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Abstract

Background: Acute megakaryocytic leukemia (AMkL) in Down syndrome (DS) children is uniformly associated with somatic
GATA1 mutations, which result in the synthesis of a shorter protein (GATA1s) with altered transactivation activity compared
to the wild-type GATA1. It is not fully established whether leukemogenesis and therapeutic responses in DS AMkL patients
are due to loss of the wild-type GATA1 or due to a unique function of GATA1s.

Methodology: Stable clones of CMK cells with decreased GATA1s or Bcl-2 levels were generated by using GATA1- or BCL-2-
specific lentivirus shRNAs. In vitro ara-C, daunorubicin, and VP-16 cytotoxicities of the shRNA stable clones were determined
by using the Cell Titer-blue reagent. Apoptosis and cell cycle distribution were determined by flow cytometry analysis.
Changes in gene transcript levels were determined by gene expression microarray and/or real-time RT-PCR. Changes in
protein levels were measured by Western blotting. In vivo binding of GATA1s to IL1A promoter was determined by
chromatin immunoprecipitation assays.

Results: Lentivirus shRNA knockdown of the GATA1 gene in the DS AMkL cell line, CMK (harbors a mutated GATA1 gene and
only expresses GATA1s), resulting in lower GATA1s protein levels, promoted cell differentiation towards the megakaryocytic
lineage and repressed cell proliferation. Increased basal apoptosis and sensitivities to ara-C, daunorubicin, and VP-16
accompanied by down-regulated Bcl-2 were also detected in the CMK GATA1 shRNA knockdown clones. Essentially the
same results were obtained when Bcl-2 was knocked down with lentivirus shRNA in CMK cells. Besides Bcl-2, down-
regulation of GATA1s also resulted in altered expression of genes (e.g., IL1A, PF4, and TUBB1) related to cell death,
proliferation, and differentiation.

Conclusion: Our results suggest that GATA1s may facilitate leukemogenesis and potentially impact therapeutic responses in
DS AMkL by promoting proliferation and survival, and by repressing megakaryocytic lineage differentiation, potentially by
regulating expression of Bcl-2 protein and other relevant genes.
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Introduction

Down Syndrome (DS) children with leukemia exhibit some of

the most unique biological and therapeutic features of leukemia.

DS children have an estimated 10-20-fold higher risk for

developing acute lymphoblastic leukemia and acute myeloid

leukemia (AML) compared to non-DS children.[1] The majority

of AML cases in DS children are of the acute megakaryocytic

leukemia (AMkL) phenotype.[2–5] It is estimated that DS children

have a 500-fold increased risk of developing AMkL compared to

non-DS children.[6] Transient myeloproliferative disorder

(TMD), a precursor of AMkL, is diagnosed in up to 10% of DS

newborns and can resolve spontaneously without chemotherapy in

the majority of cases.[7] It is estimated that following clinical

resolution, 20–30% of DS TMD patients will subsequently

develop AMkL, requiring chemotherapy treatment.[8] Multiple
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clinical trials have shown that DS children with AML, and in

particular AMkL, have extremely high event-free survival (EFS)

rates (,80–100%) when treated with cytosine arabinoside (ara-C)/

anthracycline-based chemotherapy.[2–5,9] This is in marked

contrast to the ,50% EFS rates typically seen for non-DS

pediatric AML patients, and the ,35% EFS rates for non-DS

pediatric AMkL patients.[2–5,9]

What are the molecular bases for the increased incidence of

leukemia in DS children, and in particular, TMD and AMkL?

Acquired somatic mutations of the transcription factor gene

GATA1 (localized to Xp11.23) have been consistently detected in

nearly all DS TMD and AMkL cases, while mutations have not

been detected in DS acute lymphoblastic leukemia and non-DS

AML and AMkL except for rare cases.[10–12] GATA1 gene

encodes a zinc finger transcription factor that binds to the

WGATAR motif and is essential for normal erythroid and

megakaryocytic differentiation.[13] The net effect of the mutations

is the introduction of stop codons either before or after methionine

84 that results in a 40-kDa truncated GATA1 protein (designated

GATA1s), initiated from a downstream translation start site and

distinguishable from GATA1 (50-kDa).[12] Both GATA1s and

GATA1 show similar DNA binding abilities and interact with

partner proteins, such as ‘‘Friend of GATA1’’ (FOG1), though

GATA1s exhibits altered transactivation capacity due to the loss of

the N-terminal activation domain.[12] This could potentially

contribute to the uncontrolled proliferation of poorly differentiated

megakaryocytic precursors. In fact, GATA1s has been shown to

lead to hyperproliferation of a unique, previously unrecognized

yolk sac and fetal liver progenitor in transgenic mice, which may

account for the transient nature of TMD in DS.[14]

