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Abstract

The inferior part of the parietal lobe (IPL) is known to play a very important role in sensorimotor integration. Neurons in this
region code goal-related motor acts performed with the mouth, with the hand and with the arm. It has been demonstrated
that most IPL motor neurons coding a specific motor act (e.g., grasping) show markedly different activation patterns according
to the final goal of the action sequence in which the act is embedded (grasping for eating or grasping for placing). Some of
these neurons (parietal mirror neurons) show a similar selectivity also during the observation of the same action sequences
when executed by others. Thus, it appears that the neuronal response occurring during the execution and the observation of a
specific grasping act codes not only the executed motor act, but also the agent’s final goal (intention). In this work we
present a biologically inspired neural network architecture that models mechanisms of motor sequences execution and
recognition. In this network, pools composed of motor and mirror neurons that encode motor acts of a sequence are arranged
in form of action goal-specific neuronal chains. The execution and the recognition of actions is achieved through the
propagation of activity bursts along specific chains modulated by visual and somatosensory inputs. The implemented
spiking neuron network is able to reproduce the results found in neurophysiological recordings of parietal neurons during task
performance and provides a biologically plausible implementation of the action selection and recognition process. Finally,
the present paper proposes a mechanism for the formation of new neural chains by linking together in a sequential manner
neurons that represent subsequent motor acts, thus producing goal-directed sequences.
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Introduction

The inferior parietal cortex has been traditionally conceived as

a typical association cortex [1,2], because of its polymodal

neuronal properties and of the occurrence of spatial deficits after

its damage in humans. However, neurophysiological [3–5] and

lesion [6–8] studies have demonstrated that this cortical sector is

also involved in motor control. In particular, neurons of the

inferior parietal lobule (IPL) are active during execution of several

types of goal-related motor acts, such as reaching, grasping,

bringing to the mouth or during eye movements and many of

them integrate sensory and motor properties [3,5,9]. This

integration subserves several types of sensorimotor transformations

for reaching, grasping, oculomotion [10–12].

An example of parietal neurons integrating sensory and motor

properties is represented by mirror neurons [5,13–15] that,

similarly to those previously found in ventral premotor cortex

(PMv), are active during execution of goal-related motor acts and

during observation of similar motor acts performed by another

individual. It has been proposed that this matching mechanism

underpins understanding of the observed motor acts.

An interesting issue is whether neurons of IPL could have a role

in coding not only motor acts but also actions. Here action is

defined as a sequence of motor acts aimed at a specific final goal.

In order to address this question, a study [14] investigated the

activity of IPL neurons (see Figure 1a) in monkeys trained to

perform a motor task, consisting of two main conditions. In one

condition, the monkey, starting from a fixed position (Figure 1b),

reached for and grasped a piece of food located on a table and

brought it to the mouth. In another condition, the monkey

reached for and grasped an object located on the table and then

placed it into a container. Note that the initial reaching-grasping

act is common to both conditions.

Grasping neurons of IPL were recorded while the monkey

performed both conditions of the task. The results showed that

during grasping execution the discharge of the majority of these

motor neurons was modulated by the final goal of the action.

Some neurons discharged stronger during grasping for eating,

others during grasping for placing (Figure 1c). The remaining

neurons did not show any modulation.

In order to explain the peculiar behavior of these grasping

neurons it has been hypothesized that their differential

discharge reflects the motor intention of the agent. Further-

more, since it is known that every motor act belonging to an

action is fluently coordinated with the preceding and the

subsequent one [16,17], it has been proposed [14,18,19] that in
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IPL actions are coded by neuronal chains, each of which

leading to a specific action goal, that corresponds to the motor

intention of the acting agent. In every chain, each neuron

coding a motor act facilitates the activation of the neuron

coding the next motor act of the chain, thus providing motor

fluency to the whole action. It has been hypothesized that in

this type of action organization it is necessary to postulate the

presence of a ‘‘selection mechanism’’ that chooses the dedicated

neuronal action chains, based on information provided by a

given context and by previous experience. In fact, the selection

of a specific chain depends on several contextual factors such as

the type of target object, the setting in which the action takes

place and internal motivational factors [15]. It has been

proposed that this selection mechanism is localized in the

ventral prefrontal cortex, because of its role in integrating and

processing these factors [20] and of its connections with IPL

[21–23]. These connections could constitute the anatomical

pathway through which prefrontal cortex, on the basis of

contextual information and previous experience, could recruit

specific parietal chains.

In the study of Fogassi et al. [14] it was also investigated

whether the discharge of IPL mirror neurons can be modulated by

the final goal of an observed action. The same task used for

studying the behavior of IPL motor neurons was performed by an

experimenter in front of the observing monkey. The experimental

conditions were the same as those of the motor task: the

experimenter grasped a piece of food for eating it and grasped

an object for placing it.

The results showed that, similarly to motor neurons, the great

majority of mirror neurons was differentially activated during the

Figure 1. Details of the experiment of Fogassi et al. [14]. (a) Lateral view of the monkey brain showing the sector of IPL (dark shading) from
which the neurons were recorded. (b) The apparatus and the paradigm used for the motor task. I. grasping for eating. II. and III. grasping for placing
inside a container put near the mouth or near the target, respectively. (c) Activity of two IPL neurons during the two grasping conditions. Rasters and
histograms are aligned with the moment when the monkey touched the object to be grasped. x axis, time, bin 20 ms; y axis, discharge frequency
(spikes per second).
doi:10.1371/journal.pone.0027652.g001
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visual task depending on whether the observed grasping was

followed by bringing to the mouth or by placing (Figure 2, left).

