored to be

progressively motile or non-motile as previously described [71].

Tissue preparation, eight-week timed matings, sonication-resis-

tant spermatid count, hematoxylin and eosin (HE) staining, and

TUNEL assay were conducted as previously described [72].

Progeny from matings were genotyped to determine efficiency of

cre-loxP recombination in round spermatids.

Elutriation, RNA analyses, and protein analyses
Testes harvested from four 6 to 8-week old mice were elutriated as

previously described [11], with modifications. Briefly, total testicular

single cell suspensions produced from enzymatic digests were

separated by centrifugal elutriation on the JE-5.0 rotor (Beckman

Coulter) to obtain fractions enriched in elongating spermatids

(12 ml/min, 2,000 rpm), round spermatids (15 ml/min, 2,000

rpm), pachytene spermatocytes (30 ml/min, 2,250 rpm), and Sertoli

cells (65 ml/min, stop rotor). Further purification of round

spermatids and pachytene spermatocytes were performed by

ultracentrifugation through 28-45% and 26-38% Percoll (GE

Healthcare) gradient at 10,000 rpm, respectively. Further purifica-

tion of Sertoli cells were performed by allowing cells to adhere to

datura-coated plates followed by hypotonic shock with 0.3x HBSS

for 3 min. The purity of the preparations were determined (,90%)

by light microscopic examination of periodic acid Schiff (PAS)/

hematoxylin-stained spermatogenic cells (PAS Staining System,

Sigma) and qPCR analyses using primers for Ctnnb1, Sycp3

(pachytene spermatocytes), Acrv1 (round spermatids), Prm1 (round/

elongating/elongated spermatids), Dbil5 (elongating/elongated

spermatids), Gata1 (Sertoli cells), and Rhox5 (Sertoli cells). Enriched

cells were processed to isolate total RNA using Trizol (Invitrogen).

cDNA was synthesized with iScript cDNA Synthesis Kit (Bio-rad)

and analyzed by qPCR using iQ SYBR Green Supermix (Bio-rad).

Expression levels were normalized to mouse Rpl19.

Immunofluorescence and immunohistochemistry
Enriched spermatid populations from elutriation or caudal

epididymal spermatozoa were air dried on slides, fixed with 4%

paraformaldehyde, and permeabilized with cold methanol at -

20uC for 10 min. Paraffin-embedded testis sections were rehy-

drated and antigen retrieval was performed by boiling in 10 mM

sodium citrate for 30 min. Samples were then blocked with 10%

goat serum, and incubated with primary antibodies in 3% goat

serum overnight at 4uC. Samples were incubated with secondary

antibodies in 3% goat serum for 1 h and mounted with

Vectashield Hard Set Mounting Medium with DAPI (Vector

Laboratories). For immunohistochemistry, sections were devel-

oped with 3,39-diaminobenzidine (DAB; Sigma) and counter-

stained with Mayer’s hematoxylin (Sigma) after incubation with

secondary antibody. Slides were then dehydrated and mounted

with Cytoseal XYL (Richard-Allan). Antibodies and concentra-

tions used are described in figure legends. All photomicrographs

were taken on the Nikon Eclipse TE2000-U.

Nuclear cytoplasmic protein fractionation
Isolation of nuclear and cytoplasmic fractions from germ cells

was performed as previously described [73]. Briefly, purified germ

cells from elutriation were lysed in NP40 solution [10 mM Tris-

HCl, pH 8.0|0.1 mM EDTA, pH 8.0|150 mM NaCl|0.6%

NP40|0.04 mM PMSF|0.04% Protease Inhibitor Cocktail (Sig-

ma)], mixed by pipetting, and incubated on ice for 10 min. After

centrifugation for 2 min at 4,200 rpm the supernatant was saved

as the cytoplasmic fraction. The nuclear pellet was washed in

DOC solution [10 mM Tris-HCl, pH 8.0|0.1 mM EDTA,

pH 8.0|150 mM NaCl|0.6% NP40|0.5% sodium deoxychola-

te|0.04 mM PMSF|0.04% Protease Inhibitor Cocktail (Sigma)]

and mixed by pipetting. After centrifugation for 2 min at

7,500 rpm the supernatant was discarded, and the nuclear pellet

was lysed in CellLytic M Cell Lysis Reagent (Sigma) with

0.04 mM PMSF and 0.04% Protease Inhibitor Cocktail. Western

blot analyses were performed as previously described with

antibodies described in figure legends [72].

Spermatozoa staining and flow cytometry
Acridine orange staining of caudal spermatozoa and subsequent

analyses by flow cytometry were performed as previously described

[74].

Electron microscopy
Electron microscopy was performed as previously described

[72,75].

