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Abstract

First line chemotherapeutics for brain tumors (malignant gliomas) are alkylating agents such as temozolomide and
nimustine. Despite growing knowledge of how these agents work, patients suffering from this malignancy still face a dismal
prognosis. Alkylating agents target DNA, forming the killing lesion O6-alkylguanine, which is converted into DNA double-
strand breaks (DSBs) that trigger apoptosis. Here we assessed whether inhibiting repair of DSBs by homologous
recombination (HR) or non-homologous end joining (NHEJ) is a reasonable strategy for sensitizing glioma cells to alkylating
agents. For down-regulation of HR in glioma cells, we used an interference RNA (iRNA) approach targeting Rad51 and
BRCA2, and for NHEJ we employed the DNA-PK inhibitor NU7026. We also assessed whether inhibition of
poly(ADP)ribosyltransferase (PARP) by olaparib would enhance the killing effect. The data show that knockdown of
Rad51 or BRCA2 greatly sensitizes cells to DSBs and the induction of cell death following temozolomide and nimustine
(ACNU). It did not sensitize to ionizing radiation (IR). The expression of O6-methylguanine-DNA methyltransferase (MGMT)
abolished all these effects, indicating that O6-alkylguanine induced by these drugs is the primary lesion responsible for the
formation of DSBs and increased sensitivity of glioma cells following knockdown of Rad51 and BRCA2. Inhibition of DNA-PK
only slightly sensitized to temozolomide whereas a significant effect was observed with IR. A triple strategy including siRNA
and the PARP inhibitor olaparib further improved the killing effect of temozolomide. The data provides evidence that down-
regulation of Rad51 or BRCA2 is a reasonable strategy for sensitizing glioma cells to killing by O6-alkylating anti-cancer
drugs. The data also provide proof of principle that a triple strategy involving down-regulation of HR, PARP inhibition and
MGMT depletion may greatly enhance the therapeutic effect of temozolomide.
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Introduction

Glioblastoma multiforme (GBM, WHO grade IV) is the

deadliest form of malignant brain tumors. Complete surgical

resection of this tumor is hampered by its inherent invasiveness

into the surrounding healthy brain tissue. As the tumor cannot be

removed completely, adjuvant chemo-radiotherapy plays a major

role in the treatment of patients. Nevertheless, despite the best

available therapeutic approach, the survival rate for patients with

this malignancy is below 1.5 years after diagnosis [1]. Temozo-

lomide (TMZ) is the current first-line chemotherapeutic for

gliomas. Similar to other methylating chemotherapeutics such as

procarbazine, dacarbazine and streptozotocine, TMZ-induced

cell-kill is mainly due to O6-methylguanine (O6MeG), which is a

minor lesion induced by these agents in DNA. The suicide enzyme

O6-methylguanine-DNA methyltransferase (MGMT) repairs

O6MeG and thereby renders cells resistant to methylating agents

[2]. Consequently, MGMT activity and the promoter methylation

status of the MGMT gene (indicators of O6MeG repair capacity

and MGMT protein expression, respectively) are used as

predictive markers for the response of gliomas to TMZ [3,4]. As

a result of the protective role of MGMT in methylating and

chloroethylating agent based therapy, MGMT inhibitors are in

trials for use in MGMT expressing tumors [5].

O6MeG is processed into DNA double-strand breaks (DSBs) in

a DNA mismatch repair (MMR)-dependent manner, which

requires two rounds of DNA replication [6,7,8,9]. These DSBs

then trigger apoptotic cell death in gliomas [10]. For chloroethy-

lating agents such as nimustine (ACNU), O6-chloroethylguanine

forms secondary interstrand crosslinks that in turn give rise to

DSBs (for review see [2]). Cells can protect against DSBs via two

repair pathways, namely non-homologous end joining (NHEJ) and

homologous recombination (HR).