Since the visual discharge occurs during observation of grasping,

hence before the beginning of the next motor act (bringing to the

mouth or placing), the differential visual discharge of mirror

neurons seems to predict the final goal of the action.

Furthermore, comparing the neuron response during the visual

and the motor task, it was clear that the differential modulation

during observation of grasping in the two different conditions was

congruent with that recorded during action execution (Figure 2,

right). According to the chain model, the observation of a motor

act activates in the observer the motor representation of that

motor act, which is embedded in a specific neuronal action chain.

The retrieval of this motor act representation, that is linked to a

specific action goal, would therefore allow the observer to predict

the intention of the observed agent.

Neurophysiological findings [5] revealed in IPL a somatotopy of

motor acts along its rostro-caudal axis, with the mouth represented

more rostrally, followed caudally by the hand, the arm, and the

eyes fields. The finding that these cortical fields are anatomically

connected [23] gives a support to the proposed chained structure

underlying action organization. The aim of this study is to provide

a detailed mathematical model of the hypothesized chained

organization of IPL. Simulations show that the model is able to

accurately reproduce the neurophysiological data of IPL motor

and mirror neurons.

Results

The Cortical Network Model
We modeled the investigated IPL region as a two-dimensional

layer of spiking neurons, grouped into small local pools (500 units)

that are strongly interconnected, share the same properties (i.e.

they code the same motor act and receive the same sensory inputs)

and fire in a coherent way. Furthermore, these neurons possess

also few long-range connections reaching other pools, in a

configuration known as ‘‘small world’’ network [24] (see

Figure 3). This type of configuration is considered to match the

connectivity in real neural systems better than either local or

random connectivity, and to optimize the ratio between neurons

and connections.

The structure of the network employed in this study was

motivated by anatomo-functional evidence suggesting the organi-

zation of neural circuits into assemblies of cortical neurons, that

possess strong excitatory and inhibitory interconnectivity both

locally and, less strongly, between different cortical areas [25,26].

A characteristic property of this arrangement is that neurons tend

to form local assemblies (pools) that respond in a similar way to

incoming stimuli. This behavior could match the anatomo-

functional organization of the inferior parietal cortex, as described

in various studies [5,23,27,28].

In our implementation, 25% of the neurons are randomly

chosen to be inhibitory. Each neuron is connected to 20% of the

Figure 2. Differential discharge of a mirror neuron during the motor and the visual task. Rasters and histograms are synchronized with
the moment when the monkey or the experimenter touched the object to be grasped. Other conventions as in figure 1.
doi:10.1371/journal.pone.0027652.g002
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neurons in its pool, and excitatory neurons are also connected to

neurons belonging to other pools.

At initialization, input and output connections coming from or

going to sensory and motor areas are randomly assigned to each

pool of the IPL layer. For sake of simplicity we assumed that each

neuron in the network has a specific motor selectivity, i.e. it codes

only one specific motor act (i.e. reaching, grasping, etc.), which is

in good agreement with available neurophysiological data [5,14].

External inputs, such as visual, proprioceptive and other

feedback stimuli, are simulated by means of incoming trains of

spikes directed to specific pools.

The core concept of the present model is that the pools coding

subsequent motor acts of an action are connected in chains leading

to the achievement of a specific action goal (Figure 4). In this view,

although two action sequences (grasp-to-eat and grasp-to-place)

may have in common several motor acts (reaching, shaping,

grasping), the two corresponding neuronal chains contain

physically distinct pools coding the same motor acts but each

chains is specific for a particular goal.

Mechanism of activity propagation in the chain
Figure 5 shows the scheme for a single IPL chain and its

connections with other areas. Let’s consider one of the sub-

populations of neurons composing an IPL chain, for example pool

number 2. It receives an input from the previous pool of the chain,

i.e. pool number 1, and transmits its output to the following

neurons (pool number 3). Additionally, it sends its output to the

pre-motor areas (PMC) from which at the same time it receives a

motor corollary discharge. Sensory inputs (visual contextual

information, hand visual feedback, somatosensory feedback) and

motor signals are necessary to synchronize the propagation of

activity waves within the chains with the constraints of the physical

world.

This organization allows the ‘‘smooth’’ and automatic execution

of motor sequences because spiking activity related to single motor

acts can directly propagate from one sub-population of the chain

to the next in a synchronous wave of neuronal firing.

The overt motor output results from the transmission of the

activity from IPL to pre-motor and primary motor cortex. The

function of PMC is that of retrieving the appropriate motor acts

from its internal motor vocabulary [29] while the role of primary

motor cortex is that of implementing the single movements

composing each motor act.