Co-immunoprecipitation (co-IP)
Total testis lysate was prepared by Dounce homogenization in

1 ml IP lysis buffer [50 mM Tris-HCl, pH 8.0|50 mM EDTA,

pH 8.0|150 mM NaCl|0.5% NP40|1 mM DTT|1% Protease

Inhibitor Cocktail]. Co-IP was carried out using Dynabeads

Protein G Immunoprecipitation Kit (Invitrogen) according to

manufacturer protocols. Briefly, 1.5 mg of protein lysate was

precleared with 50 ml Dynabeads for 1 h. 5 mg of anti-b-catenin

(Sigma) or normal rabbit IgG (Santa Cruz) were incubated with

50 ml Dynabeads for 30 min with rotation. Pre-cleared lysates

were incubated with antibody-conjugated beads overnight at 4uC
with rotation. Beads were collected, washed twice, and bound

proteins were eluted by boiling in Laemmli sample buffer. Protein

was visualized by western blot analyses using antibodies described

in figure legends.

Microarray
Total RNA from purified round spermatids (pooled from four

animals for both control and Ctnnb1 FD mice) and whole testis

(from two control and two Ctnnb1 FD mice) were hybridized to the

Agilent 4644 k Whole Mouse Genome Microarray according to

manufacturer’s protocol and scanned on the Agilent G2505B

scanner. Expression levels of selected genes were further verified

by qPCR analyses on RNA extracted from purified round

spermatids. We have deposited the raw data at National Center

for Biotechnology Information Gene Expression Omnibus (acces-

sion #GSE30773), and confirm that all details are MIAME

compliant.

Statistical analysis
All values and error bars in graphs are means 6 SEM;

respective n values are indicated in figure legends; p-values are

determined by two-tailed Student’s t-tests.
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Supporting Information

Figure S1 Loss of b-catenin expression in Ctnnb1 FD
post-meiotic germ cells.Testis sections from control and

Ctnnb1 FD mice were labeled with anti-b-catenin primary antibody

(1:200) and HRP-conjugated goat anti-rabbit secondary antibody

(1:800; Santa Cruz). Sections were developed with DAB and

counterstained with Mayer’s hematoxylin. While round and

elongating spermatids clearly showed b-catenin expression in

control seminiferous tubules (green and white arrowheads,

respectively; panel c), no detectable b-catenin staining was

observed in the round and elongating spermatids of Ctnnb1 FD
tubules (blue and yellow arrowheads, respectively; panel f),

suggesting that both copies of the b-catenin-flox allele has been

conditionally deleted. Please note that elongating spermatids

exhibited only purple hematoxylin staining in Ctnnb1 FD tubules

(panels d-f), suggesting no b-catenin expression, while elongating

spermatids in control tubules exhibited brown DAB staining

(panels a-c). b-catenin staining in Sertoli cells remained unchanged

in Ctnnb1 FD compared to control tubules (arrows; panels c and f).

Areas in black boxes are magnified (panel a in panel b; panel d in

panel e), and areas in red boxes are further magnified (panel b in

panel c; panel e in panel f). Scale bar, 100 mm (panels a and d),

50 mm (panels b and e), or 25 mm (panels c and f).

(TIF)

Figure S2 Loss of b-catenin expression in Ctnnb1 FD
elongating spermatids. Testis sections from control and

Ctnnb1 FD mice were labeled with anti-b-catenin (1:50) followed

by AlexaFluor 488-conjugated goat anti-rabbit (1:400). Sections

were counterstained with DAPI (blue) for nuclear staining. While

elongating spermatids clearly showed b-catenin expression in

control seminiferous tubules (white arrowheads; panel d), no

detectable b-catenin staining was observed in the elongating

spermatids of Ctnnb1 FD tubules (yellow arrowheads; panel h). b-

catenin staining in Sertoli cells remained unchanged in Ctnnb1 FD
compared to control tubules (arrows; panels d and h). Areas in

boxes are magnified (panel c in panel d; panel g in panel h). Scale

bar, 50 mm (panels a-c and e-g) or 25 mm (panels d and h).

(TIF)

Figure S3 Prm1-cre males exhibit no reproductive
defect. (A) Mean number of litters (n = 10) and (B) mean number

of pups per litter (n = 10) obtained from eight-week timed matings

of 6 to 8-week old Prm1-cre and control littermates.

(TIF)

Figure S4 Reduction in Ctnnb1 FD testis size. Testis from

a control (left) and a Ctnnb1 FD (right) mouse, showing a modest

reduction of testis size when b-catenin is conditionally deleted in

haploid spermatids.

(TIF)

Table S1 b-catenin expression in enriched Sertoli and
germ cell populations.QPCR analyses of RNA from purified

Sertoli and spermatogenic cell populations pooled from four mice

using primers in Table S3. PS, pachytene spermatocyte; RS,

round spermatid; ES, elongating/elongated spermatid.

(DOC)

Table S2 List of highly altered genes in Ctnnb1 FD post-
meiotic germ cells. Genes listed were found to be highly

altered (upregulated or downregulated) in total testis and purified

round spermatids of Ctnnb1 FD mice compared to control mice. A

complete list of altered genes in Ctnnb1 FD total testis and purified

round spermatids microarrays is available at NCBI GEO

(accession #GSE30773).

(DOC)

Table S3 Primers used in this study. Primer sequences

were obtained from PrimerBank [78].

(DOC)
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