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Abstract

Campylobacter jejuni ST-474 is the most important human enteric pathogen in New Zealand, and yet this genotype is rarely
found elsewhere in the world. Insight into the evolution of this organism was gained by a whole genome comparison of
two ST-474, flaA SVR-14 isolates and other available C. jejuni isolates and genomes. The two isolates were collected from
different sources, human (H22082) and retail poultry (P110b), at the same time and from the same geographical location.
Solexa sequencing of each isolate resulted in *1.659 Mb (H22082) and *1.656 Mb (P110b) of assembled sequences within
28 (H22082) and 29 (P110b) contigs. We analysed 1502 genes for which we had sequences within both ST-474 isolates and
within at least one of 11 C. jejuni reference genomes. Although 94.5% of genes were identical between the two ST-474
isolates, we identified 83 genes that differed by at least one nucleotide, including 55 genes with non-synonymous
substitutions. These covered 101 kb and contained 672 point differences. We inferred that 22 (3.3%) of these differences
were due to mutation and 650 (96.7%) were imported via recombination. Our analysis estimated 38 recombinant
breakpoints within these 83 genes, which correspond to recombination events affecting at least 19 loci regions and gives a
tract length estimate of *2 kb. This includes a *12 kb region displaying non-homologous recombination in one of the ST-
474 genomes, with the insertion of two genes, including ykgC, a putative oxidoreductase, and a conserved hypothetical
protein of unknown function. Furthermore, our analysis indicates that the source of this recombined DNA is more likely to
have come from C. jejuni strains that are more closely related to ST-474. This suggests that the rates of recombination and
mutation are similar in order of magnitude, but that recombination has been much more important for generating
divergence between the two ST-474 isolates.
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Introduction

Our understanding of the rate and determinants of bacterial

evolution has been revolutionised by the development and

application of new tools in molecular biology, genomics and

statistical genetics. These include the advent of Next Generation

Sequencing [1] and novel approaches to making inference on

whole genome data, without the need for time-consuming, full

annotation [2–4]. These advances have provided new insight into

the role of mutation, horizontal gene transfer and selection in the

evolution of human and animal pathogens.

Campylobacter jejuni and Campylobacter coli are major causes of

diarrhoeal disease throughout the world [5]. Until recently we had

relatively little understanding of the evolution of Campylobacter spp.

but multilocus sequence typing (MLST) of large collections of

isolates, combined with coalescent modelling, has provided new

insight into the possible convergence of these two species [6] and

revised our estimates of the rate of mutation and recombination

[7]. This has led to notable advances in our ability to attribute

epidemiologically significant isolate clusters to specific ecological

sources, both animal and environmental [8,9]. However, the seven

housekeeping gene MLST scheme, even when supplemented by

the addition of one or more hypervariable genes [10–12], covers

less than 0.5% of the 1.6–1.8 Mb C. jejuni genome and therefore

provides limited insight into the full extent of genomic variation

between seemingly closely-related bacteria.

New Zealand has one of the highest notification rates of human

gastroenteritis caused by C. jejuni in the world [13]. C. jejuni

multilocus sequence type 474 (ST-474) is estimated to account for

approximately 25–30% of these human campylobacteriosis cases
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in New Zealand, and is most strongly associated with poultry

[9,14]. The relative rarity of ST-474 in other countries combined

with its persistence in both humans and poultry suggests that the

population of ST-474 in New Zealand has arisen as a result of

clonal expansion from a single common ancestor [15] that evolved

from a more ubiquitous, historically-introduced lineage. This is

further supported by the presence of multiple Pulsed Field Gel

Electrophoresis variants of ST-474 in New Zealand [16].

However, since designation of the ST-474 cluster of related strains

is based only upon a sub-region within the seven conserved MLST

genes, it is unclear how much variation might exist between any

two ST-474 isolates, and how such variation has arisen. To answer

these questions we conducted a genome-wide analysis and

compared the full gene complement of two ST-474 isolates, one

from a retail chicken (P110b), the other from an anonymous

human clinical case (H22082) with identical allelic profiles for the

seven MLST housekeeping genes and for the hypervariable flaA

SVR locus [10,11]. Both were isolated within the same month in

the same geographical location in New Zealand. Using Solexa

resequencing technology, we describe the differences between the

two draft genomes and, by comparing individual genes with those

present in other sequenced bacterial genomes, we attempt to

identify the most likely ancestral lineage for each gene.

In order to investigate gene lineage, it is necessary to define

orthologous genes from a set of genomes. The concepts of the core,

accessory, character and pan genomes can be evaluated at the

species [17], genus [18], or even at the kingdom level [19].

Estimates in the size of the C. jejuni core genome, that is, those

genes present in all genomes under investigation, vary depending

on the stringency of the parameters used and the samples under

investigation, for example ranging from 847 [20] to 1295 [21] in

different studies. In contrast, the Campylobacter genus core genome

has been estimated to comprise 647 genes [18]. In this study we

estimate the size of the ‘core genome’ for the thirteen C. jejuni

isolates considered in this study from orthologous gene clusters.

Furthermore, we assess the role of mutation and recombination in

determining sequence variation within C. jejuni.

Materials and Methods

Ethics statement
Ethical approval from the Multi-region Ethics Committee of the

Ministry of Health, New Zealand is in place for our work on

Campylobacter (application number MEC/10/16/EXP). Ethical

approval was not required for the collection of the isolate for

clinical diagnostic purposes. Isolates were collected and analysed

as part of routine public health investigation activities (as stated

below) but approval was sought for subsequent research using

these isolates and related surveillance data. Under the 2006

guidelines from the National Ethics Advisory Committee, Ministry

of Health, Wellington, New Zealand, ‘‘ Ethical Guidelines for

Observational Studies: Observational research, audits and related

activities’’, public health investigations are defined in section 2.4 as

investigations that ‘‘ explore possible risks to public health, are

often of an immediate or urgent nature, and are often required by

legislation. For example, investigations into outbreaks or clusters of

disease, analyses of vaccine safety and effectiveness, and contact

tracing for communicable conditions.’’ Under these same

guidelines, section 3.6 states that ‘‘ Public health investigations,

as defined above, do not require ethics committee review. This is

because they are required for the protection of public health as

central parts of public health practice, they are often of an

immediate or urgent nature, and they are often required by

legislation. Examples of such activities include investigations,

undertaken by authorised people, into clusters of disease suspected

to be caused by environmental agents and contact tracing.’’

Section 12.1 also states ‘‘ Publication or an intention to publish

does not make an activity research rather than an audit or related

activity, does not make it a more-than-minimal risk activity, and

does not trigger any requirement for ethics committee review.’’

Isolates used in the study
Two isolates of C. jejuni were investigated, one isolated from a

poultry carcase purchased in Palmerston North, New Zealand on

the 28th August 2005 (P110b) and the other from a faecal sample

from a human clinical case of campylobacteriosis resident in the

same city on the 26th August 2005 (H22082).