In more detail, we can formalize the total input to a generic

neuron in the chain as:

Figure 3. Schematic representation of three connected neuronal pools. Inhibitory neurons are represented as darker elements while
excitatory neurons are represented as lighter elements.
doi:10.1371/journal.pone.0027652.g003

Figure 4. Time course of the activity (rasters and histograms) of
4 neurons recorded in IPL. Each one codes a specific motor act, but
is active only when the monkey executes the ‘‘grasping to eat’’
sequence. Both rasters and histograms are aligned with the moment in
which the monkey touches the object. Beneath the histograms a
schematic representation of the corresponding neuronal chain is
shown.
doi:10.1371/journal.pone.0027652.g004
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Itot~IprevzIsensoryzIPFCzIcorollaryzIlocal ð1Þ

where Iprev is the input from the previous neuron. If the neuron is

the first of the chain then this contribution is equal to zero because

it receives input only from neurons in PFC. Isensory is the input

from sensory areas which comprises visual, auditory and

somatosensory signals. IPFC is the signal coming from prefrontal

cortex (PFC). For sake of simplicity, in the proposed model this

contribution is absent for neurons that are not the first ones in the

chain. However, we cannot exclude that PFC sends signals also to

other pools of the sequence during action unfolding. As will be

explained later in detail, in our model we attribute to PFC the role

of evaluating and integrating environmental cues, past events and

motivation, in order to produce the activation of specific chains. In

other words, the module labeled ‘‘PFC’’ is responsible of the

selection of neuronal chains through a mechanism which here is

referred to as the formation of ‘‘motor intention’’.

Icorollary is the signal coming back from premotor and motor

areas and conveying information about the ongoing action. This

signal is needed during motor execution because it confirms that

the imparted command is being correctly executed and triggers

the transition of the activity pulse. The rich anatomical reciprocal

connections between IPL and PMC [12,15,23] is most likely the

route through which signals are conveyed.

Ilocal is the total input deriving from locally connected neurons.

In our simulation this input is not strong enough to create auto-

sustained activity, but it stabilizes and enhances local signals.

The behavior of neuronal pools is highly non-linear both

because of the complex internal dynamics of the neurons

(themselves non-linear in nature) and because of their mutual

interactions. The I{f response function has a typical sigmoidal

shape. The transition between low and high firing rates is due to

the sudden activation of majority of the neurons in a pool

(avalanche effect). This threshold depends on parameters of the

network such as connectivity strength, ratio between excitatory

and inhibitory neurons, and neuronal time constants.

In the following sections we will describe the circuit that is active

during the motor and the visual task, and report the results of the

corresponding simulations.

Motor Task
The motor task used for the simulation of the model proposed in

the present study consists in the execution of a ‘‘reaching-grasping-

eating’’ or a ‘‘reaching-grasping-placing’’ motor sequence depend-

ing on whether the target to be grasped is a piece of food or a non

edible object. Figure 6 shows a schematic representation of the

network that is involved during the motor task.

The scheme is composed of several modules. The main

structure is represented by the two chains of neurons contained

in the large shaded rectangle that represents the IPL region.

Neurons in these chains are either purely motor or visuomotor

(mirror). Indeed mirror neurons contribute only with their motor

response. Neurons of the chains receive auditory, visual and

somatosensory inputs from sensory areas that convey information

about the environment and the ongoing events. For example they

receive visual information about the position and the type of

target, the position of the acting hand in relation to the target and

somatosensory information about the contact of the hand with the

target. These and other inputs regulate and synchronize the

transmission of activity patterns within the chains.

The selection of a specific action goal is expressed by the high

activity level of a specific neuronal pool in PFC, here referred to as

‘‘intention pool’’. The output of this pool then reaches the first

Figure 5. Connection scheme for one neuronal chain. Each colored circle represents a pool of neurons that codes a specific motor
act. Pre-frontal input triggers the activation of the chain, while sensory and motor signals modulate the propagation of the activity within the chain.
This scheme shows the path of the motor commands (from IPL to PMC to M1) and of the efferent copies (from M1 to PM to IPL). Sensory information
(dashed line), which results from the interaction of the individual with the environment, follows an indirect route through sensory areas. M1 = primary
motor cortex; PMC = premotor cortex; PFC = prefrontal cortex.
doi:10.1371/journal.pone.0027652.g005
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element of the connected chain (see below) in form of a high

frequency burst of activity.

In case of ambiguity when the cues in the scene do not permit to

clearly establish the final goal of the task because they are either

not sufficiently informative or too many and conflicting (for

example when the object is not visible because hidden inside a

container), all the intentions compatible with the given conditions

are simultaneously activated and multiple chains are started in

parallel. This appears to have a neurophysiological validity, since it

has been reported that when the monkey at the beginning of the

action has no sufficient cues to decide which action (eating or

placing) to perform, during the first grasping act the differential

response disappears [30]. The simultaneous activation of both

chains does not represent a problem for action execution. In fact,

even if a certain degree of uncertainty can be present at the

moment in which the chains are activated, very likely during

action unfolding additional information will become available to

the agent, and the activity in the mismatching chain will die out,

while neuronal activity will continue to be transmitted through the

chain that is compatible with the external information, thus

producing the motor output appropriate for the correct goal

achievement.