The uniform detection of somatic GATA1 gene mutations in DS

AMkL cases suggests that loss of the wild-type GATA1 and/or

synthesis of GATA1s in DS AMkL may somehow contribute to

the high EFS rates of DS AMkL patients. Indeed, a relationship

between GATA1 and AML outcome was suggested by a Japanese

clinical study in which non-DS AML patients with lower GATA1

transcript expression experienced the highest complete remission

rates.[15] In our previous study, when the wild-type GATA1 was

ectopically over-expressed in a DS AMkL cell line, CMK (harbors

a mutated GATA1 gene and only expresses GATA1s), it resulted in

significantly increased resistance to ara-C, suggesting that loss of

GATA1 could be responsible for the enhanced therapeutic

responses of DS AMkL patients.[16] However, it is not clear

whether the enhanced therapeutic responses of DS AMkL patients

are due primarily to loss of the wild-type GATA1 and/or due to

unique biological functions of GATA1s in DS AMkL cases.

To date, no studies have been reported to determine the role of

GATA1s in a human DS AMkL cell line model. In this study, we

explored the functional role of GATA1s in DS AMkL biology and

therapy using lentivirus shRNA to knockdown GATA1 in the DS

AMkL cell line, CMK, which expresses only GATA1s and no

wild-type GATA1.[17] Our results suggest that GATA1s has

unique functions in facilitating DS leukemogenesis and in

modulating therapeutic responses by repressing differentiation

towards the megakaryocytic lineage, and by promoting prolifer-

ation and survival, potentially through regulating expression of

Bcl-2 and other relevant genes.

Materials and Methods

Cell Culture
The DS AMkL cell line, CMK, was obtained from the German

Collection of Microorganisms and Cell Cultures (DSMZ;

Braunschweig, Germany). The parental CMK cells and the

shRNA stable clones were cultured in RPMI 1640 with 10% fetal

bovine serum (Hyclone, Logan, UT) and 2 mM L-glutamine plus

100 U/ml penicillin and 100 mg/ml streptomycin, in a 37uC
humidified atmosphere containing 5% CO2/95% air.

Lentiviral ShRNA Knockdown of GATA1 and Bcl-2 in CMK
Cells

Knockdown of GATA1 and Bcl-2 genes in the CMK cells was

performed using shRNA lentivirus (Sigma-Aldrich, St. Louis,

MO), as previously reported.[18,19] The sequences for the

negative control, GATA1, and Bcl-2 shRNAs are shown in Figure

S1. Two clones for each gene (designated CMK-5a and CMK-5b

for GATA1, and CMK-b7 and CMK-b8 for Bcl-2) with decreased

expression of GATA1s and Bcl-2, respectively, were selected for

further studies. A pool of cells from the negative control infection

(lentivirus expressing a shRNA with limited homology to any

known human genes) was used as the negative control (designated

CMK-neg) for the GATA1 and Bcl-2 shRNA stable clones.

Cell Differentiation and Proliferation Assays
The effects of GATA1s on megakaryocytic differentiation were

assessed by flow cytometry analysis of cell surface markers of the

CMK-neg, -5a, and -5b stable clones, as previously described.[20]

To determine the effects of GATA1s on cell proliferation, the

CMK-neg, -5a, and -5b stable clones were seeded at 2.56104

cells/mL in T-25 flasks and counted every 24 hours to determine

doubling times for each stable clone. To verify possible changes in

cell cycle progression, CMK-5a, -5b, and –neg cells were

harvested and fixed with ice-cold 70% (v/v) ethanol for 24h.

After centrifugation at 2006g for 5 min, the cell pellets were

washed with phosphate-buffered saline (PBS, pH 7.4) and

resuspended in PBS containing propidium iodine (PI) (50 mg/

mL), triton X-100 (0.1%, v/v), and DNase-free RNase (1 mg/mL).

The DNA contents were determined by flow cytometry using a

FACScan flow cytometer (BD Biosciences, San Jose, CA). Cell

cycle analysis was done with the Multicycle software (Phoenix

Flow Systems, Inc.).

