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Abstract

Pathogen-specific antibody plays an important role in protection against pneumococcal carriage and infections. However,
neonates and infants exhibit impaired innate and adaptive immune responses, which result in their high susceptibility to
pneumococci. To protect neonates and infants against pneumococcal infection it is important to elicit specific protective
immune responses at very young ages. In this study, we investigated the protective immunity against pneumococcal
carriage, pneumonia, and sepsis induced by maternal immunization with pneumococcal surface protein A (PspA). Mother
mice were intranasally immunized with recombinant PspA (rPspA) and cholera toxin B subunit (CTB) prior to being mated.
Anti-PspA specific IgG, predominantly IgG1, was present at a high level in the serum and milk of immunized mothers and in
the sera of their pups. The pneumococcal densities in washed nasal tissues and in lung homogenate were significantly
reduced in pups delivered from and/or breast-fed by PspA-immunized mothers. Survival after fatal systemic infections with
various types of pneumococci was significantly extended in the pups, which had received anti-PspA antibody via the
placenta or through their milk. The current findings strongly suggest that maternal immunization with PspA is an attractive
strategy against pneumococcal infections during early childhood. (191 words)
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Introduction

Streptococcus pneumoniae frequently colonize the nasopharynx

asymptomatically. Especially following viral infections, S. pneumo-

niae are responsible for a significant proportion of bacterial

infectious diseases such as meningitis, otitis media, bacteremia,

and pneumonia [1]. The high incidence of pneumococcal disease

starts in the neonatal period and peaks around the first birthday.

Efforts have focused on the protection of children against

pneumococcal infections by immunization with vaccines.

The current 23-valent pneumococcal polysaccharide vaccine

(PPV) is efficacious in adults [2]. However, this polysaccharide-

based vaccines evoke little or no immune response in infants

younger than 2 years of age because of the weak immunogenicity

of its T cell independent polysaccharides [3,4]. Protein-conjugated

polysaccharide vaccines have been considered as an alternative

means to induce protective immunity in infants and children [5,6].

Human trials of a 7-valent polysaccharide conjugate vaccine

(PCV7) showed the capability to elicit solid protection against

invasive pneumococcal infection in children [7–11]. However,

PCV7 is not protective against strains with capsular types/groups

not present in the vaccine [12,13]. Shortly after the vaccine was

licensed, reports of serotype replacement began to appear [14–16].

Efforts to circumvent the problem of serotype replacement have

included expanding the number of polysaccharides in the vaccine

but this will not necessarily avoid the problem of subsequent

serotype replacement [6,17,18].

Furthermore, children younger than 2-years old usually have

low levels of IgG serum antibody to pathogen-specific antigens; a

results of age-related immaturity of immune responses [19,20].

The recurrent bacterial infections are thought to be in part due to

the subnormal levels of serum IgG antibody against causative

pathogens due to age-related immaturity [20–23]. Virolainen et al

showed that children who were infected most frequently with

pneumococci had the lowest titer of antibody to PspA among

children with invasive pneumococcal infections [24]. Simell et al

have made a similar observation showing that higher salivary

antibody levels to PspA are associated with a lower rate of

pneumococcal otitis media [25]. The need for protein-based

pneumococcal vaccines and their ability to protect against

pneumococcal infections during infant period has been further

emphasized by studies demonstrating a recent rapid increase in

both the prevalence and levels of resistance of multiple

antimicrobial resistant pneumococci [16]. Maternal immunization

with PPV is reported to reduce acute lower respiratory infections

in infants [26,27].
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Pneumococcal surface protein A (PspA) is a promising candidate

for inclusion in a cost-effective protein-based pneumococcal

vaccine. PspA is an exposed virulence factor present in virtually

all pneumococcal strains. It is a highly immunogenic antigen and

affects host-pathogen interactions by inhibiting complement

activation by the classical and alternative pathways [28–30]. PspA

can elicit an antibody response that enhances complement

deposition and protects against nasal carriage, pneumonia, and

bacteremia in animal models [31–33]. Moreover, a human trial

showed an increase in specific anti-PspA immunoglobulin G (IgG)

levels after immunization with rPspA. Sera from the humans

immunized with rPspA were able to passively protect mice against

otherwise fatal challenge with various pneumococcal strains

[34,35].