Genomic DNA preparation and sequencing
The Illumina Genome Analyzer was used to sequence the two

genomes according to the manufacturer’s instructions with read

lengths of 36 bp. Briefly, genomic DNA for each of P110b and

H22082 was prepared from bacteria grown on blood agar medium

(Fort Richard, Auckland, NZ) using a WizardH Genomic DNA

Purification Kit (Promega) according to the manufacturer’s

instructions. A library for unidirectional sequencing was prepared

from 5 mg genomic DNA for each isolate using a single end DNA

Sample Prep Kit (Part Number FC-102-1001, Illumina Inc). The

genomic DNA was fragmented by nebulisation for 6 minutes at a

pressure of 32 psi, end repaired, tailed, adaptor-ligated, fraction-

ated, purified and enriched according to the manufacturer’s

instructions. A flow cell was prepared for each isolate using the

Single Read Cluster Generation Kit (Part Number GD-203-1001,

Illumina Inc) and a Cluster Station. Sequencing reactions using 4

pmoles of the library were performed on an Illumina Genome

Analyser instrument with a single read 36 cycle SBS sequencing kit

(Illumina Inc) to give approximately 3 to 5 million clusters per

lane.

MLST and reference genome sequence data
Information on MLST alleles for C. jejuni and C. coli was

obtained from the PubMLST database (http://pubmlst.org/

campylobacter/). Sequenced Campylobacter genomes in either

complete or draft form were downloaded from the GenBank

database: C. jejuni subsp. jejuni NCTC 11168 (AL111168;

NC_002163), C. jejuni subsp. jejuni 81116 (81116; NC_009839),

C. jejuni subsp. jejuni 81-176 (81-176; NC_008787), C. jejuni

RM1221 (RM1221; NC_003912), C. jejuni subsp. jejuni 84–25

(CJJ84-25; NZ_AANT00000000), C. jejuni subsp. doylei 269.97

(269.97; NC_009707), C. jejuni subsp. jejuni CF93-6 (CJJCF93-6;

NZ_AANJ00000000), C. jejuni subsp. jejuni HB93-13 (CJJHB9313;

NZ_AANQ00000000), C. jejuni subsp. jejuni CG8486 (CG8486;

NZ_AASY00000000), C. jejuni subsp. jejuni CG8421 (CG8421;

NZ_ABGQ00000000), C. jejuni subsp. jejuni 260.94 (260.94;

NZ_AANK00000000) and C. coli RM2228 (AAFL00000000). In

addition, the five C. jejuni plasmids pCJ419 (NC_004997), pCJ1170

(NC_008052), pCJ01 (NC_008438), pVir (NC_005012) and pTet

(NC_007141) were also downloaded. The genomic characteristics

of the sequences used in this study are described in more detail in

Table S1, and the MLST profiles of these genomes are described

in Table S2.

Mapping of sequences
Short read sequences (in a modified Solexa FastQ format so that

all fields were recorded in one row) were stored in a MySQL

database for ease of retrieval. Prior to de novo assembly and

mapping, the short reads were filtered using two steps. The first

Campylobacter jejuni ST-474 Lineage Analysis

PLoS ONE | www.plosone.org 2 November 2011 | Volume 6 | Issue 11 | e27121



was to remove sequences that had any ambiguous bases (N)

present. The second was to use the ‘fastx_artifacts_filter’ program

from the FASTX toolkit (http://hannonlab.cshl.edu/fastx_

toolkit/index.html) to remove artifactual sequences such as

homopolymeric sequences. Initially the sequences were mapped

with the proprietary mapper ELAND that exists as part of the

Illumina pipeline. The filtered sequences were than mapped back

to the reference genomes using Maq (version 0.7.1 [22]), and

subsequently using BWA [23] for further mapping. In order to

assess the quality of the base calling, and of the coverage of the

short reads when mapped to the genome, the mapper BWA [23]

was used allowing for a variety of mismatches (also known as an

edit distances) in the mapping of the short reads to the reference

genome AL111168. The resulting SAM files for the ST-474

isolates using an edit distance of 1 (the closest to default parameters

with the short read sequence length used here) were parsed using

the ‘pileup’ command within SAMtools [24] to generate a file

allowing the nucleotide coverage at each base to be recorded. The

process was repeated with edit distances of 0, 2, and 3. Parsing of

this file allowed the calculation of the fraction of bases at a given

nucleotide that were the same as the consensus base (fcons). To

visualise the data, heatmaps generated by the program matrix2png

[25] were plotted showing how the value of fcons varied for the

nucleotide coverage with a sliding window of 5 either side of a

given nucleotide coverage.

de novo assembly of sequences reads and draft genome
assembly

The de novo assembler Velvet (version 0.7.55 [26]) was used for

assembling the 36 base short reads. Due to the nature of the

assembly process using de Bruijn graphs, the sequences from either

P110b or H22082 were assembled across a range of kmers, for the

odd numbers between 17 and 31 inclusive. These resulting Velvet

contigs were then stored in the MySQL database. The minimus

assembler (part of the AMOS package [27,28]) was used in an

attempt to reduce the contig numbers for the genomes of P110b

and H22082. Each genome was dealt with separately. For this

approach, the consensus sequence from the mapping of the short

reads to the reference genome AL111168 was taken (effectively a

scaffold), and broken up into contigs wherever any ambiguous

bases were recorded in the consensus. These contigs were then

assembled with the de novo contigs from a given kmer using

minimus. In all, this meant that there were 8 new assemblies for

each genome, all with fewer contigs. To check the validity of these

new contigs, Maq was again used to map the short reads back to

the contigs.

Gene Prediction and Clustering
The concatenated minimus contigs generated at each kmer

were run through the gene prediction program Glimmer (v3.02;

[29–31]) to predict genes. All predicted genes were then analysed

by both BLAST [32] and SSAHA2 [33] against *2.5 million

bacterial genes in GenBank to see how many of the predictions

matched known bacterial genes, especially those in the Campylo-

bacter genus. Glimmer gene predictions were then clustered using

OrthoMCL (version 1.4; [34,35]) with the genes from the 11

reference strains.

Sequence analysis and comparison of ST-474 genomes
with each other and reference genomes

The core genome of the 11 reference strains plus the two new

ST-474 genomes was calculated in order to evaluate the lineage of

genes within ST-474. The clustering was performed using

OrthoMCL [34,35] on the predicted amino acid sequences of

the genes in the 11 reference strains plus the predicted genes from

the two ST-474 genomes for a total of 13 genomes. As defined

here, a gene cluster had to have one, and only one member from

each reference strain or ST-474 present, to be considered as a

cluster. Cases where one strain was not represented occurred, but

these were not considered further in this study. Each orthologous

cluster was analysed in turn, so that the gene from one ST-474

isolate was aligned to each cluster member from the 11 reference

strains using exonerate [36] with the ‘affine:local’ model to find the

number of mismatches (i.e. sequence differences). A normalised

sequence difference value for each of the 11 reference strains was

calculated using the gene length (at either the DNA or protein

level). The process was then repeated with the other ST-474

isolate for the same cluster. These values were then plotted against

the respective ST-474 draft genome using the visualisation tool

Circos [37].

The gene predictions from P110b and H22082 were clustered

using OrthoMCL with the ‘pi_cutoff’ parameter using a value of

95%. A similar approach was taken as with the reference strains,

only in these analyses, the gene from one ST-474 isolate was

aligned to the orthologous gene of the other. The ‘affine:local’

model in exonerate was used to find both synonymous and non-

synonymous sequence differences at both the DNA and protein

level. These were again normalised for gene length. The genes that

showed sequence differences between the strains were then

localised in the genome, and small genomic regions with flanking

genes were identified. In order to visualise these small regions with

a consistent coordinate spacing, the genomic sequences (plus a

flanking 50 bp) were extracted and a global alignment of the

regions was performed using the program ‘stretcher’ (using a

Needleman-Wunsch rapid global alignment algorithm) [38] in the

EMBOSS package [39]. The genes from each ST-474 isolate were

then mapped back to their adjusted genomic region using

megablast, part of the BLAST package [32]. The genes from

each ST-474 isolate with changed coordinates from these regions

were then plotted with Circos in two ways; firstly to show their

location of the regions in the genome, and secondly to show the

normalised sequence difference rate for the genes.