NHEJ is a error-prone process that relies on the coordinated

action of Ku70/Ku80, DNA-PKcs, Artemis, XRCC4 and DNA

ligase IV, among other factors, to rejoin the two ends of a broken

DNA molecule [11,12]. HR employs sequence homology to

perform an error-free break correction that preserves the original

DNA sequence. The central reaction of the HR pathway, namely

the homology search and strand invasion, is performed by Rad51-

coated 39- single stranded DNA (ssDNA) tails generated by DNA

end resection of the break [13,14]. The formation of this

nucleoprotein filament at ssDNA is promoted and stabilized by

BRCA2 [15,16]. Both Rad51 and BRCA2 are essential for HR in

mammalian cells. A significant function of Rad51 and BRCA2 in

other repair pathways has not been described.

Working with rodent cells mutated in these DSB repair

pathways, we were able to show that HR, but not NHEJ, is

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e27183



responsible for resistance to DSBs formed in response to TMZ-

induced O6MeG [17]. Similar data were obtained for cells treated

with chloroethylating agents like ACNU and lomustine (CCNU),

which are also used in glioma therapy (Nikolova et al.,

unpublished data). These findings suggest that HR might be a

promising target in methylating and chloroethylating agent based

glioma therapy.

This work was aimed at assessing whether knockdown of HR in

glioma cells by interference RNA (iRNA) leads to improved killing

of glioma cells following treatment with TMZ, ACNU and

ionizing radiation (IR), all part of the standard care for patients

with this malignancy.

Results and Discussion

Knockdown of the homologous recombination proteins
Rad51 and BRCA2 sensitizes glioma cells to alkylating
anti-cancer drugs

O6-alkylating agents (O6AA) are widely used as standalone

agents or as part of regimes for the treatment of glioma, malignant

melanoma, Hodgkin’s and non-Hodgkin lymphoma, sarcoma and

islet cell carcinoma of the pancreas. To determine whether down-

regulation of HR would lead to increased sensitivity of glioma cells

to O6AA, stable and transient iRNA transfections targeting HR

proteins were performed in these cells. LN-229 glioma cells stably

knocked-down for Rad51 (Fig. 1A demonstrating parental cells

and four stable Rad51sh transfectants), which is the protein

responsible for homology search and strand invasion, showed a

profound increase in both TMZ (Fig. 1B) and ACNU (Fig. 1C)

induced cell death. Remarkably, this increase in sensitivity was

proportional to the increase in Rad51 knockdown (Fig. 1D; a

similar quantitative correlation was found for ACNU (not shown)).

One may suppose that knockdown of Rad51 causes a general

sensitization that pertains to all genotoxins including IR. To

determine whether this is the case, LN-229 Rad51 knockdown

cells were exposed to increasing doses of c-radiation, which

contrary to O6AA induce DSBs directly. A slight increase in

sensitivity in the Rad51 knockdown lines compared to the control

line was observed (Fig. 1E), although not as dramatic as the

sensitization towards O6AA (compare with Fig. 1B and 1C).

To determine whether the sensitization of glioma cells to O6AA

chemotherapeutics is not exclusive for Rad51 knockdown,

BRCA2, the scaffold protein that promotes and stabilizes the

presynaptic filament formation during HR repair, was transiently

down-regulated (Fig. 2A). Similar to Rad51, BRCA2 knockdown

also caused sensitization of glioma cells to TMZ and ACNU

(Fig. 2B and 2C). Again, for ionizing radiation the increase in cell

kill after BRCA2 knockdown was less prominent (Fig. 2D). These

results suggest that HR plays a protective role in glioma cells

treated with TMZ or ACNU and that saturation of HR must

occur before O6AA chemotherapeutics trigger cell death.

Cell death in stable Rad51 down-regulated cells showed a

strong increase in apoptosis following TMZ treatment compared

to control as determined by annexin V/PI flow cytometry (Fig. 3A).