Our preliminary study evaluated the efficacy of maternal

immunization with rPspA for protecting against lethal systemic

pneumococcal infections [36]. In the current study, we further

evaluated the relative roles of placental and milk/colostrum

derived antibody in the protection against pneumococcal invasive

disease and carriage in mouse pups following maternal immuni-

zation with rPspA. Prospective mother mice were intranasally

immunized with rPspA. Antibody levels in the breast milk and

serum of the mothers were measured and the transmission of

antibody and protection to the pups was evaluated by challenging

the offspring of mothers and the offspring of mice that were

fostered on immunized and non-immunized mothers.

Results

Anti-PspA specific antibodies in sera and milk of mother
mice

The levels of anti-PspA specific antibodies in sera of mother

BALB/cByJ mice were evaluated on day 0, 7, and 14 after they

gave birth (Fig. 1A). Anti-PspA specific IgG in sera of pups was

present at the birth and maintained during nursing periods among

PspA-immunized mother mice. Anti-PspA specific IgA and IgM

were also identified among PspA-immunized mother mice

although the levels of anti-PspA specific IgA and IgM in sera

were relatively low rather than anti-PspA specific IgG. The levels

of anti-PspA specific antibodies in sera among pre-immunized

mother mice and sham-immunized mother mice were below the

detections limit (data not shown).

The levels of anti-PspA specific antibodies in breast milk from

mother mice were also evaluated on day 0, 7, and 14 after the

birth (Fig. 1B). In breast milk higher levels of IgG PspA-specific

antibody were detected relative to IgA or IgM specific antibody.

The levels of anti-PspA specific antibodies in breast milk among

pre-immunized mother mice and sham-immunized mother mice

were below the detections limit (data not shown).

IgG subclasses of antibody to PspA in sera and milk of
mother mice

On the day of birth (day 0) the predominant IgG subclass of IgG

antibody to PspA in sera from PspA-immunized mother mice was

IgG1, followed by IgG2a and IgG2b (Fig. 2A). The levels of anti-

PspA specific IgG2a gradually increased from day 0 to day 14

(p,0.05), while the levels of anti-PspA specific IgG1 and IgG2b

did not change significantly. The mean IgG1/IgG2a ratio in the

sera of individual mice gradually decreased from 3.1 on day 0 to

1.1 on day 14 (p,0.05). The levels of IgG3 were below the

detection limit.

In the breast milk, IgG1 was also the predominant anti-PspA

specific IgG subclass followed by IgG2a and IgG2b from PspA-

immunized mother mice (Fig. 2B). The levels of anti-PspA specific

IgG2a and IgG2b increased from day 0 to day 14 (p,0.05), while

IgG1 did not change. The mean IgG1/IgG2a ratio in breast milk

from individual mice gradually decreased from 5.7 on day 0 to 1.7

on day 14 (p,0.05). The levels of IgG3 were below the detection

limit.

Anti-PspA specific antibodies in sera of offspring
The changes of anti-PspA specific IgG in the sera of offspring

were evaluated on day 0, 7, and 14 after the birth (Fig. 3).

Offspring delivered from PspA-immunized mothers (Group A and

Group C) had high levels of anti-PspA specific IgG in sera at birth.

The levels of anti-PspA specific IgG in sera from offspring of

immune mothers that were breast-fed by PspA-immunized mother

mice (Group A) were maintained at the high levels on day 7 and

day 14. In contrast the levels of anti-PspA specific IgG in sera from

offspring of immune mothers who were breast-fed by sham-

immunized mother mice (Group C) rapidly declined after the

birth. On the other hand, offspring delivered from sham-

immunized mother mice (Group B and Group D) did not have

anti-PspA specific IgG in sera at the birth. The PspA-specific IgG

in sera from offspring of sham-immune mothers that were breast-

fed by PspA-immunized mothers (Group B) gradually increased

and reached levels similar to those of Group A on day 7 to day 14.

The control offspring (Group D) from sham-immunized mothers

who were nursed on sham-immune mothers did not have anti-

PspA specific IgG in their sera. Anti-PspA specific IgA and IgM

were not detected in sera of all offspring.