In order to estimate the phylogenetic relationship between the

C. jejuni reference genomes, and also of those to the two ST-474

strains, a large subsection of the C. jejuni core genome was used.

For each gene cluster in the core genome, the length range of the

orthologous cluster members was calculated. The sequences of the

genes that showed the same length were used to generate a

concatenated sequence for each of the 11 reference strains, and the

two ST-474 strains. These sequences were generated at both the

DNA and protein level. These sequences were then used to

generate an unrooted phylogenetic network using the Neighbor-

Net methodology within SplitsTree [40]. The parameters for

NeighborNet visualisation were set using the NeighborNet

distance transformation with the OrdinaryLeastSquares variance

function, and the EqualAngle splits transformation using weights,

and running a convex hull.

Lineage and recombination analysis
A variant of the PACL approach [41,42] was used to make

inference about the ancestral lineage of the ST-474 isolates within

each gene. This involves modelling the haplotype of a new isolate

given the haplotypes of a sample of isolates. The model assumes that

the new haplotype is a mosaic of the sample of isolates (due to

recombination) together with nucleotide differences (due to

mutation). The mosaic nature of the new haplotype describes the

ancestral lineage of the corresponding isolate, and how that changes.

Campylobacter jejuni ST-474 Lineage Analysis
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Briefly, under this model we calculate the conditional

distribution of the ancestral lineages of one ST-474 isolate in

terms of the other ST-474 isolate and the 11 reference genomes.

We repeated this analysis for each gene and each of the ST-474

isolates. The output for a given gene and ST-474 isolate is a

distribution on the ancestry of that ST-474 isolate, and how that

ancestry changes (if at all) across the length of the gene. From this

we can detect regions where recombination has imported new

DNA since the common ancestor of the ST-474s, the position of

these recombination events, and which nucleotide differences were

introduced by recombination. As our method gives a distribution

for these events, we can average over realisations from this

distribution to calculate expected values (of say nucleotide

differences introduced by recombination), or make probability

statements (such as the probability of recombination within a given

gene). We performed the analysis for each gene twice – once for

each ST-474 isolate. Results given are averaged across these two

analyses.

Assume we have a gene (or other fragment of the genome)

consisting of L base-pairs. We have a sample of n isolates for which

we have the DNA sequence for this gene. That is, for each isolate

we have the DNA base at each of the L loci within the gene (we

discuss how we deal with variations in sequence length below).

Denote this haplotype information by a matrix H, with Hij for

i~1, . . . ,n and j~1, . . . ,L being the base at the jth position of the

DNA sequence of the ith isolate. We introduce a probability model

for the DNA sequence of a new isolate. Denote the haplotype of

this new isolate by h~(h1, . . . ,hL), where hj is the base at the jth
position in the DNA sequence.

Our model is that the new haplotype is a mosaic of our sample

of haplotypes, with additional mutations. We thus introduce a

vector a~(a1, . . . ,aL) which denotes the ancestry of the new

isolate (which of the other isolates the new isolate is most closely

related to) at each position in the gene. We introduce a model for

the ancestry, a, and for the conditional distribution of the

haplotype of the new isolate, h, given the sample of haplotypes

H and its ancestry. We denote these by p(a) and p(hja,H)
respectively. Once these have been defined we will aim to sample

from the conditional distribution of a given h and H defined by

p(ajh,H)!p(a)p(hja,H):

First we describe our model for p(a). This model is based on the

idea of an underlying clonal frame [2] in which the two ST-474

isolates will be most closely related. As in our application the new

isolate is one of the ST-474 isolates, then it is most likely that at

any position it would be most closely related to the other ST-474

isolate, and that these will be so closely related that the probability

of any mutational difference will be small. However occasionally

there will be recombination events at which fragments of DNA will

have been imported into one of the two ST-474 isolates. These

fragments will be mosaics of the haplotypes of the isolates in the

sample H. Within these fragments, the new isolate will be less

closely related to its ancestral isolate, and thus there will a higher

chance of mutation between it and its ancestral isolate.

Thus we allow aj [f0, . . . ,ng, where aj~0 means that we are

not within a recombinational fragment, and aj~k for k=0 means

that we are within a recombinational fragment and the ancestral

isolate at this position is isolate k. Note that we allow the ancestral

isolate here to be the ST-474 isolate as well as the isolates of the

reference genomes. We introduce a recombination probability per

base-pair, r, and a mean fragment length, l, and recombination

time t, which describes the recombination process. Here r
describes the probability of recombination when aj~0, and rt is

the probability of recombination otherwise. Here rvv1 and

tw1 to model the fact that recombination is rare between the two

ST-474 isolates, due to them being closely related, but that further

recombination within a recombination fragment is more likely as

the new ST-474 isolate is less closely related to its ancestral isolate

within these fragments. Our model for the length of recombination

fragment will be geometric. We further introduce a set of

probabilities on isolates, c~(c1, . . . ,cn), so that after a recombi-

nation event, the probability of the new ancestral isolate being

isolate k is ck.

Our model for p(a) is then defined as a Markov model governed

by the following transition probabilities

p(ajz1~kjaj~0)~
1{r if k~0

rck if k=0

�
,

and for i=0,

p(ajz1~kjaj~i)~

1=l if k~0

trck if k=0 and k= i

1{1=l{trztrck if k~i

8><
>: :

Finally p(a1) is defined to be the stationary distribution of the

above Markov process.

Now we describe our model for p(hja,H). This is a simple

mutational model whereby the new isolate is either an identical

copy of the ancestral isolate at that position, or with small

probability, is different due to a mutation. The mutation process is

parameterised by h where h is the probability of mutation if aj~0
and th is the probability if aj=0.

Without loss of generality assume that the ST-474 isolate in H is

the first isolate. We have that p(hja,H) can be factorised as

p(hja,H)~ P
L

j~1
p(hj jaj ,H),

where

p(hj jaj ,H)~

1{h if aj~0 and hj~H1j ,

h if aj~0 and hj= H1j ,

1{th if aj=0 and hj~Haj j ,

th if aj=0 and hj= Haj j :

8>>>><
>>>>:

Our model is such that we can use the Forward-Backward

algorithm [43] to sample from p(ajh,H).

For simplicity we ignored insertions and deletions within the

data, by ignoring regions where there was an insertion or deletion

within one or more of the DNA sequences within a gene or region.

This avoids the need to separately model insertion/deletions and

causes little loss of information as only 10% of sequence is

removed.

To implement our procedure we need to fix the parameters of

the model. Based on the mean divergence between the two ST-

474 isolates (ignoring genes with 10 or more mutations difference,

results in an average of 1 point mutational difference per 10 kb) we

fixed h~0:0001. By comparison, the mean divergence between a

ST-474 isolate and a reference genome is about 1%–2% so we

fixed t~100. We estimate c from the data using an EM algorithm.

Based on previous analysis [7,44] we set l~3,000 and r~h.

Whilst the latter choices are less clear, our results were robust to

substantial variation about these.

Campylobacter jejuni ST-474 Lineage Analysis
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To speed up computation we implemented a slight approxi-

mation of the above model which split genomic regions into sub-

regions, with each sub-region containing one segregating site

within the data set. We allowed the ancestry to change only at the

boundaries of sub-regions. Transition of the ancestry for

neighbouring sub-regions was calculated using the above model

but taking into account the length of each sub-region. So for a sub-

region of length l the transition probability for the ancestry of the

next sub-region given the ancestry of the current one if p(al ja0),
that is the l-step transition probability of the above Markov

process. This idea has been used previously [45]. The average

length of sub-region was of the order of 10 bp, and this

approximation introduced negligible difference.