This is in line with previous data obtained with glioma cells

showing that apoptosis is the major cell death pathway following

TMZ [10]. If Rad51 represents a general mechanism for TMZ

resistance in glioma cells, then knockdown of Rad51 in other

glioma cells should also lead to increased sensitivity towards TMZ

triggered apoptosis. To prove this, Rad51 was transiently knocked-

down in the glioma cell lines U87MG and T98G (Fig. 3B). TMZ

induced apoptosis was determined in these cells and compared to

the response of LN-229 cells transfected with the pS-empty and

Rad51sh vector (Fig. 3C). We should note that for the cell line

T98G, MGMT was depleted by O6BG, while LN-229 and

U87MG does not express MGMT and therefore O6BG

pretreatment was not necessary. All three cell lines showed a

significant increase in TMZ triggered apoptosis following Rad51

knockdown (Fig. 3C). These results support the view that the

chemo-sensitizing effect of HR down-regulation is a general

phenomenon that is not restricted to a particular glioma cell line.

Sensitization of Rad51 knockdown depends on O6-
alkylguanine lesions

TMZ methylates DNA at 13 positions [18]. Prominent

alkylation lesions are N7-methylguanine, N3-methyladenine, N3-

methylguanine and O6-methylguanine. In rodent cells, HR has

been reported to be the major downstream protection mechanism

against both N-alkylations in purines [19] and O6-alkylations in

guanine [17]. The TMZ-induced adduct O6MeG is repaired by

MGMT [2]; consequently, over-expression of MGMT in HR

knockdown glioma cells should render them resistant to TMZ if

HR knockdown sensitizes towards the O6MeG adduct. LN-229

does not express MGMT detectably. Therefore, we transfected

MGMT into these cells generating stable MGMT transfectants

(Fig. 4A). As expected, these cells were highly protected against

TMZ-induced cell death. Knockdown of Rad51 in these cells had

no significant effect on TMZ-induced toxicity (Fig. 4B, compare

with Fig. 1B). The data shows that blocking the HR repair

pathway by Rad51 knockdown sensitizes to cell death triggered by

the DNA adduct O6MeG.

Although brain tumors usually express low levels of MGMT

[20], a major fraction of these malignancies do indeed show

clinically relevant expression levels of this repair enzyme, making

them unsuitable for treatment with O6AA. To overcome this

problem, MGMT inhibitors are being tested in trials for

enhancing the effectiveness of TMZ and related agents. Employ-

ing a model that resembles this situation, T98G glioma cells that

express endogenous MGMT were knocked-down for Rad51. The

MGMT expressing T98G cells were completely resistant to TMZ,

irrespective of Rad51 knockdown (Fig. 4C). This data are similar

to those obtained with LN-229 MGMT transfected cells,

supporting the notion that HR knockdown sensitizes glioma cells

to O6MeG adducts and that MGMT inhibition greatly improves

on this.

Knockdown of Rad51 in glioma cells prevents the repair
of DSBs formed during the processing of O6-
methylguanine

Having shown that knockdown of HR proteins sensitizes glioma

cells to O6AAs, the question of whether it would also have an effect

on the formation and repair of DSBs following TMZ treatment

was addressed. A reliable and robust marker for DSBs are

phosphorylated histone 2AX (cH2AX) foci [21]. Glioma cells

knocked-down in Rad51 were treated with TMZ and compared

with non-knockdown cells as to DSB formation and repair (Fig. 5A

for representative immunofluorescence and Fig. 5B for quantifi-

cation). In control cells transfected with the empty vector, DSBs

were formed 48 h after treatment and then repaired (Fig. 5B),

which conforms to previous data [17]. Contrary to this, in Rad51

knockdown lines (clones 8 and 23) DSBs were formed and

remained unrepaired up to 144 h after TMZ treatment (Fig. 5B).