Anti-PspA specific IgG subclasses in sera of offspring
The levels of anti-PspA specific IgG subclass in sera of offspring

were also evaluated on day 0, 7, and 14 after the birth (Fig. 4). The

predominant IgG subclass in sera of offspring in all groups was

IgG1 followed by IgG2a and IgG2b at the birth. In all offspring,

the levels of IgG3 were below the detection limit.

In Group A, the levels of IgG1 and IgG2a were not changed

during the period from day 0 to day 14. In contrast to the results of

group A mothers’ sera, the mean IgG1/IgG2a ratio calculated

from the individual pup sera also did not change during the period

from day 0 to day 14. This indicates that IgG2 antibody was less

efficiently transported to the progeny by nursing than the IgG1

antibody. In Group B, offspring did not have anti-PspA specific

IgG in sera at the birth. The levels of anti-PspA specific IgG1 in

sera gradually increased and reached the similar levels to those of

the offspring in Group A on day 7 to day 14 (p,0.05 and p,0.01,

respectively). The mean IgG1/IgG2a ratio for group B was higher

on day 7 than that of Group A (p,0.05). On day 14 the mean

IgG1/IgG2a ratio for Group B was higher than that of Group A,

but the difference was not statistically significant. In Group C,

anti-PspA specific serum IgG1 was predominant on day 0 and the

levels did not change during the period from day 0 to day 14. The

IgG2b levels in the Group C mice gradually decreased from day 0

to day 14. The mean IgG1/IgG2a ratios for Group C mice were

higher than those of Group A mice on day 0 and increased from

day 7 to day 14 (p,0.01).

Protection against nasal carriage of pneumococci by
maternal immunization with PspA among offspring

The carriage density of pneumococci in nasal washes and

homogenized washed nasal tissue were evaluated at day 2 after

intranasal challenge with 56105 CFUs of TIGR4 pneumococci.

The numbers of CFUs in nasal washes were not different among

groups. The median Log10 CFUs of pneumococci in nasal washes

of Group A, B, C, and D was 4.55, 4.45, 4.24, and 4.49,

Maternal Immunization against S. pneumoniae
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respectively. On the other hand, the carriage density of the

homogenized washed nasal tissue was significantly different among

groups (Fig. 5). The median Log10 CFUs of pneumococci in nasal

tissue of Group A, B, C, and D was 4.56, 4.77, 4.91, and 5.01,

respectively. The carriage density of washed nasal tissues of Group

A was statistically lower than those of Group D (control) (p,0.05).

The Log10 CFUs of washed nasal tissue of Group B tended to be

lower than that of Group D (p,0.1). There was no difference in

CFUs in nasal tissue of Groups C and D. Thus, maternal

immunization with PspA appeared to result in only a modest

reduction of nasal colonization of nasal tissue among offspring

nursed on immunized dams.

Protection against lung infection by maternal
immunization with PspA among offspring

Inoculation of 7-day old offspring with a relatively large volume

of inoculum intranasally under anesthesia caused enough

pneumococci to be aspirated to cause infection of the lung. The

56105 CFUs of TIGR4 pneumococci in 10 ml sterile Ringer’s

solution were inoculated intranasally into anesthetized offspring.

At 3 days after inoculation, all mice were alive and were

euthanized so that the numbers of CFU in their lungs and blood

could be determined (Fig. 6). The median Log10 CFUs of

pneumococci in Group A, B, C, and D was 1.91, 1.58, 1.90,

and 2.73, respectively. The mean number of Log10 CFUs in lung

homogenate in Group A and Group B were each significantly

reduced in comparison to Group D (p,0.05 and p,0.01,

respectively). Mice from immunized mothers who were not nursed

by immune mothers (Group C) had fewer median CFU than the

non-immune Group D mice, this difference was not statistically

significant. In all cases there were no CFU or only a few in the

blood. As a result, we can be confident that the protection seen

was the result of events in the lung and not protection against

sepsis. Based on these results immunity achieved through nursing

appeared to be especially important for protection in this model.

Protection against fatal systemic pneumococcal
infections among offspring through maternal
immunization with rPspA

Survival of offspring after intraperitoneal infection with 16104

CFUs of TIGR4 strain was evaluated. The survival after the

otherwise fatal systemic pneumococcal infection was significantly

extended in Groups A, B, and C as compared to the sham-

immunized Group D controls (p,0.01 for each group) (Fig. 7).