BrdU Labeling and Flow Cytometric Analysis
The CMK-neg, -5a, and -5b cells were cultured in flasks

(2256105/ml) and incubated for 1 hour with 10 mM BrdU (5-

Bromo-29-deoxyuridine, Sigma-Aldrich, St. Louis, MO). Cells

were harvested, washed, fixed and treated with 2 N HCl. After

washing with PBS, cells were blocked with 0.2% Tween-20 in PBS

and incubated with fluorescein isothiocyanate (FITC) conjugated

anti-BrdU primary antibody (BD Pharmingen FITC Mouse Anti-

BrdU Set, San Diego, CA) in the same buffer for 2 hours at room

temperature. Cells were washed and resuspended in PBS with

2 mg/mL 7-AAD (Sigma-Aldrich, St. Louis, MO) and subse-

quently submitted to flow cytometry. Flow cytometric analysis was

done on at least 10,000 cells from each sample, using a FACS

Calibur flow cytometer (BD BioSciences). Three independent

experiments were completed.

In Vitro Ara-C Cytotoxicity Assays
For determinations of in vitro ara-C cytotoxicities, the CMK

stable clones were cultured in complete medium with dialyzed fetal

bovine serum (FBS) in 96-well plates at a density of 86104 cells/

mL. Cells were cultured for 96 h with a range of concentrations of

ara-C at 37uC, and viable cell numbers were determined using the

Cell Titer-blue reagent (Promega, Madison, WI) and a fluores-

cence microplate reader. The IC50 values were calculated as the

concentrations of ara-C necessary to inhibit 50% proliferation
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compared to untreated control cells. The data are presented as

mean values 6 standard errors from a minimum of 3 independent

experiments.

Assessment of Baseline Apoptosis
The CMK shRNA stable clones were harvested, vigorously

pipetted, and triplicate samples were used for determining baseline

apoptosis with the Apoptosis Annexin-V FITC/PI Kit (Beckman

Coulter; Brea, CA), as previously described.[18,19] Apoptotic

events were recorded as a combination of Annexin-V+/PI- (early

apoptotic) and Annexin-V+/PI+ (late apoptotic/dead) events.

Western Blot Analysis
Soluble protein extracts were prepared by sonication in

hypotonic buffer (10 mM Tris-Cl, pH 7.0), containing 1% SDS

and proteolytic inhibitors, and subjected to SDS-PAGE. Separated

proteins were electrophoretically transferred to PVDF membranes

(Thermo Fisher Inc., Rockford, IL) and immunoblotted with anti-

GATA1, -Bax, -Bad, -Bid, -Bcl-xL, –Bcl-2 (Cell Signaling

Technology, Danvers, MA), or -b-actin (Sigma-Aldrich, St. Louis,

MO) antibodies, as described previously.[16] Immunoreactive

proteins were visualized using the Odyssey Infrared Imaging

System (Li-Cor, Lincoln, NE), as described by the manufacturer.

Gene Expression Microarray Analysis
Gene expression microarray was performed with the Agilent

Whole Human Genome 4x44K microarray, catalog #G4112F.

Microarray sample preparation, hybridization, and data analysis

were described previously.[20] On each microarray, a labeled

CMK-5a or -5b sample was co-hybridized with an oppositely

labeled CMK-neg sample. Two arrays were completed for the

CMK-5a/CMK-neg pair and the CMK-5b/CMK-neg pair,

respectively, for a total of four arrays. The two microarrays used

for each clone were hybridized in a dye swap arrangement with

opposite dye orientation to minimize the dye bias effect. Statistical

analyses were performed using Rosetta ResolverH.[21] We have

deposited the raw data at GEO under accession number

GSE32388, we confirm all details are MIAME compliant.

To identify overlapping probes/genes between the CMK gene

set and our previously reported gene set derived from a

comparison between DS and non-DS AMkL primary patient

samples,[22] the probe IDs of each gene set were cross referenced

to Entrez Gene IDs, and a common set of Entrex IDs between the

2 groups was identified.

Quantification of Gene Expression by Real-time RT-PCR
Transcripts for GATA1, Bcl-2, deoxycytidine kinase (dCK), cytidine

deaminase (CDA), human equilibrative nucleoside transporter 1 (hENT1),

interleukin 1 alpha (IL1A), platelet factor 4 (PF4), and tubulin, beta

1(TUBB1) were quantitated using a LightCycler real-time PCR

machine (Roche, Indianaopolis, IN), as previously described,[16]

or using Taqman probes (Applied Biosystems Inc, Foster City, CA,

for PF4 and TUBB1). Primers and PCR conditions are described

in Table S1. Real-time PCR results were expressed as mean values

6 standard errors from 3 independent experiments using the same

cDNA preparation and normalized to GAPDH (glyceraldehyde 3-

phosphate dehydrogenase) transcripts.