The transmission of activity along the chains during the motor

task occurs as follows (see Figure 6): When the intention pool is

activated in PFC and the ‘‘go signal’’ (consisting in the lifting of a

barrier placed between the target and the monkey) is given, a wave

front of activity is transmitted from PFC to the first pool of the

selected chain (i.e. the reaching pool). In the moment in which

neurons of the first pool begin to fire, this activity is transmitted to

the connected premotor and primary motor cortices, which in turn

start the reaching movement. Corollary discharge signals,

following the inverse path, reach the parietal areas, and contribute

to sustain the activity of neuronal pools as long as the motor act is

being executed. At the same time, spikes are transmitted to the

neurons of the subsequent pool (i.e. the shaping pool). This input

alone is not sufficient to bring the pool from its default resting state

to the excited state but brings it only to a subthreshold level. The

pool will reach the threshold activity level only when it receives

additional sensory inputs signaling that the hand is in proximity of

the object. The need of additional inputs from other external

sources ensures that activity does not propagate instantaneously or

in an uncontrolled manner. Neurophysiological data show that the

activity of the neural pools coding different motor acts is smoothly

overlapping in time (see Figure 4). It is likely that the repeated

firing of the neurons of one pool contributes to the gradual build-

up of activity in the following pool. Although in our model neurons

possess a specific internal dynamic, time is not explicitly coded

within the chains structure or the neuronal connections. The rising

and falling of activity of a population is only partially determined

by internal dynamics and mainly modulated by sensory inputs that

are external to IPL. Nevertheless, the configuration of the

neuronal connections (that we assume to be unidirectional)

produces a temporal hierarchy among connected pools of the

chain, i.e. there is a preferred direction of propagation of activity.

The successful completion of the task is the result of the

activation of the correct sequence of motor acts populations which

in turn corresponds to the transmission of the activity wave from

the beginning to the end of the selected chain. The final output of

the successful chain (accomplishment of the last motor act) is then

utilized by the PFC to learn the association rules between cues and

motor sequences.

Simulation 1
In this first simulation we show how activity bursts propagate

within a simple chain-structured network. The chosen experimen-

tal paradigm is the ‘‘grasping to eat’’ motor task.

Since in this case we were not studying learning mechanisms,

the network connection weights were set in such a way to obtain a

Figure 6. Schematic representation of the areas and the populations of neurons that are active during the motor task. The prefrontal
cortex contains the motor intentions (in the figure: mot. intent.) and thus acts as the chain selector, while sensory and motor corollary signals regulate
the transmission of activity waves within the chains.
doi:10.1371/journal.pone.0027652.g006
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chain composed by the sequential connection of four neuronal

pools corresponding to the ‘‘reaching’’, ‘‘shaping’’, ‘‘grasping’’ and

‘‘bringing to the mouth’’ motor acts. In our setup using an

automatic fitting procedure we set Winterpool~0:4.

Information about the presence of a piece of food was simulated

as a train of impulses from a virtual visual module to the PFC

module (Figure 6 upper left connections) lasting 300 ms.

The signal from the PFC module, indicating the intention to

execute the ‘‘grasping to eat’’ action, consisted in a bell-shaped

300 ms spike train with nmax~100 Hz reaching 20% of the

neurons of the ‘‘reaching’’ population in the IPL module. Due to

the local connectivity this signal is rapidly transmitted to the

remaining neurons in the pool giving origin to an avalanche

response of the local population. The characteristic bell-shaped

activity profile is due to the fact that after the external input ceases,

local activity reverberates with the single pools but eventually dies

out. Additionally, a fraction of the activity propagates from one

pools the connected ones producing the activation of new pools

(see Figure 7).

Motor execution was simulated by providing proprioceptive

feedback and corollary discharge signals in form of trains of

impulses of the duration of 300 ms. This value has been chosen in

accord with the duration of real reaching, grasping and bringing-

to-the-mouth movements (see Figure 4).

Figure 7 shows the sequential activation of the above mentioned

four neuronal pools. It is clear from this figure that it is possible to

build a network that can transmit coherent activity patterns along

the chain. Moreover, since the propagation is regulated by

external events, it is possible to stretch or compress the duration of

the signal propagation without modifying the network configura-

tion, so that the simulation speed can be adapted to actions of

different duration.

Simulation 2
In the present simulation we aimed at creating a situation of

ambiguity in which the information about the target object is not

available since the beginning of the task (blind task). In this task the

monkey has to grasp an object hidden inside a container on the

table without knowing which is the object to be grasped. It can be

either a piece of food or a metal cube. After grasping and having

touched the target object, the monkey receives the necessary cues

to perform the remaining part of the action sequence. Since at the

beginning of the task it is unknown to the agent which one of the

two objects is located inside the container, the network is built in

Figure 7. Representation of the time course of the activity patterns of four neurons of the simulated chain. The colored histograms
represent the activity of neurons coding different motor acts: the green peak represents ‘‘reaching’’, the red ‘‘shaping’’, the blue ‘‘grasping’’ and the
magenta ‘‘bringing to the mouth’’. Both rasters and histograms are aligned with the moment (t~1000 ms) in which the simulated monkey touches
the object.
doi:10.1371/journal.pone.0027652.g007
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such a way that the ‘‘Intention’’ module activates both possible

chains, i.e. the one corresponding to eating and the one

corresponding to placing. When the system is started, first the

‘‘Reaching’’ pool, then the ‘‘Shaping’’ and the ‘‘Grasping’’ pools

become active in parallel in both chains. This happens because the

final action goal cannot be determined until the monkey has

grasped and, therefore, recognized the object. In this specific

setup, the result of the grasping act is that the object is recognized,

either by touching or by seeing it, and consequently the goal of the

trial is disambiguated. At this point only one of the chains

represents the correct goal (in the specific example ‘‘eating’’) and

the other will be interrupted (see Figure 8). In our model this is

automatically achieved because, once the object is identified, the

sensory input will reach only one element of the chain (in this

example the visual input ‘‘piece of food’’ reaches the ‘‘bringing to

the mouth’’ element), thus causing the activity to propagate along

one chain and die out in the other one.