With this model, transfers of antibody by the placenta and/or

nursing were all exhibited significant protection.

In all of the above studies we immunized with TIGR4 derived

PspA and challenged with TIGR4 capsular type 4 strain.

However, there is some variability in PspA and it is found in

two broad serologically cross-reactive families; PspA serologic/

sequence family 1 (PspA1) and PspA serologic/sequence family 2

(PspA2) [37]. It is generally recommended that in the development

of a human vaccine that one PspA1 protein and one to two PspA2

proteins be used [38]. However, there have also been findings that

in some studies that strong cross-protection could be observed

between PspA1 and PspA2 families [39–43].

TIGR4 strain is PspA2 and we evaluated its ability to elicit

immunity to four different PspA1 strains. In each case the highest

Figure 1. Anti-PspA specific antibodies in sera and milk of mother mice. Female mice were intranasally immunized twice each week with
1 mg of rPspA and 4 mg CTB for first 2 weeks and with 1 mg rPspA alone for the last week. The levels of anti-PspA specific IgG, IgA and IgM antibodies
in sera (A) and breast milk (B) were determined by PspA-specific ELISA on day 0, 7 and 14 after the birth. The values shown are the mean 6 S.E.
concentrations (ng/ml) taken from PspA-immunized mother (n = 16) and sham-immunized mother (n = 14). The levels of anti-PspA specific antibodies
in sera and breast milk from sham-immunized mice were below the limit of detection.
doi:10.1371/journal.pone.0027102.g001
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Figure 2. Anti-PspA specific IgG subclasses in sera and milk of mother mice. Female mice were intranasally immunized twice each week
with 1 mg of rPspA and 4 mg CTB for first 2 weeks and with 1 mg rPspA alone for the last week. The levels of anti-PspA specific IgG1, IgG2a, IgG2b and
IgG3 antibodies in sera (A) and breast milk (B) were determined by PspA-specific ELISA on day 0, 7 and 14 after the birth. The values shown are the
mean 6 S.E. concentrations (ng/ml) taken from PspA-immunized mother (n = 16) and sham-immunized mother (n = 14). The mean values of IgG1/
IgG2a antibody to PspA in the sera of the individual mother’s sera were 3.1, 2.1 and 1.1 for day 0, 7, and 14, respectively. The mean IgG1/IgG2a anti-
PspA values for the individual mother’s milk samples were 5.7, 6.5, and 1.7 for day 0, 7, and 14, respectively. The levels of anti-PspA specific IgG
subclasses in sera and breast milk from sham-immunized mice were below the detections limit. * p,0.05 when compared with mice at day 0 by
ANOVA test or Kruskal-Wallis test with Dunn’s multiple comparison test. n.d. not determined.
doi:10.1371/journal.pone.0027102.g002

Figure 3. Anti-PspA specific antibodies in sera of offspring. The levels of anti-PspA specific IgG in sera of offspring were determined by PspA-
specific ELISA at days 0, 7, and 14 after the birth. Group A mice were the offspring delivered from PspA-immunized mothers and breast-fed by the
same mothers (n = 26). Group B mice were offspring from sham-immunized mothers and breast-fed by PspA-immunized mothers (n = 22). Group C
mice were offspring from PspA-immunized mothers and breast-fed by sham-immunized mothers (n = 27). Group D mice were offspring from sham-
immunized mother and breast-fed by the same mother (n = 18). The values shown are the mean 6 S.E. concentrations (ng/ml). * p,0.05 and **
p,0.01 when compared with offspring in Group D by ANOVA test with Dunn’s multiple comparison test.
doi:10.1371/journal.pone.0027102.g003
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challenge dose was used to reproducibly kill 100% of non-immune

control mice. Survival of offspring infected intraperitoneally with

PspA1 strain D39 (capsular serotype 2, 50 CFUs/mouse) was

significantly extended (p,0.01) compare to that of controls.

Survival of offspring infected with two other PspA1 strains of

EF3030 (capsular serotype 19F, 56106 CFUs/mouse) and

BG7322 (capsular serotype 6B, 20 CFUs/mouse) were weakly

extended compared to that of controls (Fig. 8). However, there

were no significant differences in survival times among offspring

infected the PspA1 strain with L82016 (capsular serotype 6B,

56106 CFUs/mouse). These finding makes it clear that even when

immunization is not with the homologous PspA family it is still

sometimes possible to see a protective response in the pups.