The output of our analysis is drawn from p(ajh,H). For a given

realisation of a we can detect regions of recombination, where

aj=0, though this does not distinguish between which of the ST-

474 isolates imported DNA via recombination. We can also detect

recombination break-points, where either aj~0 and ajz1=0 or

aj=0 and ajz1~0. By averaging over realisations we can

calculate probabilities of events (such as recombination within a

gene), or averages (such as the number of recombination break-

points).

GenBank accession information
The P110b Whole Genome Shotgun project has been deposited

at DDBJ/EMBL/GenBank under the accession AEIO00000000

(Genome Project ID 52015). The version described in this paper is

the first version, AEIO01000000, with contigs labelled

AEIO01000001 - AEIO01000029. The H22082 Whole Genome

Shotgun project has been deposited at DDBJ/EMBL/GenBank

under the accession AEIP00000000 (Genome Project ID 52017).

The version described in this paper is the first version,

AEIP01000000, with contigs AEIP01000001 - AEIP01000028.

Illumina sequences have been deposited with the NCBI SRA

database under the accession numbers SRA023887 and

SRA023889 for P110b and H22082 respectively.

Results

Sequencing the genomes of the two ST-474 strains
An Illumina GAII was used to generate short read sequences of

36 bases for the two ST-474 strains using a lane for each isolate.

5389820 and 3272064 sequences were obtained for P110b and

H22082 respectively, with a yield of 194.03 Mb and 117.79 Mb of

sequence respectively. Using AL111168 as the closest complete

reference genome for mapping [46,47], and presuming that all

short reads mapped back to a genome the size of AL111168, an

average nucleotide coverage of 118.2 and 71.7 was found. The

filtering procedures removed 74628 (1.38%) and 57424 (1.75%)

sequences from P110b and H22082 respectively. Of these

sequences, 38644 (0.72% of all sequences) and 19878 (0.61%) of

these had ambiguous bases present, and 36009 (0.67%) and 37567

(1.15%) were sequences that were removed by the Fastx toolkit

program ‘fastx_artifacts_filter’. The results of mapping the short

read sequences to the 11 reference C. jejuni genomes and 5

plasmids from C. jejuni using the short read mapper Maq are

shown in the Table S1.

Mapping and gene prediction
There are three genomes to which the ST-474 short read

sequences map best: AL111168, CJJCF93-6 and CJJ84-25, with

an average value of 87.40% for P110b and 88.87% for H22082

(Table S1). It can also be seen that there is no appreciable

mapping of the ST-474 reads to any of the known C. jejuni

plasmids. It is known that within C. jejuni there is not 100% perfect

mapping of short read sequences, due to the presence of three

copies of the ribosomal RNA gene clusters, as well as paralogous

genes such as flaA and flaB [48]. Even so, these differences in

mapping frequencies for the ST-474 strains could not be

accounted for, indicating that the ST-474 strains contained

genomic sequences that were not found within the genome of

AL111168.

In order to assess the nucleotide coverage of the short reads

against the AL111168 genome, the mapper BWA [23] was used

allowing for a variety of edit distances in the mapping. Figure S1

shows the results of these analyses of the BWA mappings using edit

distances of 0, 1, 2 and 3 for H22082 (panels A and C) and P110b

(panels B and D) against the AL111168 genome. In panels A and

B the y-axis represents the number of bases, and the x-axis

represents the nucleotide coverage for a given nucleotide position

when mapped back to the reference genome AL111168. It can be

seen that the overall coverage profiles of H22082 and P110b are

very similar whether the mapping is performed with edit distances

of 0, 1, 2, or 3 (black, red, green and blue lines respectively). There

is, however, a slight shift to the right for the curves as more

mismatches are allowed in the mapping. However, as more reads

were generated for the P110b genome, the curves are moved to

the right when compared to H22082. Using heatmaps, panels C

and D show how the value for fcons varies with the nucleotide base

coverage. The nucleotide coverage range is the same as in panels

A and B, and values are shown for edit distances of 1, 2 and 3 only,

as by definition all bases will have fcons = 1.0000 with an edit

distance of 0, and therefore are not plotted. Hence the short reads

generated from both H220282 and P110b are of high quality.

The de novo ST-474 genomes are most similar to C. jejuni

genomes with shared MLST alleles (as shown in Table S2). The de

Bruijn graph assembler Velvet [26] was used to generate contigs

from the short reads for the ST-474 isolates. A range of kmers

were used for the assembly (Table S3). Using the genome

assembler minimus and a combination of these contigs and a

scaffold of sequences from the earlier mapping phase, the number

of contigs was reduced dramatically (Table S3) without an

appreciable change in overall calculated genome length. The

contigs created with a kmer of 25 were chosen for further analysis

after a consideration of a number of metrics to look at the de novo

genomes (number of contigs generated by the minimus process,

the percentage short reads hitting these contigs, the length of these

contigs, maximal contig length and N50. In this process, the

percentage of reads mapping to the new contigs using Maq

increased to about 96% (data not shown).

The draft genomes of P110b and H22082 have 29 and 28

contigs, ranging in size from 147 bp to 369641 bp, and 494 bp to

310337 bp, with a total predicted length of 1.656341 Mb and

1.659123 Mb respectively. The N50s of the draft ST-474 genomes

are 151393 bp and 138129 bp respectively. To get an overall view

of the genomes of the ST-474 strains, they were visualised using

the Artemis Comparison Tool (ACT) [49,50] and AL111168 as

the reference strain (Figure S2). There was a general degree of

similarity in the overall architecture of the genomes, though even

at this resolution, there were small regions of the ST-474 genomes

that did not appear to map to AL111168. With this approach, it

was also possible to see the overall similarity of the two ST-474

genomes to each other. It was also possible to visualise a novel

gene insertion and/or deletion between the two ST-474 genomes,

as explained in more detail below.

The MLST alleles were extracted for the 11 reference strains,

and the resulting sequences were BLASTed against the PubMLST

database for Campylobacter spp. The results of these analyses are
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shown in Table S2. ST-474 is part of clonal complex 48 (CC48)

and whilst there is not a reference strain for this clonal complex,

there are three strains for the related clonal complex CC21

(AL111168, CJJCF93-6 and CJJ84-25). These three strains share

three, four and five MLST alleles with ST-474 respectively, and

furthermore, these strains have the highest proportion of mapping

short read sequences from the ST-474 genomes (Table S1).

The gene prediction algorithm Glimmer resulted in a different

number of gene predictions for P110b (1687) and H22082 (1695).

These numbers are well within the range seen for other C. jejuni

genomes (Table S1). A significant portion (*87%) of the gene

predictions were identical in length to genes in Campylobacter spp.

To check for the presence of RNAs, the ST-474 contigs were

tested for both the presence of rRNAs and tRNAs. Three copies of

the rRNA cluster (5S, 23S and 16S rRNA) were found using the

RNAmmer web server for ribosomal RNA prediction [51]. The

tRNA-SE algorithm [52] was used for finding tRNAs. Both P110b

and H22082 had 43 tRNAs for 20 amino acids, plus a tRNA for

selenocysteine. Hence, the finding of 53 RNAs (9 rRNAs and 44

tRNAs) in both ST-474 genomes is comparable with what is seen

with the 11 reference strains: for example, there are 56 RNAs

reported for AL111168. It was thus concluded that the ST-474

draft genomes were relatively complete, and therefore the detailed

gene lineage analysis could be undertaken without completion of

full genome assemblies.