Visual Task
In the second part of the study by Fogassi et al. [14] the monkey

had to observe the demonstrator either grasping a piece of food for

eating it or grasping an object for placing it.

According to our hypothesis the chains involved in this task are

the ones composed by neurons endowed with visual properties, i.e.

mirror neurons. Note that the peculiar characteristic of mirror

neurons allows their recruitment both during the motor and the

visual task.

In comparison to the motor task (Figure 6) the scheme for the

visual task (Figure 9) contains two important differences. The first

is that in this task the observer (the monkey) can only make

predictions about what the demonstrator is going to do based on

the cues present in the working environment. The presence of food

on the table leads the monkey to predict that, with high

probability, the observed agent will execute a grasping for eating

action, while the presence of an object will very likely lead to a

grasping for placing action.

The second difference is that the output of the pools directed to

the pre-motor areas is not transmitted to the primary motor areas.

An inhibitory mechanism blocks the propagation of motor

commands after pre-motor areas and no overt motor output is

produced. The existence of a suppressing neurophysiological

mechanism has been indirectly evidenced by the lack of EMG

activity during action observation [31,32] and by the presence of

mirror neurons that inhibit their discharge during observed

grasping [33].

The chain activation mechanism occurring during action

observation is the same as that described for the motor task.

The chains composed by mirror neurons used in the Motor Task

Figure 8. Representation of the activity of the pools forming the ‘‘reaching to place’’ chain during a ‘‘reaching to eat’’ task. The color
indicates the neuronal activity related to the type of motor act (green = ‘‘reaching’’, red = ‘‘shaping’’, blue = ‘‘grasping’’, orange = ‘‘placing’’). Both
rasters and histograms are aligned with the moment (t~1000 ms) in which the simulated monkey touches the object.
doi:10.1371/journal.pone.0027652.g008

Neuronal Chains for Actions in the Parietal Lobe

PLoS ONE | www.plosone.org 8 November 2011 | Volume 6 | Issue 11 | e27652



to produce motor sequences, are used in the Visual Task to

recognize actions performed by other individuals by mapping the

visual input onto prewired motor patterns of mirror neurons. The

visual input causes the firing of mirror neurons for a specific motor

act and their activity immediately propagates to population of

mirror neurons coding the subsequent motor acts thus triggering

an avalanche response. The proposed recognition mechanism,

indicated as ‘‘hypothesis validation’’, works as follows: the monkey

observes the scene, evaluates all the present cues and makes

prediction about the compatible action that the observed agent

will perform. In our model this corresponds to the transmission of

activity from PFC to the first elements of the IPL chain that codes

the hypothesized goal. Note that this input is sub-threshold and

alone will not produce the activation of the target neurons. The

presence of the cues and the simultaneous observation of the

action will produce the activation above-threshold and transmis-

sion of the activity along the chains.

During the observation of a motor sequence executed by

another individual, information about hand configuration and

motion, very likely originating from STS (superior temporal sulcus)

region [34], reaches specific pools in the chains. Elements

composing the chains are activated step by step in relation to

the execution of each motor act by the observed agent. It is

possible that the observed agent changes his action goal in the

course of the action (e.g. he places the food into the container

rather than bringing it into the mouth). In this case there is a

mismatch between the predicted motor act and the actual

observed act. This mismatch will produce an interruption in the

chain activity propagation due to the lack of the appropriate visual

feedback signal. Thus, the corresponding pool in the chain will

remain silent. This mechanism eliminates, during the action, the

chains that do not represent the matching motor sequence and

thus the wrong hypotheses are discarded.

When the observed agent terminates the action that is in

accordance with the hypothesized intention, the matching chain

will produce an output signal that is used by the corresponding

Intention pool as a feedback concerning the correctness of the

proposed hypotheses. This allows to update the internal

association rules. In the visual task the uncertainty is much higher

than in the motor task because the monkey has no direct access to

the observed agent’s intentions and decisions. Similarly to the

motor task, if the cues are ambiguous or even contradictory (for

example simultaneous presence of the food and of the object

increases the degree of uncertainty), the range of possible

predictions is wider and a greater number of chains will be

activated in parallel.

Learning new action sequences
The model presented in the previous sections assumes that

action sequences are encoded as neuronal chains. An important

issue is how these chains can be formed in an adult organism

through a biologically plausible learning process and integrated

into an already existing network. In this section we propose a

simple learning mechanism that exploits a Hebbian mechanism in

order to produce the linking of neuronal pools leading towards the

construction of goal-directed neuronal chains.

Before explaining the learning mechanism it is important to

consider that learning new actions involves several levels of the

motor system: a more peripheral level concerning the correct

muscle synergies, a more central level for the correct composition

of motor acts, and a level of association between cues and actions.

In this section we will concentrate on the second level, i.e. the

concatenation of motor acts, and will describe a learning

mechanism based on the ‘‘hardwiring’’ of successful sequences.

We assume the existence of a brain area dedicated to the

generation of new motor plans. Based on its known functional

properties this area most likely corresponds to the prefrontal cortex

[20,35]. According to the proposed model, PFC is responsible for

the evaluation of context, motivation and past events and can

generate motor plans aimed at achieving specific action goals.