Clearly, knockdown of Rad51 in glioma cells caused a significant

defect in the repair of DSBs induced by TMZ. The inhibition of

DSB repair as determined by cH2AX showed an inverse and

significant correlation with Rad51 expression in the knockdown

cells (Fig. 6A). The cH2AX foci level that remained after 144 h

Homologous Recombination and Chemo-Sensitization
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Figure 1. Knockdown of the HR protein Rad51 sensitizes glioma cells to O6AA chemotherapeutics. (A) Rad51 protein expression in
knockdown clones and control assessed by western blot, quantified, corrected for loading (Erk-2) and expressed relative to control. (B) Clonogenic
survival for stable Rad51 knockdown glioma cells (LN229-Rad51sh) compared to empty vector transfected cells (LN-229-pS-empty) following TMZ
treatment. (C) Clonogenic survival for stable Rad51 knockdown glioma cells compared to empty vector transfected cells following ACNU treatment.
(D) Correlation between the relative Rad51 expression, determined from A, and TMZ concentration that kills 95% of glioma cells, determined from B.
Line was fitted using the equation y = minimum + (maximum-minimum)6(1-exp(-kx)). (E) Clonogenic survival for stable Rad51 knockdown glioma
cells compared to empty vector transfected cells following ionizing radiation (IR).
doi:10.1371/journal.pone.0027183.g001
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was also related to cell survival following TMZ (Fig. 6B). To

confirm that TMZ-induced cH2AX foci are ‘‘true’’ DSBs, a

second DSB marker was used that is known to physically interact

with cH2AX, namely 53BP1 [22]. Similar to cH2AX, TMZ also

induced the formation of 53BP1 foci, which co-localized with

cH2AX (Fig. 7). The data support the notion that Rad51

dependent HR is required for the repair of TMZ-induced DSBs.

Influence of inhibiting NHEJ or poly(ADP-
ribose)polymerase on TMZ treated glioma cells

As NHEJ may theoretically also play a protective role for

methylating agents, independent of HR, its effect was investigated

in TMZ-treated glioma cells. A main player in NHEJ is DNA-

PKcs, which is a PI3-kinase that binds, together with Ku70 and

Ku80, to free DSB ends and stimulates their rejoining and ligation

[11,12]. For inhibiting DNA-PK we used the small molecule

inhibitor NU7026 [23], which strongly inhibited DNA-PK activity

upon treatment of both LN-229 control (transfected with the

empty vector) and LN-229 Rad51 transfected cells (Fig. 8A).

Inhibition of DNA-PK with NU7026 in LN-229 cells treated with

TMZ, irrespective of Rad51 knockdown, had no significant effect

on survival (Fig. 8B), indicating that NHEJ does not protect

significantly against TMZ. This is in line with our previous data

obtained with rodent mutant cells, which showed that NHEJ only

contribute marginally to the protection against O6-methylating

agents [17]. Interestingly, DNA-PK inhibition had a significant

sensitization effect on LN-229 glioma cells treated with c-rays

(Fig. 8B), which supports the observation that NHEJ was indeed

inhibited in these cells. The results suggest a divergent role for this

pathway in the repair of TMZ and ionizing radiation-induced

DNA damage.

Synthetic lethality caused by PARP inhibitors in HR-deficient

cells [24] has paved the way for several clinical trials for the use of

these inhibitors in HR-deficient tumors. This prompted us to study

the effect of PARP inhibition on Rad51 knockdown cells. As

shown in Fig. 8C, PARP inhibition with olaparib resulted in

Figure 2. Knockdown of the HR protein BRCA2 sensitizes glioma cells to O6AA chemotherapeutics. (A) BRCA2 protein expression
following knockdown was assessed by western blot. (B) Clonogenic survival following TMZ treatments in transient BRCA2 or non-sense (n.s.) siRNA
transfected glioma cells. (C) Clonogenic survival following ACNU treatments in transient BRCA2 or non-sense (n.s.) siRNA transfected glioma cells. (D)
Clonogenic survival following ionizing radiation (IR) in transient BRCA2 or non-sense (n.s.) siRNA transfected glioma cells.
doi:10.1371/journal.pone.0027183.g002
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increased killing in glioma cells knocked-down for Rad51

compared to controls. Co-treatment with TMZ and olaparib

increased cell kill in both control and knocked-down cells; the most

drastic decrease in survival was observed in the latter. The data

indicates that glioma cells are unable to deal with TMZ-induced

DNA damage when PARP is inhibited, which is exacerbated when

HR is down-regulated by Rad51 knockdown.