The ‘core’ genome
We estimated the core genome of the isolates under investiga-

tion using OrthoMCL version 1.4 [34]. This program has a

number of parameters, and we investigated the effect of these on

the inference of the core genome. Only the ‘pmatch’ (equivalent to

sequence similarity) and the ‘pi_cutoff’ (similar to sequence

identity) parameters affected gene clustering, with the former

having more of an effect than the latter. This was because the

clustering was performed on orthologous genes from strains of the

same species. As we varied ‘pi_cutoff’ from 80% to 100% the

number of genes decreased from 1069 to 25. The ‘pmatch’

parameter was chosen for further investigation as this allowed for

sequence changes to occur, but resulted in protein sequences that

could have been identical. The numbers of genes changed from

1071 for a ‘pmatch’ parameter value of 80% to 836 for a value of

100%. We chose a value of 95% which resulted in 1001 clusters in

the core genome. Using the visualisation tool Circos, these 1001

genes are shown graphically in Figure 1 with reference to the draft

genome of H22082 at the protein level. The number of differences

per gene normalised for gene length is shown as histograms for

each pairwise comparison. This figure is also provided as a high

resolution large image (Figure S3). Similar analyses of P110b at the

DNA level, and H22082 at both the DNA and protein level are

shown in Figures S4, S5 and S6 as large high resolution images.

The 1001 genes identified here as the ‘core genome’ accounted for

between 54.5% and 70.3% of genes in the genomes under

investigation. For the reference genome AL111168, 500 genes

were identified on the positive strand and 501 on the negative

strand. Genes in the core genome of AL111168 are distributed

relatively evenly across the genome, with a few notable exceptions,

as shown in Figure 1.

In order to generate an order for the relatedness of the core

genomes, 477 genes were analysed where there was no difference

in predicted gene length. Sequence differences were then

calculated between each of the two ST-474 isolates and the

reference strains to give an order that was subsequently used for

further analyses (Table S4), for example in the core genome

visualisation. As would be expected, there is also a strong

correlation between this order and a phylogenetic network that

was generated from a concatenated sequence of these 477 genes. A

NeighborNet tree showing the phylogenetic relationships between

the two ST-474 and the 11 reference genomes in Table S4 is

shown in Figure 2.

When the gene predictions from just the two ST-474 genomes

were clustered, there were 1568 genes that formed orthologous

gene pairs, highlighting how sensitive orthologous gene clustering

methods are to the relatedness of the input gene sequences. For

example, when OrthoMCL clustering is performed with an

additional five non C. jejuni genomes (C. coli, GI 57505198; C.

consicus, GI 157163852; C. curvus, GI 154173617; C. fetus, GI

118474057 and C. hominis, GI 154147866) to generate a

Campylobacter spp. core genome set, the number of genes, and

hence the size of the Campylobacter spp. core genome drops, to 482

at a ‘pmatch’ value of 95% (data not shown).

Lineage analysis of gene predictions
We analysed data from 1502 genes for which we had sequences

within both ST-474 isolates and within at least one reference

genome. The average gene length was 920 bp, ranging from

111 bp to 4488 bp. For 94.5% of the genes, the two ST-474s

isolates were identical. The divergence between the two ST-474s

for the remaining genes is shown in Figure 3(a). We also compared

the ST-474s with the sequences from the reference genomes. For

each gene we compared with the reference genome whose

sequence was most similar. For 49% of gene comparisons, the

ST-474 was identical to the closest reference genome. For the

genes where the two ST-474s differed, the divergence of H22082

with the closest reference genome is shown in Figure 3(b).

From Figure 3 we see a large tail for the number of differences

between the two ST-474 isolates. We investigated whether this was

due to recombination, by estimating how the ancestral lineage of

each ST-474 varies across each gene. This method enables us to

calculate the probability that a given region of a gene has

undergone recombination in at least one of the ST-474s since their

common ancestor. An example of the output obtained from the

algorithm is shown in Figure S7. For such recombinant regions it

gives a distribution on which of the reference genomes was the

source of the sequence imported – though it cannot infer which of

the ST-474s imported DNA due to recombination. It also cannot

distinguish between multiple overlapping recombination events,

and a single recombination event which imported sequence that is

a mosaic of the reference sequences.

We analysed 83 genes where there were point differences

between the two ST-474 sequences. Their location relative to the

P110b draft genome is shown in Figure S8. The 83 genes are

located within 37 regions, and these are plotted, along with a

flanking gene for clarity, in Figure 4. These regions are distributed

relatively evenly throughout the genome. Twenty four of these

regions have a single gene, and the remaining genes are found in

13 groups of varying genomic size, involving two to 14 genes

showing sequence differences. Fourteen regions have at least two

neighbouring genes showing sequence differences, and the

remainder are genes that group together in localised genomic

regions. The genes that show differences between the strains cover

a broad range of cellular functions, and do not appear to be

enriched for any particular group.

These genes covered 101 kb and contained 672 point

differences. Further information regarding these 672 point

differences is shown in Table S5, including the nucleotide

coverage at the affected base in the orthologous genes from

P110b and H22082. The orthologous gene in a reference genome,

which is AL111168 for all but two genes where it is CJJ84-25, is
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also shown. The mean and median nucleotide coverage values are

104.8 and 101 for H22082, and 68.2 and 66 for P110b

respectively. Similarly, the mean and median fcons values are

0.9944 and 1.0000 for H22082, and 0.9947 and 1.0000 for P110b

respectively. These data indicate that the bases where differences

between H22082 and P110b are observed have been sequenced to

a sufficient coverage, and that the presence of a small number of

random sequencing errors (a known artefact with Illumina

sequencing) is not affecting the results. Hence for a given

nucleotide location where there are differences between the ST-

474 isolates the value of fcons is very high (over 0.85). There are

two exceptions to this, in the gene Cj1136 for P110b and the gene

Figure 1. Circos plot showing the sequence differences detectable at the protein level for C. jejuni strain H22082. The figure shows the
location of the core genome genes as located within the H22082 draft genome when compared to the core genomes of 11 C. jejuni reference strains.
The tracks from outside to inside are; chromosomal ideogram (alternating colours indicate contigs), Glimmer gene prediction on the whole genome
(forward genes in orange, and reverse genes in blue); core genome genes (forward genes in red, and reverse genes in green); core genome genes
that are the same length (forward genes in black, and reverse genes in grey); 11 histograms showing the number of sequence differences detectable
as a fraction of protein length against the genomes in the following order: CJJ84-25, AL111168, CJJCF93-6, CG8421, CG8486, RM1221, CJJHB9313, 81-
176, 81116, 260.94 and 269.97. For clarity, the histograms have been scaled to cover the range 0 to 0.10 (purple 0 to 0.05 and blue 0.05 to 0.10). The
values above 0.10 are plotted as a full scale value with colours indicating the scale: orange (0.10 to 0.20), black (0.20 to 0.30), green (0.30 to 0.40) and
red (above 0.40).
doi:10.1371/journal.pone.0027121.g001
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Cj1340c in H22082 where fconsv0.5. Cj1136 is part of the

lipooligosaccharide locus, and Cj1340c is part of the O-linked

glycosylation locus, which are both sources of known hypervaria-

bility within the C. jejuni genome.