According to this view, the sedimentation of motor sequences

(within the IPL) is based, at the beginning of the generation of new

Figure 9. Schematic representation of the areas and the population of neurons that are active during the visual task.
doi:10.1371/journal.pone.0027652.g009
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action sequences, on the re-arrangement of the already present

motor acts that must rely, at least in part, on a ‘‘trial and error’’

strategy. Motor acts representations are thus activated with a

varying degree of randomness by the PFC and the outcome of the

executed sequences is used to train the network. Successful

sequences, i.e. those that lead to a goal and a reward (for example

a piece of food), produce a bias in the decision mechanisms in PFC

and are then repeated more frequently, thus being strengthened by

means of a Hebbian-like learning rule. More precisely, synaptic

connections between neurons of pools that are activated

sequentially and that fire shortly after each other are strengthened

due to spike timing dependent plasticity (STPD [36], see Materials

and Methods for more details). Simulations show that this

mechanism is able to produce chains in which the activation of

one pool is possible only if the previous pool and a combination of

sensory and proprioceptive signals are active. In other words, the

propagation of activity through a chain is possible only if at least

two information sources (e.g. preceding motor act and contextual

cues) provide simultaneous input, as one source alone leads only to

a subthreshold activation of the population.

Simulation 3
In order to test the learning capabilities of our system we utilized

a neural network with four neuronal pools, each one encoding a

specific motor act, connected in an all-to-all fashion. Inter-pool

weights are initially set to low random values (0vWinter{pool

v0:001). We trained the network simulating the PFC-driven

execution of the (usual) ‘‘reaching, shaping, grasping, bringing-to-

the-mouth’’ action sequence by providing the single pools with

filtered activity profiles of the corresponding neurons recorded in

vivo in the monkey IPL (see figure 4). We applied a Gaussian filter

with s~30 ms, in addition to a baseline subtraction and a peak

normalization to 100 Hz. We recall that the duration of each burst

is around 300 ms, and subsequent bursts overlap for approxi-

mately 80 ms.

The strengthening of the synaptic connections takes places

during the period of time in which the activity of one pool overlaps

with the activity of the following one according to eq. 8 (see

Materials and Methods). Figure 10 shows the various phases of the

learning process of the network. The colored peaks represent the

responses of four neurons coding subsequent motor acts as a

reaction to the stimulation of the first pool of the chain (green). As

learning proceeds, the connections between subsequent motor acts

become stronger and pools tend to respond more.

Discussion

The model proposed in this study shows that a network of

spiking neurons organized in chains dedicated to specific goal-

related actions is able to reproduce the behavior of motor

neurons of the parietal cortex during action execution. Further-

more, this network is also able to reproduce the behavior of

mirror neurons during both action execution and action

observation.

In the present study we opted for a chain-organized structure

instead of other types of configurations because in our view this

better reflects the anatomo-functional organization of IPL, in

which motor acts performed with different effectors such as the

arm, the hand and the mouth are represented in a caudo-rostral

sequence [5]. This anatomo-functional organization, in which

adjacent and partially segregated motor fields are reciprocally

connected, appears to be suitable for a sequential activation of

motor acts in order to build goal-directed actions, such as

reaching, grasping, bringing to the mouth and eating.

Previous studies have demonstrated that chained organizations

[37,38], distributed representations [39–43] and coupled oscilla-

tors [44] can be used for generating sequences. The synfire chain,

first theorized by Abeles [37,38] and then used in several studies

[45–47], is the canonical topology for sequence generation.

Theoretical and empirical studies have shown that synfire chains

are robust for spike sequence generation [46,48]. They have been

also proposed to be the neural mechanism underlying, for

example, the precise spike sequences observed in the zebra finch

premotor neurons [49,50]. The validity of synfire chains, however,

is still an active topic of debate.

The model proposed in this work shares similarities with synfire

chains in that a sequential activation of subpopulations of neurons

occurs. However, differently from synfire chains, the neuronal

activations occurring in our model do not require strict

synchronicity, therefore the same sequence can be run with

varying durations of the single motor acts. This happens because

the propagation of activity is strongly regulated by external signals

coming from motor and sensory areas. This feature makes our

model also substantially different from simple pattern generators,

such as those produced by coupled oscillators models for

simulating lamprey swimming [44] and the aquatic and terrestrial

locomotion of the salamander [51].

Another significant feature of the present model is its biological

plausibility. This derives from several factors. First of all, the role

and the connectivity of each network module is based on known

functional and anatomical properties of IPL and of the areas

linked with it. Among the latter there are areas providing visual

signals on objects or biological stimuli, such as the inferior

temporal cortex and the STS region, other providing somatosen-

sory signals such as the superior parietal cortex and the secondary

somatosensory area (SII), other sending motor signals, such as the

PMv. Second, the integration of external sensory inputs and motor

signals in the chains is based on the known sensorimotor

integration mechanisms occurring in the IPL [3,5]. Third, the

temporal discharge profiles of the simulated neurons closely

resemble those of the neurons recorded in IPL. Fourth, our model

is conceptually grounded on the neurophysiological findings that

the motor system is active not only during action execution, but

also during action observation, leading to the proposal that action

understanding derives from a mechanism matching others’ actions

on the observer’s motor repertoire. Because of this, in the present

model we have employed the same chain structure both during

execution and observation of motor actions. Its working modality

is determined by the different contributions coming from external

sensory and motor areas.