Chromatin Immunoprecipitation Assays
The chromatin immunoprecipitation (ChIP) assay was per-

formed as described previously.[23,24] Purified chromatin frag-

ments from CMK cells were incubated with anti-GATA1 antibody

or normal IgG. Standard PCR (qualitative) for the GATA1

binding region in the IL1A promoter was performed with forward

(59-GGGGAATTATTTACAACAGAGGAGTG-39) and reverse

(59-TAATGCCTCAGTTCACCAAAGAAA-39) primers span-

ning the three putative GATA1 binding sites. An upstream

unrelated (ie, to GATA1 binding) region in the IL1A gene was

amplified by PCR with the use of upper (59-CTACATCAAT-

CACCCATCTCCA-39) and lower (59-CTTCACGTTCAGT-

CAGCAAAT-39) primers to further validate the specificity of the

ChIP assays. The same IL1A promoter regions were also amplified

by real-time PCR (quantitative), using the same primers, on a

Roche LightCycler-480 real-time PCR machine.

Effects of Recombinant IL1a on Cell Proliferation of CMK-
5a Cells

CMK-5a cells were seeded at a density of 2.56104 cells/mL in

T25 flasks and either recombinant IL1a (ProSpec, Rehovot, Israel)

reconstituted in PBS, or an equal volume of PBS was added. The

cells were cultured for up to 48 h at 37uC and counted in triplicate

every 24 h.

Statistical Analysis
Student’s t test (two tail, unequal variance) was used for

statistical analysis on experiments unless otherwise specified.

Results

GATA1s Promotes Cell Proliferation and Represses
Megakaryocytic Differentiation of CMK Cells

To investigate the role of GATA1s in DS AMkL, we used

lentiviral shRNA to knockdown the GATA1 gene in a DS AMkL

cell line, CMK, established from a 1-year-old DS boy with AMkL

and harboring a mutated GATA1 gene.[17] shRNA lentiviral

infection resulted in 59% and 30% decreased levels of GATA1s in

two clones, designated CMK-5a and -5b, respectively, compared

to a pool of cells from the negative control infection (designated

CMK-neg, Fig. 1A). This was accompanied by parallel changes in

transcript levels for GATA1 in the CMK-5a and -5b cells,

compared to the CMK-neg cells (Fig. 1B). Down-regulation of

GATA1s was accompanied by GATA1s dose-dependent de-

creased proliferation of the CMK-5a and -5b stable clones

(doubling times 36.4 and 28.2 h, respectively), compared to the

CMK-neg cells (25.8 h, Fig. 1C). Interestingly, this was unlikely

related to cell cycle perturbations since only minimal changes of

the cell cycle phases (e.g., slight decreases in number of cells in S

phase) in the CMK-5a and -5b clones were detected by PI staining

and flow cytometry analyses, compared to the CMK-neg cells

(Fig. 1D). The lack of obvious changes in S phase in the CMK

GATA1 shRNA stable clones was further confirmed by BrdU

incorporation assays (Fig. 1E). These results demonstrate that

GATA1s promotes cell proliferation in DS AMkL.

To determine the role of GATA1s in megakaryocytic

differentiation, flow cytometry analysis of megakaryocytic-associ-

ated antigens (e.g., CD61 and CD41) on the cell surface was

performed in the CMK-5a, -5b, and –neg cells. Interestingly,

down-regulation of GATA1s in CMK cells resulted in a

significantly increased total cell surface expression of CD61

(isotype ratio of 36.9 and 13.5, respectively) and CD41 (isotype

ratio of 14 and 6.6, respectively) as a measure of megakaryocyte

maturation in the CMK-5a and CMK-5b clones relative to the

CMK-neg cells (isotype ratio of 7.8 and 3.3, respectively; p,0.01)

(Fig. 2). Total cell surface expression of glycophorin-A was

significantly decreased in the CMK-5a and CMK-5b clones

(isotype ratio of 2.1 and 1.8, respectively), compared to the CMK-

neg cells (isotype ratio of 17.5; p,0.01) (Fig. 2). These results

The Role of GATA1s in DS AMkL
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establish that GATA1s represses cell differentiation towards the

megakaryocytic lineage in DS AMkL.

Down-regulation of GATA1s in CMK Cells Increases
Cytotoxicities to Ara-C, Daunorubicin, and VP-16

To determine the role of GATA1s in ara-C, daunorubicin, and

VP-16 sensitivities, in vitro drug cytotoxicities were determined in

the CMK shRNA stable clones with decreased levels of GATA1s.