Outlook
Collectively, the data shows a dramatic increase in the

sensitivity of glioma cells treated with O6-methylating (TMZ)

and O6-chlorethylating (ACNU) anticancer drugs once HR was

impaired by knockdown of its major players Rad51 and BRCA2.

This was demonstrated in glioma cell lines proficient (LN-229 and

U87MG) and deficient (T98G) for p53. Although MGMT

Figure 3. Apoptosis induction after TMZ treatment in Rad51 kd glioma cells. (A) Apoptosis determined by annexin V/PI double-staining
144 h after 10 mM TMZ in stable Rad51 knockdown clones of the cell line LN229. (B) Western blot analysis of transient Rad51 knockdown in U87MG
and T98G cells, or transfected with non-sense siRNA. Erk-2 was used as loading control. (C) Apoptosis induction after TMZ treatment in Rad51
transient knocked-down glioma cells U87MG and T98G, as well as in the stable Rad51 knockdown clone LN-229-Rad51-sh8 and the empty vector
control cell line LN-229-pS-empty. Apoptosis was assessed by Sub-G1 analysis performed 144 h after 10 mM TMZ treatment. For MGMT depletion
10 mM O6BG was added 1 h before TMZ. * p,0.05, significance level determined using the t-student test (n = 3).
doi:10.1371/journal.pone.0027183.g003
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completely abolished the glioma cell sensitization achieved by HR

knockdown, its pharmacological inhibition by the pseudosubstrate

O6BG restored it. The data also corroborates previous observa-

tions indicating a minor role of NHEJ in the repair of O6MeG

triggered DSBs [17], and indicates a potential use of PARP

inhibitors to further enhance TMZ-induced toxicity in glioma

cells. As O6AA are employed so widely as part of the treatment of

different tumors, especially in the metastatic state and when

complete surgical removal of the neoplasm is not possible,

enhancement of chemotherapy efficacy is highly desired.

While we demonstrated that down-regulation of Rad51 and

BRCA2 greatly sensitizes glioma cells to TMZ and ACNU and,

therefore, are potential new targets in glioma therapy, the

limitation of this approach should also be pondered. High

MGMT levels still provoke resistance and therefore tumors

with an unfavorable MGMT status will still represent a major

hurdle. We should note, however, that HR also protects

against N-alkylations (Nikolova et al., in preparation), which

are formed by TMZ and CNUs at high amounts and are

repaired by base excision repair. It is thus conceivable that

inhibition of repair of N-alkylations together with knockdown of

HR might be a strategy for targeting tumors that express high

MGMT levels.

Another important issue pertains to the tumor targeting for HR

knockdown strategies, in order to prevent unwanted side effects

due to enhanced normal tissue toxicity. Indeed, systemic down-

regulation of HR might exacerbate the side effects related to

chemotherapeutics. Therefore, either local administration directly

to the tumor or a proper tumor targeting strategy for iRNA

[25,26] and MGMT inhibitors [5,27] might be fundamental for

optimizing the therapeutic index of this approach. In summary,

the study provides proof of principle evidence that siRNA

targeting the HR pathway is a reasonable strategy for increasing

O6AA efficacy, which may prove beneficial for patients treated

with these anticancer drugs.

Materials and Methods

Cell lines and culture conditions
LN-229, U87MG and T98G cells were provided by Dr. M.

Weller (Department of Oncology, University Hospital Zurich,

Switzerland) [28] and were checked before experimental use for

mycoplasma contamination. Cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) containing 10% fetal bovine

serum as previously described [29,30]. Cells were cultured in a

humidified atmosphere with 7% CO2 at 37uC.