Lastly, our model suggests a possible prefrontal selection

mechanism at neuronal level, which can be involved also when

multiple intentions or potential actions might occur simultaneously

(e.g. blind task).

An important finding of the present study is that chains of

neurons can be built through fast learning by means of a local

reorganization of the network. This reorganization does not imply

the generation of new chains but the strengthening of already

existing connections and the weakening of others through

Hebbian learning. This mechanism can explain the acquisition

of new action sequences in adults as well as in children, using a

basic repertoire of motor acts. Important factors that we did not

consider in the present study probably influence this process, such

as motivation, skills in the fine movement control, extension of the

basic motor repertoire (for example by including tool use),

memory span and capacity of flexibly assembling motor acts.

According to our model, the chain structured organization of

IPL appears to be suitable for three main functions:
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A) Generation of context-dependent motor sequences. The link

between contextual cues and motor acts and between these

latter and the final action goal establishes associations

between all of them. Once these links have been established

such motor organization would facilitate the smooth

execution of sequences of motor acts for the achievement

of specific action goals.

B) Motor imagery. During motor simulation, neuronal chains

can run also without any overt motor output. This is possible

by supposing that there exists an inhibitory mechanism that

blocks the transmission of neuronal activity or decreases it

below threshold levels before it reaches primary motor cortex

or exits from it. Brain imaging studies show that PMC is

active during motor imagery of intentional actions. Further-

more, recent neurophysiological data in monkeys demon-

strate the existence in PMC of inhibitory mechanisms that

are working during action observation [33]. We suggest that

similar pathways are also active during motor imagery.

Since proprioceptive and other sensory signals are absent during

motor imagery, the chains are ‘‘disconnected’’ from the external

physical world. As proposed by the model, they are activated by

the input coming from PFC and the missing sensory input is

partially substituted by a signal provided by internal sensory copies

associated to the corresponding action. A prediction of this model

is that during motor imagery the propagation of activity can take

place at a higher speed than during the motor or visual tasks

because the real world time constraints are lacking and therefore

the propagation depends only on internal dynamics.

A) Action and intention understanding. Because of the dual

property of mirror neurons, the same neuronal chain that is

active during the execution of an action is also recruited

when a similar action, performed by another individual, is

observed. Since each chain corresponds to a specific goal, the

state of the activity of neurons coding the first motor acts of

the action sequence constitute an indication of the

predictions of the observer (the monkey) concerning the

intentions of the acting individual. On the other hand, when

contextual cues are ambiguous or not present (e.g. the

observer cannot see whether the performing individual is

grasping food or an object) the model predicts an activation

Figure 10. Representation of the responses of 4 neurons of the network at different moments of the learning phase. Panel A)
response in the initial configuration; B) after 150 sessions; C) after 250 sessions; D) after 500 sessions. Color code as in Figure 4.
doi:10.1371/journal.pone.0027652.g010
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of the chains compatible with the two goals (eating and

placing). Thus, in this case, the analysis of neuronal activity

will not reveal to us any unambiguous prediction of the

observer. There are situations in which only the initial part of

an action can be observed and its outcome is hidden [52].

The model suggests that the missing part of the action is

internally simulated, possibly according to the mechanism

described in (B). In this case the activity within the chains

represents the prediction of the observer concerning the

action outcome.

One of the advantages of the current model is its intrinsic

capacity of building new chains through simple and fast

mechanisms, not requiring a substantial reorganization of

connection in the network, but involving a redistribution of the

strength of connections between the motor acts already present in

the network. This process can explain how new action sequences

can be created during child development or even in adulthood

once the basic motor representations have already been acquired.

The increase in the number of action sequences may expand the

capacity of motor planning by enhancing the combinatorial power

of the motor system.

Besides its relevance for explaining normal behavior, the model

of action chain organization proposed here may have important

implications for our comprehension of the mechanisms involved in

brain dysfunctions connected to higher order motor impairments

and intention understanding. Recent physiological findings

demonstrated that while typically-developed children show an

early activation of mouth opening muscles during a grasping-to-eat

task, thus revealing the presence of a chain organization, this

activation is very much delayed in high functioning autistic

children [53]. Furthermore, this mouth activation is completely

lacking in autistic children, but not in typically-developed children,

when they are simply observing the same action made by another

individual. These data have been interpreted as a deficit in the

organization of motor chains in autism, that are not properly

activated during both action execution and action observation.

According to our model, a reduced or absent capacity of

propagating information along the action chains would produce

two types of impairments: 1) A reduction or lack of fluency

between the motor acts embedded in a sequence, very likely

resulting in a fragmented or erroneous sequence; interestingly,

patients with lesions to parietal and frontal cortex have been

shown to have deficits in sequencing behavior (for a review see

[8]). Among them, patients with ideational apraxia are unable to

perform series of acts involving the use of objects, thus failing to

correctly execute an action sequence. 2) A difficulty in under-

standing others’ intentions, because the link between motor acts

and action goal (intention) is weakened.

In conclusion, the proposed action chain organization appears

to be a biologically plausible model able to reproduce motor

dynamics in planning and organizing sequences of motor acts and

to predict others’ behavior. Dysfunction of this motor organization

clearly compromises such capabilities, thus producing deficits

typical of some human neurodevelopmental disorder.

Methods

Neuron model
The neural network implementation we adopted includes

channels activated by AMPA, NMDA, and GABA receptors,

producing a highly realistic simulation of the spiking activity.