Sensitivities to ara-C for the CMK-5a and CMK-5b cells, as

reflected in IC50 values, were 2.1- and 2.5- fold, respectively,

greater than that for the CMK-neg cells (Fig. 3A). Essentially the

same results were obtained for daunorubicin and VP-16 in the

shRNA stable clones (data not shown). This suggests that

expression of GATA1s confers resistance to standard chemother-

apeutic drugs in DS AMkL rather than enhancing their

sensitivities. Hence, loss of GATA1 rather than expression of

GATA1s is likely an important factor accounting for the enhanced

chemosensitivity in DS AMkL compared to non-DS AML, leading

to high EFS rates.[16]

To begin to determine the molecular mechanism(s) responsible

for the changes in ara-C sensitivity accompanying decreased

expression of GATA1s, we used real-time RT-PCR to quantify

transcript levels for genes encoding ara-C metabolizing enzymes,

dCK and CDA, and for hENT-1, which encodes the major

membrane nucleoside transporter of ara-C. Interestingly, there

were no consistent patterns for transcript levels for dCK and hENT-

1 accompanying decreased GATA1s (data not shown). CDA

transcripts were not detectable in the CMK stable clones (data not

Figure 1. Down-regulation of GATA1s in CMK cells results in impaired cell proliferation. Expression of GATA1s in two selected subclones,
CMK-5a and -5b, in comparison to the negative control (CMK-neg) was verified by Western blotting (panel A) and real-time RT-PCR (panel B). The
real-time RT-PCR results were expressed as mean values 6 standard errors from 3 independent experiments using the same cDNA preparation and
normalized to GAPDH. To establish the doubling times for each shRNA subclone, the CMK-5a, -5b, and –neg sublines were seeded at 2.56104 cells/ml
and counted every 24 h with trypan blue staining (panel C). Cell cycle progression in the CMK-5a, -5b, and –neg sublines was assessed by PI staining
and flow cytometry analysis, as described in the Materials and Methods (panel D). DNA content was also assessed in the CMK-5a, -5b, and –neg
sublines by incorporating BrdU into DNA and flow cytometry analysis as described in the Materials and Methods (panel E).
doi:10.1371/journal.pone.0027486.g001
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Figure 2. Down-regulation of GATA1s in CMK cells results in increased differentiaion toward megakaryocytic lineage.
Megakaryocytic cell surface marker expression in the CMK-5a, -5b, and -neg stable clones was determined by flow cytometry. The unshaded plot
represents isotype control. Numbers (isotype ratio) represent the ratio between the quantitative expression value of the cell surface marker and
isotype control.
doi:10.1371/journal.pone.0027486.g002

Figure 3. The effects of GATA1s on ara-C sensitivity in CMK cells. Panel A: The CMK-5a, -5b, and -Neg cells were cultured in complete
medium with dialyzed fetal bovine serum in 96-well plates at a density of 86104 cells/ml, with a range of concentrations of ara-C at 37uC, and viable
cell numbers were determined using the Cell Titer-blue reagent and a fluorescent microplate reader. The IC50 values were calculated as the
concentrations of drug necessary to inhibit 50% growth compared to control cells cultured in the absence of drugs. The data are presented as mean
values 6 standard errors from at least 3 independent experiments. Panel B: Soluble proteins from the CMK-5a, -5b, and –neg sublines were
subjected to Western blotting and probed by anti-hENT1, -dCK, or b-actin antibodies. Panel C: Basal apoptosis in the CMK-5a, -5b, and –neg cells was
determined by annexin V/PI staining and flow cytometry analysis, as described in the Materials and Methods. * and ** indicate p,0.05 and 0.005,
respectively.
doi:10.1371/journal.pone.0027486.g003
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shown). Similar results were obtained for the protein levels for

dCK and hENT1 (Fig. 3B). These results clearly demonstrate that

the effects of GATA1s on ara-C sensitivity in DS AMkL must

involve mechanism(s) unrelated to altered expression of major

genes involved in ara-C transport and metabolism.

The lack of changes in expression of hENT1, CDA and dCK

among the CMK-5a, -5b, and –neg stable clones led to a

hypothesis that GATA1s can modulate ara-C sensitivity in

CMK cells by regulating expression of genes related to

apoptosis. Further, the increased sensitivities to daunorubicin

and VP-16 of the CMK-5a and -5b stable clones compared to

the CMK-neg cells also support these notions. To test this

possibility, baseline apoptosis in the CMK-5a, -5b, and –neg

clones was determined by Annexin-V FITC/PI staining and

flow cytometry analysis. Basal apoptosis in both CMK-5a and -

5b cells was significantly higher (2.3-fold and 1.5-fold,

respectively, p,0.05) than that in the CMK-neg cells and

was inversely proportional to levels of GATA1s (Fig. 3C). These

results strongly suggest that downregulation of GATA1s lowers

the apoptotic threshold contributing to the increased ara-C

sensitivity in CMK cells.