Of these 672 point differences, we inferred that 22 (3.3%)

were due to mutation, and 650 (96.7%) were imported via

recombination. This suggests that recombination has had a

much larger effect on the diversity of the ST-474 isolates, which

is different from results in Vos and Didelot [53] who estimated

that in C. jejuni recombination introduced only about twice as

many point differences as mutation. In total we estimated

recombination imported 44 kb of sequence within these genes.

We found strong evidence of recombination (probability of

recombination §0:99) within 51 genes, with these genes located

within 16 of the 37 regions. We found evidence for both large

regions affected by recombination, with instances of 11

neighbouring genes and 7 neighbouring genes showing strong

evidence of recombination; as well as 4 cases of recombination

affecting only single genes.

Of particular interest was the fact that in the H22082 strain, two

extra genes were inserted in one of the large regions with evidence

for recombination. Analysis showed that these two genes were only

found in one reference strain, that of CJJ84-25. These genes were

not present elsewhere in the genome of P110b, indicating that

these genes had been inserted into the H22082 genome through a

recombination event, or had been lost from P110b by a similar

mechanism. The two inserted genes show high similarity to ykgC,

and a gene which is defined as ‘‘domain of unknown function

superfamily DUF302’’ in the Pfam database [54].

Our results give further partial information about the

recombination process itself. Our analysis inferred an average of

38 recombinant breakpoints, which would correspond to at least

19 recombination events. This gives a lower-bound on the number

of recombination events, as it ignores recombination breakpoints

which occurred outside the 83 genes we analysed; and also would

not detect all breakpoints if we have had overlapping recombi-

nation events. However this suggests a recombination rate of a

similar order of magnitude to the mutation rate (consistent with

results in Fearnhead et al. [44]). It also gives a very rough estimate

of average tract length of 2.3 kb – with 44 kb of imports due to the

19 events. This is larger than estimated in Fearnhead et al. [44],

but similar to results in Schouls et al. [55].

We also looked at the inferred ancestry of the recombinant

fragments. The proportion of the recombinant fragments that can

be allocated to each of the reference genomes is shown in Table 1.

Note that we cannot distinguish between the ancestry of

recombinant imports, and the ancestry of the sequence replaced

by these imports (which would be observed on the ST-474 isolate

that did not undergo recombination). However, from Figure 2, we

note that in recombinant regions, the sequence that is not

imported would be expected to be most similar to one of the

CJJ84-25, CJJCF93-6 or AL111168 sequences. Within these

regions, we inferred that the poultry isolate (P110b) ancestry was

from one of these three isolates 51% of the time, whereas the

human isolate (H22082) only 29% of the time. While it is difficult

to draw strong conclusions, this suggests that recombination has

imported more DNA into H22082 than into P110b.

Discussion

We have used the draft genome from each of two closely related

rare MLST C. jejuni isolates to investigate lineage differences

between these strains. Using a model based on the PACL

approach [41,42], we have been able to make inferences about

Figure 2. The unrooted NeighborNet network of the two ST-474 strains and the 11 referenceC. jejuni strains. The two ST-474 strains
(P110b and H22082) are shown in bold blue text. The network is at the DNA level (430641 bases), using 477 of the 1001 genes that have orthologous
gene members of the same length. For each genome, the name as well as the sequence type (ST) and allele profile is shown. The alleles the reference
genomes share with those in ST-474 are indicated in blue bold text.
doi:10.1371/journal.pone.0027121.g002
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the ancestral lineage of the ST-474 isolates within each gene where

the orthologue in a reference strain can be determined. We have

found that genomes that appear similar at the MLST level (i.e.

those sharing MLST alleles with ST-474 at the seven housekeep-

ing genes used), or at a core genome level (i.e. those closest to ST-

474 in the NeighborNet analysis) are those that are more likely to

be the source of the recombined genes in ST-474.

Our two samples have been typed by MLST and flaA SVR

typing [10,11] as being ST-474 flaA SVR-14. This makes these

genomes identical by these typing methods. However, the

introduction of high throughput sequencing methodologies means

that it is possible to analyse the genomes of bacteria in great detail,

and we have shown that a small percentage of the genes in the

genome (55 genes; *3.2%) show differences between their

genomes that result in non-synonymous substitutions. The

functional implications of these non-synonymous substitutions

have yet to be elucidated.

We have found 37 regions of the ST-474 genome where

sequence differences are observed between H22082 and P110b.

Of these regions, the largest region showing evidence of

recombination showed two extra genes in H22082 that were not

found in P110b. Whilst one of these two genes has minimal

annotation associated with it, the other gene – ykgC, a putative

oxidoreductase – has been studied. In a study examining the

induction of E. coli gene promoter elements on exposure to

seawater, genes under control of RpoS predominated the set [56].

RpoS is the sS subunit of RNA polymerase governing expression

in response to stress and one of the responsive genes was ykgC.

Therefore, it is possible that the acquisition or loss of ykgC in ST-

474 provides a selective advantage to the isolate enabling it to

respond to a new or fluctuating environment, such as transmission

to a new host. Recently it has been shown that widespread genome

changes can be found in C. jejuni genomes from a variety of

environmental sources, and furthermore, that such divergence

may provide evidence of adaptation leading to niche specialisation

[57]. It has also been shown that there is a relationship between

ecological factors and population structure. In comparing the

MLST alleles found in wild birds to those in farmed poultry, it has

been shown that the wild birds carry phylogenetically distinct

alleles to those found in poultry flocks [58]. There was also a

greater admixture of alleles found amongst all farm animals,

suggesting that there may be a ‘farm-type’ C. jejuni within this

agricultural niche, and selection for such genotypes transcends the

host species [58].

The samples used in this study were part of a public health

investigation because of New Zealand’s high campylobacteriosis

rates, mostly due to poultry, according to source attribution

studies. It is now becoming clear that the landscape of

campylobacteriosis in New Zealand is changing due to interven-

tions put in place in the poultry industry, and that the rates are

Figure 3. Plot of frequency of mutational differences per gene. (a) Differences are shown for the two ST-474 isolates and, (b) of H22082
against the reference genome. Divergence shown for the genes at which the two ST-474 differed. For the latter comparison, each gene was
compared with the reference genome whose gene sequence was the most similar.
doi:10.1371/journal.pone.0027121.g003
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dropping because of these interventions [59,60]. However despite

this success, campylobacteriosis is still a problem in New Zealand,

with levels higher than most industrialised countries [60], although

the epidemiology is showing evidence of changing. Recently it has

been shown that common Campylobacter spp. genotypes found

commercially are also present in ‘backyard’ chicken flocks to a

high prevalence [61], showing that there might be other

transmission pathways for human infection.

Figure 4. Circos plot of orthologous genomic regions for the two ST-474 genomes where sequence differences are found. The figure
shows 37 detectable regions. Orthologous gene pairs in P110b and H22082 were calculated using OrthoMCL with a ‘pi_cutoff’ value of 0.95. The
tracks from outside to inside are; genome region name and size (green, regions of same length in P110b and H22082; blue, the region from P110b is
longer; red, the region from H22082 is longer); genes and sizes for P110b; genes and sizes for H22082; genes coloured cyan showing evidence of
recombination; histograms for P110b (orange) and H22082 (red) showing the nucleotide coverage from the short reads plotted as an average over
the length of the gene, along with the standard deviations for the coverage as round circles; histograms showing the number of sequence differences
between the genes at the protein level (dark blue on a light blue background) and DNA level (black on a grey background) as a fraction of protein or
gene length respectively; a repeat of the gene sizes and locations in P110b and H22082. Gene orientations are shown in purple and yellow for the
forward and reverse strand respectively. The nucleotide coverage histograms have the same scale but a different magnitude, 180 and 120 for P110b
and H22082 respectively. Similarly the sequence difference histograms have the same scale but a different magnitude, 0.05 and 0.04 for the protein
and the DNA histograms respectively.
doi:10.1371/journal.pone.0027121.g004
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In the analyses described here, we have inferred that the main

driver of diversity for the ST-474 isolates is recombination. Firstly,

we have observed the introduction of new genes by recombination.