Drugs, treatments and irradiation of cells
TMZ (a generous gift from Schering-Plough) stocks were

prepared by dissolving it in DMSO and sterile dH2O (1:2) to a

concentration of 35 mM. ACNU (Sigma) stocks were prepared by

dissolving it in sterile dH2O to 10 mM. O6-benzylguanine (O6BG,

Sigma), NU7026 (Sigma) and Olaparib (AZD2281, Selleck

Chemicals) stocks were prepared by dissolving them in DMSO

to 10 mM, 5 mM and 10 mM, respectively. TMZ stocks were

stored at 280uC while the other stocks were stored at 220uC. For

MGMT depletion or PARP inhibition, O6BG (10 mM) or

Olaparib was added 1 h prior to drug treatments. NU7026

(10 mM) was added to cells 6h prior to treatments. Radiation was

performed with a 137Cs source (Gammacell 2000, Molsgaard

Medical).

Plasmids and stable transfections
A pSuper (OligoEngine) construct was generated to express

shRNA targeting Rad51 mRNA using the previously described

sequence (59- GAAGAAAUUGGAAGAAGCU-39) [31]. The

pSV2MGMT vector has been described previously [32]. Plasmid

DNA were transfected using Effectene (Qiagen). Transfected cells

were selected with 0.75 mg/ml G418 or 0.44 mg/ml puromycin

(both from Invitrogen) until clones formed.

Transient transfection
BRCA2 siRNA (59-CUGAGCAAGCCUCAGUCAAtt-39),

Rad51 siRNA (5̀-GAAGAAAUUGGAAGAAGCUtt-39), (target

Figure 4. HR downregulation sensitizes to O6-alkylguanine
lesions in glioma cells. (A) Western blot analysis of MGMT and
Rad51 protein levels of glioma cells stably transfected to express
MGMT (LN-229-MGMT) and cells stably expressing MGMT and
knockdown for Rad51 (LN-229-MGMT+Rad51sh). Erk-2 was used for
loading control. (B) Clonogenic survival for cells stably transfected to
express MGMT (LN-229-MGMT) and cells stably expressing MGMT and
knockdown for Rad51 (LN-229-MGMT+Rad51sh) after TMZ treatment.
(C) Apoptosis in T98G glioma cells that were transiently knocked-down
for Rad51 (or transfected with non-sense siRNA) treated with TMZ.
Apoptosis was determined by Sub-G1 flow cytometry 144 h after TMZ
addition.
doi:10.1371/journal.pone.0027183.g004
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Figure 5. HR down-regulation impairs the repair of TMZ induced DNA-DSBs. Kinetics of TMZ-induced cH2AX foci formation and
disappearance in Rad51 knockdown glioma cells treated with 10 mM TMZ. See (A) for representative micrographs and (B) for quantification. Each
measure point represents the mean of 200 cells per experiment. Experiments were repeated twice and mean values +/2 SD are shown.
doi:10.1371/journal.pone.0027183.g005
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sequences previously reported in [33], and [31], respectively) or

non-sense siRNA (AllStars Negative Control siRNA, Qiagen) were

transfected with Lipofectamine RNAiMAX (Invitrogen).

Flow cytometric analysis
For Sub-G1 analysis, harvested cells were fixed in 70% ethanol

at -20uC. RNA digested-cells (30 mg/ml RNase A for 1 h in PBS)

were stained with 16.7 mg/ml propidium iodide (PI) prior to FACS

analysis. Annexin V-FITC/ PI double-staining was performed

following the manufacturer specifications (BD Pharmingen). Flow

cytometry analysis was performed using a FACSCalibur (Becton

Dickinson).

Colony Formation Assay
Cells in logarithmic growth were seeded at appropriate numbers

on 60 mm dishes. Cells were allowed to attach for 6 h before

irradiation or drug treatments. Colonies were fixed in acetic

acid:methanol:H2O (1:1:8), and stained with 1.25% Giemsa and

0.125% violet crystal. Transient transfected cells were seeded on

dishes 18 h after transfection.