Since chemotherapy drugs induce apoptosis in cancer cells

primarily through the intrinsic apoptotic pathway, we per-

formed Western blotting to identify changes in apoptotic factors

potentially involved in the increased ara-C sensitivity associated

with down-regulation of GATA1s. Interestingly, substantially

decreased levels of the anti-apoptotic Bcl-2 protein were

detected in the CMK-5a and -5b stable clones (decreases of

42% and 22%, respectively, relative to CMK-neg), while protein

levels for other Bcl-2 family members, including Bcl-xL, Bad,

Bax and Bid, were not altered (Fig. 4A). Surprisingly, transcript

levels for Bcl-2 were increased approximately 2-fold in the

CMK-5a and -5b clones compared to the CMK-neg cells

despite decreased levels of the protein (data not shown). These

results suggest that the net impact of GATA1s on Bcl-2 is post-

transcriptional, although the mechanism responsible for this

effect is unclear.

To determine if Bcl-2 was the causal factor for the enhanced

ara-C sensitivities in the CMK-5a and -5b clones compared to the

CMK-neg cells, shRNA knockdown of Bcl-2 gene was performed

in CMK cells (Fig. 4B). As expected, decreased expression of Bcl-2

in CMK cells resulted in significantly increased basal apoptosis

Figure 4. GATA1s exerts its effects on ara-C sensitivity through modulating Bcl-2 protein levels in CMK cells. Panel A: Soluble proteins
from the CMK-5a, -5b, and –neg sublines were subjected to western blotting and probed by anti-Bcl-2, -Bcl-xL, -Bax, -Bad, -Bid, or b-actin antibodies.
Panel B: Expression of Bcl-2 in two selected subclones, CMK-b7 and –b8, in comparison to the negative control (CMK-neg) was verified by Western
blotting. Panel C: Basal apoptosis in the CMK-b7, -b8, and –neg cells was determined by annexin V/PI staining and flow cytometry analysis, as
described in the Materials and Methods. Panel D: The CMK-b7, -b8, and -Neg cells were cultured in complete medium with dialyzed fetal bovine
serum in 96-well plates at a density of 86104 cells/ml, with a range of concentrations of ara-C at 37uC, and viable cell numbers were determined using
the Cell Titer-blue reagent and a fluorescent microplate reader. The IC50 values were calculated as the concentrations of drug necessary to inhibit 50%
growth compared to control cells cultured in the absence of drugs. The data are presented as mean values 6 standard errors from at least 3
independent experiments. * and ** indicate p,0.05 and 0.005, respectively.
doi:10.1371/journal.pone.0027486.g004
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(Fig. 4C) and ara-C sensitivity (Fig. 4D) compared to the CMK-

neg cells.

Identification of GATA1s Responsive Genes in CMK cells
To further investigate the molecular mechanisms that underlie

the effects of GATA1s on DS AMkL cell proliferation,

differentiation, and sensitivitiy to ara-C, we performed oligonuc-

teotide microarray analyses on RNAs from the CMK-5a or CMK-

5b, and CMK-neg cells. Average log ratios representing the

differences in expression between the GATA1 shRNA clone

(CMK-5a or -5b) and the CMK-neg samples were derived for

each array feature by combining replicate array data, using the

error-weighted algorithm of Rosetta ResolverH.[21] Differentially

expressed genes were identified by their p-values, calculated with

the Resolver error-model and the replicate data. Using a p-

value#0.001 and a minimum 6 2.0 fold change as cutoffs, 1782

differentially expressed features (probes) were identified (Table S2),

with a false discovery rate ,1%. These probe IDs were then cross

referenced to Entrez Gene IDs. That provided 1111 Entrez IDs.

When these Entrez IDs were compared to those from our

previously reported microarray gene set derived from a compar-

ison between DS and non-DS AMkL patient samples, 91 Entrez

IDs were found to be common in both gene sets (Figure 5). These

results strongly suggest that GATA1s may contribute to the DS

AMkL phenotype through regulating its responsive genes.

Interestingly, a large number of these 1782 differentially

expressed probes are involved with cell differentiation (Table

S3), proliferation (Table S4), and death (Table S5). Among the

genes relevant to cell differentiation and proliferation, IL1A

(interleukin 1 alpha), PF4 (platelet factor 4), and TUBB1 (tubulin beta

1), were of particular interest. IL1A encodes a cytokine which

enhances proliferation of megakaryocytic progenitors.[25] PF4

and TUBB1 encode proplatelet formation proteins and increased

expression of these genes would suggest differentiation toward the

megakaryocytic lineage. Oligonucleotide microarray analysis

revealed 11.0- and 2.4-fold increased expression of PF4 and

TUBB1, respectively, and a 2.1-fold decreased expression of IL1A

in the CMK-5a and -5b clones compared to the CMK-neg cells.