Furthermore, while we infer the number of regions where new

DNA has been imported by recombination is similar to the

number of point mutations, on average these regions are of the

order of a few kilobases in length and introduce of the order of 10

nucleotide differences. Overall we infer that 97% of single

nucleotide changes in the DNA have been introduced by

recombination as opposed to mutation.

This estimate is markedly higher than that of Vos and Didelot

[53], who estimate that recombination introduces approximately

twice as many nucleotide changes than does mutation. There are a

number of possible explanations for this difference. Firstly, we

have looked only at the differences between two isolates. The

overall number of mutation and recombination events is still of the

order 50. So the very large difference – we would require nearly 10

times as many mutation events or 1/10th as much recombination

to account for the difference with Vos and Didelot [53] – suggests

that this is unlikely by chance unless single recombination events

can introduce new DNA at multiple regions.

Secondly, Vos and Didelot [53] analysed data just in the MLST

housekeeping genes whereas we have looked at the whole genome.

It may be that the patterns of the MLST housekeeping genes are

different from other genes, for example with lower recombination

rates, or recombination events introducing fewer nucleotide

differences. Finally, as we have looked at divergence between

two closely related isolates, there has been less opportunity for

purifying selection to have removed weakly deleterious changes. It

is likely that the larger changes introduced by recombination are

more likely to be deleterious, and thus the relative effect of

recombination on differences between less closely related isolates

(such as those studied by Vos and Didelot [53]) would be smaller.

One approach to testing between these latter two possibilities,

would be to reanalyse MLST data but to focus on differences

between closely related isolates, such as pairs of isolates that differ

at a single MLST locus.

There is a substantial literature based on the analysis of MLST

alleles in C. jejuni and C. coli, due to their genomic conservation,

which is estimated to be *85% and as a direct consequence, their

common MLST scheme. Many important findings on evolution

within Campylobacter spp. have been derived from these analyses.

For example, it has been hypothesised that these species are

converging, most likely due to agricultural intensification [6],

although three distinct C. coli clades were identified in this study.

This is not a reciprocal relationship, with C. coli importing DNA

from C. jejuni [6,62]. One of these three clades – clade 1 – has been

shown to be responsible for the genotypes found in farm animals

and those that cause disease in humans [63]. Due to the

relatedness of C. jejuni and C. coli, mosaic alleles, that is alleles

having portions of their sequence having different origins, can be

detected. These can act as a marker to show the spread and

movement of genetic material between these two species.

Combining these two concepts, of introgression and mosaic

alleles, a large scale study of MLST sequences has recently shown

that it is C. coli clade 1 that has acquired alleles from C. jejuni, and

the other two C. coli clades have not [62]. Despite the power of the

MLST approach in analysing many isolates at a few loci, the cost

disparity between preparing MLST alleles for capillary sequencing

and routinely sequencing whole bacterial genomes is continuously

reducing. Hence information about the complete sequence of the

seven genes used for MLST, in addition to the currently used PCR

products for the central portion can be analysed, as well as many

other genes, as described here.

To perform the lineage analysis a core genome of 1001 genes

was generated for the C. jejuni ST-474 isolates and 11 reference

strains found in GenBank at the time of the analysis. The core

genome of the species has been estimated by looking at genomes of

already sequenced C. jejuni strains. A recent value was 1295 [21].

The parameters chosen by Friis et al. to include genes in the core

genome were not as conservative as those reported here (a

significant hit had an alignment covering at least 50% of both

sequences with at least 50% identity), so it is not surprising that our

estimation of the C. jejuni core genome is smaller. Another recent

paper has sequenced 42 C. jejuni strains and found a core genome

size for this species of 1325 core genes [64]. Lefebure et al. also

applied a slightly more liberal approach to that described here by

allowing their core genes to be missing in one of the strains under

analysis. If this criterion was applied to our dataset, the core

genome size would increase by 252 core genes to 1253.

A different approach to core genome estimation has been to use

mathematical models to estimate the size of the core genome if it

were possible to sequence an infinite number of isolates for a given

species [20]. Using this approach, the C. jejuni core genome is 847

genes, indicating there are many more genes to be discovered for

C. jejuni. The parameters for defining gene families used by Friis et

al. [21] are the same as those used in this paper. Many of the new

genes would be character and accessory genes, thereby reducing

the size of the core genome as they are discovered in the future.

Considering Campylobacter spp., the core genome has been

estimated to comprise 647 genes [18]. This compares more

favourably to our estimation of the Campylobacter spp. core genome

being 482 with our more conservative parameters.

To conclude, this study has provided new insight into the

evolution of C. jejuni, and the processes that have generated

sequence variation in multilocus sequence type ST-474; the most

prominent enteric pathogen in New Zealand. In analysing two C.

jejuni isolates that are genotyped to be identical using currently

typing schemes, we provide evidence for multiple lateral gene

transfer events, importing tracts of DNA from diverse lineages of

C. jejuni into ST-474 via both homologous and non-homologous

recombination. The ability to uptake and insert naked DNA into

the C. jejuni genome may be an important mechanism for

population-level adaptation to fluctuating environments, such as

Table 1. Proportion of ancestry (as %) of recombinant
fragments for each ST-474 that can be associated with each
reference genome.

Locus ID Genome Project
Genome
Name H22082 P110b

NZ_AANK00000000 subsp. jejuni 260.94 260.94 6 6

NZ_ABGQ00000000 subsp. jejuni CG8421 CG8421 7 9

NZ_AASY00000000 subsp. jejuni CG8486 CG8486 4 9

NZ_AANT00000000 subsp. jejuni 84-25 CJJ84-25 12 16

NZ_AANJ00000000 subsp. jejuni CF93-6 CJJCF93-6 6 18

NZ_AANQ00000000 subsp. jejuni HB93-13 CJJHB9313 15 5

NC_002163 subsp. jejuni NCTC
11168

AL111168 11 17

NC_003912 RM1221 RM1221 11 9

NC_008787 subsp. jejuni 81-176 81-176 18 5

NC_009839 subsp. jejuni 81116 81116 8 6

NC_009707 subsp. doylei 269.97 269.97 2 0

doi:10.1371/journal.pone.0027121.t001
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those encountered during transmission between different host

species.

Supporting Information

Figure S1 Nucleotide coverage plots showing nucleotide
coverage and consensus base summary statistics from
BWA mappings for the C. jejuni strains P110b and
H22082. In the figure the results of mapping the short reads with

BWA to the draft contigs are shown using an edit distance of 0 to 3

in the mapping (0: black, 1: red; 2: green; and 3: blue). Panels A

and B show the number of bases in the genome at each nucleotide

coverage for H22082 and P110b respectively. The average

nucleotide coverages are 54.6, 64.1, 66.5 and 67.2 for H22082,

and 89.5, 102.4, 106.5 and 107.8 for P110b for edit distances of 0,

1, 2 and 3 respectively. 99.56%, 99.81%, 99.85% and 99.86% of

the genomic bases for H22082 have a nucleotide coverage of 20 or

more for mapping with edit distances of 0, 1, 2 and 3 mismatches.