Immunofluorescence microscopy
Cells were sequentially fixed with 4% formaldehyde and 100%

methanol. Primary antibodies (anti-phospho-S139-H2AX, 1:1000,

Upstate; anti-53BP1, 1:400, Cell Signaling) were incubated

Figure 6. Correlations between Rad51 expression level and cH2AX foci (A) and the amount of cH2AX foci and cell death (B). Relative
Rad51 expression was determined from Fig.1A and the doses required to kill 95% of glioma Rad51 knockdown cell lines cells are from Fig.1B.
doi:10.1371/journal.pone.0027183.g006

Figure 7. Co-localization of 53BP1 and cH2AX. 53BP1 was immuno-detected as a second marker for DSB. Representative micrographs are
shown.
doi:10.1371/journal.pone.0027183.g007

Homologous Recombination and Chemo-Sensitization
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overnight at 4uC followed by 2 h incubation with the secondary

antibody (anti mouse- Alexa Fluor 488, 1:500, Invitrogen; anti-

rabbit-CyTM3, 1:500, Jackson ImmunoResearch Laboratories).

DNA was counterstained either with 100 nM DAPI or 1 mM TO-

PRO-3 (Invitrogen). Slides were mounted in 1% DABCO- 50%

glycerol- PBS. Foci were scored automatically with the Metafer

Finder System v.3.1 (MetaSystems). Microphotographs were

acquired by laser scanning microscopy (LSM710, Carl Zeiss

MicroImaging).

DNA-PK activity assay
Total cell extracts were prepared as described [34]. Briefly,

cells were lysed using three cycles of freeze (liquid nitrogen)/

thaw (30uC) in extraction buffer (50 mM NaF, 20 mM HEPES

(pH 7.8), 450 mM NaCl, 25% glycerol, 0.2 mM EDTA,

0.5 mM dithiothreitol, in the presence of protease inhibitors

(Complete. EDTA-free. Roche)). Extracts were centrifuged (12

000 rpm for 30 min at 4uC), and supernatants were shock

frozen and stored at 280uC. Endogenous DNA was removed

by DEAE Sepharose Fast Flow (GE Healthcare). DNA-PK

activity was determined by liquid scintillation counting using the

SignaTECT DNA-Dependent Protein Kinase Assay System

(Promega). The assay was performed on three independent

cell extracts for each cell line. Each sample was analyzed in

the presence or absence of 10 mM of the DNA-PKcs inhi-

bitor NU7026. For background control, reactions were per-

formed in the absence of activator, as suggested by the assay

manufacturer.

Western blot analysis
Samples were resolved by SDS-PAGE, and blotted onto a

nitrocellulose membrane. Primary antibodies [BRCA2 (Cell

Signaling), Erk-2 (Santa Cruz), MGMT (Millipore), Rad51

(Calbiochem)] were used and detected by the OdysseyH Infrared

Imaging System (LI-COR Biotechnology).
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Figure 8. Role of DNA-PK dependent NHEJ and PARP
dependent BER on sensitivity of glioma cells knockdown
for Rad51 towards TMZ. (A) Inhibition of DNA-PK activity with
NU7026. DNA-PK activity was determined in cell extracts in the
presence and absence of NU7026. (B) Clonogenic survival of
stable Rad51 knocked-down glioma cells (LN-229-Rad51sh-4)
compared to empty vector-transfected cells (LN-229-pS-empty) after
TMZ or ionizing radiation (IR) treatment in the presence or absence
of the DNA-PKcs inhibitor NU7026. Equitoxic TMZ and ionizing
radiation (IR) doses producing about 30 to 40% toxicity in the
absence of DNA-PK inhibition were used [TMZ/IR doses: LN-229-pS-
empty: 2.7 mM/2.7Gy; LN-229-Rad51sh-4: 1.5 mM/1.9 Gy]. *, p,0.05,
significance levels were calculated using the Mann-Whitney U test
(n = 5). (C) Clonogenic survival of control (LN-229-pS-empty-2) and
Rad51 knockdown (LN-229-Rad51sh-23) glioma cells as a function of
olaparib concentration. Cells were co-treated with TMZ or not. TMZ
doses producing 30 to 40% toxicity in the absence of PARP inhibition
were selected for LN-229-Rad51sh-23 (0.8 mM) and control cells
(2.5 mM).
doi:10.1371/journal.pone.0027183.g008
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