Real-time RT-PCR confirmed a nearly complete lack of IL1A

expression and substantially increased expression of PF4 in the

CMK-5a and -5b clones compared to the CMK-neg cells

(Fig. 6A&C). Substantially increased expression of TUBB1 was

also detected by real-time RT-PCR in the CMK-5a but not in the

CMK-5b clone, compared to the CMK-neg cells (Fig. 6B). As

expected, cell proliferation was significantly increased when

CMK-5a cells were treated with 40 ng/mL recombinant IL1a
(Fig. 6D). Thus, GATA1s may impact proliferation and mega-

karyocytic differentiation of CMK cells by regulating the

expression of relevant genes.

IL1A is a Direct GATA1s Target Gene
It was of interest to establish whether IL1A is a direct GATA1s

target gene. Three putative GATA1 binding sites (GATA) located

at positions 2993 to 2990, 2909 to 2906, and 2869 to 2866

(relative to the transcription start site, based on IL1A mRNA

sequence NM_000575) are present in the IL1A promoter region

(Fig. 7A). In CMK cells, GATA1s directly bound to the GATA1

binding sites of IL1A in vivo when assayed by ChIP with either

regular PCR (Fig. 7B) or real-time PCR (Fig. 7C). These results

demonstrated that IL1A is a bona fide GATA1s target in CMK cells.

Thus, GATA1s likely exerts its functions by directly regulating

expression of genes important for cell proliferation, survival, and

megakaryocytic differentiation.

Discussion

The GATA1 gene encodes a zinc finger transcription factor that

is essential for normal erythroid and megakaryocytic differentia-

tion.[13,26–29] Acquired somatic mutations in exon 2 of GATA1

gene have been consistently detected in nearly all DS TMD and

AMkL cases, whereas none were detected in non-DS AML and

non-AMkL DS leukemia except for rare cases,[10–12,30–32]

highlighting their critical roles in leukemogenesis in DS. The net

effect of these mutations is the introduction of stop codons and

synthesis of GATA1s (40 kDa), initiated from a downstream

initiation site and distinguishable from GATA1 (50 kDa).[12] Both

GATA1s and GATA1 show similar DNA binding abilities and

interact with partner proteins, such as FOG1, although GATA1s

exhibits altered transactivation capacity due to the loss of the N-

terminal activation domain.[12] Lineage selective knockdown of

GATA1 in megakaryocytes has been reported to cause increased

megakaryocyte proliferation coupled with impaired maturation in

mice.[27]

It is believed that the presence of constitutional chromosome 21

disturbs fetal hematopoiesis promoting the acquisition of GATA1

mutations.[33,34] As a consequence, GATA1 mutations would

promote accumulation of poorly differentiated megakaryocytic

precursors and would represent initiating or early ‘‘genetic hits’’ in

a multi-step process of leukemogenesis initiated prenatally.[35]

One mechanism by which those effects can be explained is that

GATA1s fails to repress certain genes normally regulated by

GATA1.[36] However, the possibility that expression of GATA1s

in DS AMkL may itself be causal, due to its unique function in

regulating specific genes, cannot be excluded. To date, the possibly

unique role of GATA1s in promoting leukemogenesis and

chemotherapy sensitivity in a human DS AMkL model has not

been considered.

In this report, we established that GATA1s has novel biological

functions in relation to DS AMkL leukemogenesis and responses

Figure 5. Identification of overlapping genes between the CMK
microarray gene set and the previously reported microarray
gene set derived from a comparison between DS and non-DS
AMkL patient samples. For each gene set, differentially expressed
probes were cross referenced to Entrez Gene IDs. That provided 1111
and 445 Entrex IDs for the CMK gene set and the DS vs non-DS AMkL
gene set, respectively. The common set between the 2 groups was
found and shown in a Venn representation.
doi:10.1371/journal.pone.0027486.g005
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Figure 6. Down-regulation of GATA1s affects PF4, TUBB1, and IL1A expression in CMK cells. Panels A–C: Transcript levels for PF4 (panel
A), TUBB1 (panel B), and IL1A (panel C) in the CMK-5a, -5b, and –neg cells were quantified by real-time RT-PCR as described in the Materials and
Methods and results were expressed as mean values 6 standard errors from 3 independent experiments using the same cDNA preparation and
normalized to GAPDH. Panel D: CMK-5a cells were incubated with or without 40 ng/mL recombinant IL1a protein for up to 48 h and counted in
triplicate every 24 h. * indicates p,0.05.
doi:10.1371/journal.pone.0027486.g006

Figure 7. IL1A is a bona fide GATA1s target gene in DS AMkL. In vivo binding of GATA1s to the putative GATA1 binding sites located in the
upstream region of the IL1A gene (panel A) in CMK cells was determined by ChIP assays with use of regular PCR (panel B) and real-time PCR (panel
C), as described in Materials and Methods. ** indicates p,0.005.
doi:10.1371/journal.pone.0027486.g007
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to therapy. Our approach involved lentiviral shRNA knockdown

of the GATA1 gene in a human DS AMkL cell line, CMK, which

harbors a mutated GATA1 gene and expresses only GATA1s.