The analogous numbers for P110b are 99.97%, 99.99%, 99.99%

and 99.99%. Panels C and D show three heatmaps to show how

fcons varies for edit distances of 1, 2 and 3 for the nucleotide

coverage. Colours go from white (0.0000) through a black body

radiation heatmap to black (1.0000). Each row represents the

values for a sliding window of 5 either side of each nucleotide

coverage value. All nucleotide coverage values from 10 to 200 are

plotted for H22082, and the values for 10 to 250 for P110b. The

six columns from left to right labelled as ‘I’, ‘ii’, ‘iii’, ‘iv’, ‘v’ and ‘vi’

represent fcons values in the following groups, and for the following

ranges: fcons = 1.0000; 0.9800 vfconsv 0.9999; 0.9500 vfconsv

0.9799; 0.9000 vfconsv 0.9499; 0.8000 vfconsv 0.8999; fconsv

0.8000. In this way, all rows add up to 1.0000.

(TIF)

Figure S2 ACT plots showing how the two ST-474
genomes relate to the reference genome AL111168.
Genomes from top to bottom are P110b, AL111168 and H22082.

(TIF)

Figure S3 Circos plot showing the sequence differences
detectable at the protein level for C. jejuni strain
H22082. The figure shows the location of the core genome

genes as located within the H22082 draft genome when compared

to the core genomes of 11 C. jejuni reference strains. The tracks

from outside to inside are; chromosomal ideogram (alternating

colours indicate contigs), Glimmer gene prediction on the whole

genome (forward genes in orange, and reverse genes in blue); core

genome genes (forward genes in red, and reverse genes in green);

core genome genes that are the same length (forward genes in

black, and reverse genes in grey); 11 histograms showing the

number of sequence differences detectable as a fraction of protein

length against the genomes in the following order: CJJ84-25,

AL111168, CJJCF93-6, CG8421, CG8486, RM1221,

CJJHB9313, 81-176, 81116, 260.94 and 269.97. For clarity, the

histograms have been scaled to cover the range 0 to 0.10 (purple 0

to 0.05 and blue 0.05 to 0.10). The values above 0.10 are plotted

as a full scale value with colours indicating the scale: orange (0.10

to 0.20), black (0.20 to 0.30), green (0.30 to 0.40) and red (above

0.40).

(EPS)

Figure S4 Circos plot showing the sequence differences
detectable at the DNA level for C. jejuni strain H22082.
The figure shows the location of the core genome genes as located

within the H22082 draft genome when compared to the core

genomes of 11 C. jejuni reference strains. The tracks from outside to

inside are; chromosomal ideogram (alternating colours indicate

contigs), Glimmer gene prediction on the whole genome (forward

genes in orange, and reverse genes in blue); core genome genes

(forward genes in red, and reverse genes in green); core genome

genes that are the same length (forward genes in black, and reverse

genes in grey); 11 histograms showing the number of sequence

differences detectable as a fraction of protein length against the

genomes in the following order: CJJ84-25, AL111168, CJJCF93-6,

CG8421, CG8486, RM1221, CJJHB9313, 81-176, 81116, 260.94

and 269.97. For clarity, the histograms have been scaled to cover

the range 0 to 0.10 (purple 0 to 0.05 and blue 0.05 to 0.10). The

values above 0.10 are plotted as a full scale value with colours

indicating the scale: orange (0.10 to 0.20), black (0.20 to 0.30),

green (0.30 to 0.40) and red (above 0.40).

(EPS)

Figure S5 Circos plot showing the sequence differences
detectable at the protein level for C. jejuni strain P110b.
The figure shows the location of the core genome genes as located

within the H22082 draft genome when compared to the core

genomes of 11 C. jejuni reference strains. The tracks from outside to

inside are; chromosomal ideogram (alternating colours indicate

contigs), Glimmer gene prediction on the whole genome (forward

genes in orange, and reverse genes in blue); core genome genes

(forward genes in red, and reverse genes in green); core genome

genes that are the same length (forward genes in black, and reverse

genes in grey); 11 histograms showing the number of sequence

differences detectable as a fraction of protein length against the

genomes in the following order: CJJ84-25, AL111168, CJJCF93-6,

CG8421, CG8486, RM1221, CJJHB9313, 81-176, 81116, 260.94

and 269.97. For clarity, the histograms have been scaled to cover

the range 0 to 0.10 (purple 0 to 0.05 and blue 0.05 to 0.10). The

values above 0.10 are plotted as a full scale value with colours

indicating the scale: orange (0.10 to 0.20), black (0.20 to 0.30),

green (0.30 to 0.40) and red (above 0.40).

(EPS)

Figure S6 Circos plot showing the sequence differences
detectable at the DNA level for C. jejuni strain P110b.
The figure shows the location of the core genome genes as located

within the H22082 draft genome when compared to the core

genomes of 11 C. jejuni reference strains. The tracks from outside to

inside are; chromosomal ideogram (alternating colours indicate

contigs), Glimmer gene prediction on the whole genome (forward

genes in orange, and reverse genes in blue); core genome genes

(forward genes in red, and reverse genes in green); core genome

genes that are the same length (forward genes in black, and reverse

genes in grey); 11 histograms showing the number of sequence

differences detectable as a fraction of protein length against the

genomes in the following order: CJJ84-25, AL111168, CJJCF93-6,

CG8421, CG8486, RM1221, CJJHB9313, 81-176, 81116, 260.94

and 269.97. For clarity, the histograms have been scaled to cover

the range 0 to 0.10 (purple 0 to 0.05 and blue 0.05 to 0.10). The

values above 0.10 are plotted as a full scale value with colours

indicating the scale: orange (0.10 to 0.20), black (0.20 to 0.30),

green (0.30 to 0.40) and red (above 0.40).

(EPS)

Figure S7 Output for our algorithm for one gene with
strong evidence for recombination. The top plot shows the

inferred ancestry of P110b, the bottom for H22082. Each row in

each plot corresponds to a state of our ancestral process. Below the

bold dashed line corresponds to a non-recombinant fragment;

above the bold dashed line corresponds to recombinant fragment

with the ancestral lineage being the corresponding isolate. Stars

denote mutational differences of each of the haplotypes with the
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new ST-474 isolate. The coloured lines correspond to 5

realisations of the ancestral process.

(EPS)

Figure S8 Circos plot showing the detectable regions
where there are sequence differences between P110b
and H22082. The P110b draft genome is shown indicating the

genomic location of the 37 gene regions centred around one or

more genes where sequence differences are detectable. The tracks

from outside to inside are; chromosomal ideogram (alternating

colours indicate draft contigs), region location with number (as in

Figure 4) and Glimmer gene predictions on the whole genome

(forward genes in orange, and reverse genes in blue), and core

genome genes (forward genes in red, and reverse genes in green).

(EPS)

Table S1 Genome characteristics of 11 reference ge-
nomes and 5 plasmids from C. jejuni.

(XLSX)

Table S2 MLST profiles for the C. jejuni strains.

(XLSX)

Table S3 de novo assembly metrics for P110b and
H22082 using Velvet and minimus.

(XLSX)

Table S4 The number of sequence differences between
the two ST-474 isolates and each of the eleven C. jejuni
reference strains.
(XLSX)

Table S5 Details of the 672 SNP differences found
within 83 genes between the ST474 strains P110b and
H22082.
(XLSX)
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