Neurons are described by a leaky integrate-and-fire model (see for

example [54]) and are characterized by a resting (leak) potential

VL~{70 mV , a firing threshold Vthr~{52 mV , a reset

potential Vreset~{59 mV , a membrane capacitance Cm~

0:5 nF , a membrane leak conductance gL~25 nS, and a

refractory period tref ~2:5 ms. The corresponding membrane

time constant is tm~Cm=gL~20 ms [55]. When the membrane

potential V (t) reaches the threshold Vthr a spike is generated, and

the membrane potential is reset to its default value Vreset.

Below threshold, the membrane potential V (t) of a cell is

described by:

Cm
dV (t)

dt
~{gL(V (t){VL){Itot(t), ð2Þ

where Itot(t) represents the total synaptic current flowing into the

cell at time t. This current can be expressed as:

Itot(t)~IAMPA(t)zINMDA(t)zIGABA(t) ð3Þ

i.e. the sum of glutamatergic excitatory components (NMDA and

AMPA) and inhibitory components (GABA). We consider that

external excitatory contributions are produced through AMPA

receptors, while the excitatory recurrent synaptic currents are

produced through AMPA and NMDA receptors (see Figure 11).

The current generated by each receptor of type X follows the

general form [56]:

IX (t)~�ggX
:(V (t){EX ):

X
i
Wi
:ri ð4Þ

where �ggX is the maximal conductance, V (t) is the postsynaptic

voltage, EX is the reversal potential, ri and Wi are the fraction of

receptors in the open state and the connection strength with

presynaptic neuron i respectively. For AMPA and NMDA

synapses E~0 mV and for GABA synapses E~{70 mV . In

case of NMDA an additional multiplicative term B(V ) has to be

added representing the magnesium block of the receptor channel.

This block takes place extremely fast compared to the other

kinetics of the receptor. The block can therefore be accurately

modeled as an instantaneous function of voltage [57]:

B(V )~
1

1z½Mg2z�exp({0:062V )=3:57 mM
ð5Þ

where ½Mg2z� is the external magnesium concentration (in our

case 1 mM).

The fraction r of the receptors in the open state is well described

by the following first order kinetic equation:

dr

dt
~a:½T �(1{r){br ð6Þ

The values of parameters a, b and ½T � (neurotransmitter

concentration) used in our simulations where taken from [56].

The total current Itot flowing into neuron i can also be written

as the sum of different components:

Ii~
X

j
W

(exc)
ij

:rjz
X

k
W

(inh)
ik

:rkz
X

l
W

(far)
il

:rl ð7Þ

where W
(exc)
ij and W

(inh)
ik define the strength of local excitatory and

inhibitory connections respectively, while W
(far)
il represents the

connectivity to neurons belonging to other pools.
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Examining the behavior of a neuronal pool as a function of the

maximal excitatory W (exc) and inhibitory W (inh) connectivity

values (see Figure 12), the following values have been chosen in

order to obtain neuronal pools that, when stimulated, produce a

bell-shaped activity profile with a peak of approximately 100 Hz:

W (exc)~4:2, W (inh)~5:2.

Spike timing dependent plasticity
The implemented learning rule is the spike-timing dependent

plasticity (STDP) [36,58–60], with dynamic synaptic plasticity.

According to this rule the connection between two neurons is

reinforced if the post-synaptic neuron fires shortly after the pre-

synaptic neuron, while it is weakened when the pre-synaptic

neuron fires after the post-synaptic neuron. An additional term has

been added to this rule in order to take into account the

dependency of the synaptic efficacy on the past activity the neuron

[61,62].

The general equation for the weight update can be written as:

dWij

dt
~g E(t)F (Dt) ð8Þ

where Wij is the weight of the connection from neuron i to neuron

j, g is the learning rate, e(t) is the activity-dependent synaptic

efficacy and F (Dt) implements the spike timing dependent

plasticity according to:

F (Dt)~
Az

:exp({Dt=tz) if Dtw0

A{
:exp(Dt=t{) if Dtv0

�
ð9Þ

Figure 11. Schematic representation of two connected neuronal pools. Inhibitory neurons are represented as darker elements while
excitatory neurons are represented as lighter elements. Arrows and the corresponding neurotransmitter indicate the type of connections between
neurons within and outside the pool.
doi:10.1371/journal.pone.0027652.g011

Figure 12. Representation of a pool’s response as function of the excitatory and the inhibitory connections’ strength. Different colors
represent different levels of activity. The black area represents the combination of parameters that leads to a non-transient response of the pool. The
white circle indicates the values of the connections’ strength chosen in the simulations.
doi:10.1371/journal.pone.0027652.g012
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with Dt~tj{ti, where ti and tj are the time of occurrence of the

presynaptic and postsynaptic spikes, respectively. Az and A{

determine the maximum amount of synaptic modification (in our

case 1), and the parameters tz and t{ determine the ranges of

pre-to-post synaptic interspike intervals over which synaptic

change occurs (in our case tz~8 ms and t{~10 ms).

Finally, for a given neuron the activity-dependent term has been

implemented as:

tE
dE
dt

~{Ezd(t{tk) ð10Þ

where d(t{tk)~1 every time tk the neuron emits a spike, and

te~100 ms is the time constant of the process.

In order to avoid numerical instabilities associated with fast

spiking activity, each neuron was simulated with a time step of

0:1 ms using the first-order Euler method.
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