Interestingly, down-regulation of GATA1s in CMK cells resulted

in impaired cell proliferation and increased differentiation toward

the megakaryocytic lineage to extents that paralleled the decreased

levels of GATA1s seen in the stable clones (Fig. 1 and Fig. 2). The

increase in megakaryocytic differentiation of the CMK-5a and

CMK-5b cells was further supported by the substantially induced

expression of proplatelet formation genes, such as PF4 and TUBB1

(Fig. 6). In addition, down-regulation of GATA1s was accompa-

nied by both up- and down-regulation of a large number of genes,

including genes related to cell proliferation and cell differentiation,

such as IL1A. Previous studies have established that interleukin 1

enhances proliferation of megakaryocytic progenitors.[25,37] Our

finding that GATA1s promotes cell proliferation and represses

differentiation toward megakaryocytic lineage in DS suggests that

expression of GATA1s in itself could be a causal factor in

leukemogenesis in DS.

EFS rates for DS patients with AMkL are significantly higher

than non-DS AML patients, and in particular, non-DS AMkL

patients,[2–5] suggesting that the presence of GATA1s may

contribute to the high EFS rates of DS AMkL patients. Our

previous study suggested that loss of GATA1 may contribute to the

enhanced chemotherapy responses of DS AMkL compared to

non-DS AML.[38] However, it is not clear whether expression of

GATA1s itself contributes to the increased chemotherapy

sensitivities, as seen in DS AMkL patients, compared to non-DS

AML patients. In the present study, we found that down-

regulation of GATA1s in CMK cells resulted in significantly

increased in vitro sensitivities to ara-C, daunorubicin, and VP-16

compared to that in the negative control, suggesting that

expression of GATA1s can confer resistance to chemotherapy in

DS AMkL.

Accordingly, expression of GATA1s by itself is unlikely to explain

the enhanced chemotherapy responses in DS AMkL compared to

non-DS AML. Rather, expression levels of GATA1s may

represent an important biomarker related to chemotherapy

sensitivity or resistance in DS AMkL. Loss of GATA1 may

represent a significant contributing factor accounting for the

increased chemotherapy sensitivity of DS AMkL. The role of

GATA1s in chemosensitivity only applies to the DS AML group

itself (based on the lack of expression in non-DS AML) and its

relative impact may be modest. Nonetheless, assessing the role of

GATA1s expression in DS AMkL may identify a small subset of

DS patients with refractory or relapsed disease.[39] A study of DS

patients with TMD reported that differences in GATA1s levels

were associated with the risk of progression to myeloid leukemias,

supporting the notion that GATA1s may impact the clinical

features of DS leukemia cases. [40]

What are the molecular mechanism(s) responsible for the effects

of GATA1s on ara-C sensitivity? Our real-time RT-PCR assays

showed no significant differences in dCK, CDA, and hENT-1

transcript levels among the stable clones (data not shown).

However, significantly increased basal apoptosis in the CMK-5a

and -5b clones was detected compared to that in the CMK-neg

cells. This was accompanied by decreased levels of Bcl-2 protein,

which was certainly responsible for the increased basal apoptosis

and increased ara-C sensitivities in the CMK-5a and -5b clones, as

demonstrated by our lentiviral shRNA knockdown experiments.

Surprisingly, down-regulation of GATA1s resulted in increased

Bcl-2 transcripts in the GATA1 shRNA stable clones compared to

the CMK-neg cells, suggesting that GATA1s must confer some

means of posttranscriptional regulation of Bcl-2 expression in

CMK cells. Current studies are underway to determine the

mechanisms underlying the regulation of Bcl-2 expression by

GATA1s in CMK cells.

To summarize, our findings suggest that GATA1s has unique

functions in DS AMkL. GATA1s appears likely to facilitate DS

leukemogenesis and to confer resistance to chemotherapy by

promoting proliferation and survival, and by repressing differen-

tiation towards the megakaryocytic lineage, potentially by

regulating expression of Bcl-2 and other relevant genes.
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