However, these data are consistent with the expectation that a

PspA vaccine should include PspAs of both major PspA families.

Discussion

During the first few months of life, when the human immune

system is still immature, infants depend largely on passively

acquired maternal IgG antibodies to protect themselves against

invasive pathogens [20]. As in young humans, neonatal and infant

mice are more susceptible to pneumococcal colonization and

subsequent infection than are adults. Neonatal mouse macro-

phages show impaired innate and adaptive immune responses to

pneumococci, which might explain the increased susceptibility to

pneumococcal colonization in vivo [44]. The vaccines used to

induce protective antibody early in childhood serve to minimize

this window of natural susceptibility, but all such vaccines leave a

window of susceptibility during the time that the initial immune

response is induced. Immunization of women before pregnancy is

a strategy that has been proven to reduce infection risks in mothers

and infants for more than one pathogen [45–50].

Many recent pre-clinical studies in animals have focused on

developing effective mucosal vaccines to combat the susceptibility

of children to respiratory bacteria [51–53]. Our previous

immunization studies using the outer membrane protein P6 of

Haemophilus influenzae showed that maternal intranasal immuniza-

tion could induce anti-P6 specific IgG antibody responses in

mother’s sera and breast milk at birth and that the immune

response was maintained for 14 days during the nursing period

[54]. Similar to those previous results, our present studies showed

that anti-PspA specific antibody predominant in IgG was observed

in PspA-immunized mother mice and was transported to their

offspring via placenta and breast milk.

Mouse colostrums or breast milk have been reported to contain

higher amounts of IgG antibody compared to IgA and IgM

antibodies [55]. In mice, IgG antibody in mother’s sera is

transferred from mother to fetus through placenta by neonatal Fc

receptor, FcRn. This antibody is initially collected in the yolk sacs

of prenatal mice and rats [56,57]. Moreover, IgG antibody in

breast milk is also transferred from intestine lumen to systemic

circulation in neonate mice [56,57]. This transport of IgG

antibody is mediated by FcRn expressed in the intestine of mice

Figure 4. Anti-PspA specific IgG subclasses in sera of offspring. The levels of anti-PspA specific IgG subclasses in offspring’s sera were
determined by PspA-specific ELISA on day 0, 7, and 14 after birth. Group A (n = 26), B (n = 22), C (n = 27), and D (n = 18) mice were the same mice as
described in figure 3. The values shown are the mean 6 S.E. concentrations (ng/ml). The mean values of IgG1/IgG2a ratio were also shown. * p,0.05
and **p,0.01 are for comparisons with offspring in Group D for PspA-specific IgG subclasses or with offspring on day 0 for the IgG1/IgG2a ratio by
ANOVA test with Dunn’s multiple comparison test.
doi:10.1371/journal.pone.0027102.g004

Maternal Immunization against S. pneumoniae

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e27102



and rats [58–61]. The idea that IgG may cross epithelial barriers

by receptor-mediated transcytosis in humans and other animals

represents a novel concept in mucosal immunology. Recent studies

have also demonstrated receptor-mediated IgG transport demon-

strated across the lung of mice [62]. The FcRn expressing

bronchia epithelial cells transports IgG across the mucosal surface

of lung from lumen to serosa. The neonatal FcRn mediates the

transport of IgG across polarized epithelial cells lining mucosal

surface [63,64]. Furthermore, not only is IgG transmitted to

progeny, but functional maternal immunoglobulin secreting cell or

B cells can also be transferred to the neonate in both mouse and

human [65,66].

In the present study of antibody to PspA, we further evaluated

the protection of offspring against nasal carriage, lung infection,

and fatal sepsis caused by pneumococci. Nasopharyngeal coloni-

zation is the initial step in the pathogenesis of infection caused by

S. pneumoniae. Since carriage is considered to precede the

development of subsequent fatal pneumococcal invasive diseases,

the protection against carriage can also protect against subsequent

disease [67].

The numbers of pneumococci colonizing closely associated with

the nasal tissue were reduced by maternal immunization with

PspA. On the other hand, the numbers of pneumococci washed

from nasal surfaces were not different among groups (data not

shown). Our earlier study demonstrated that during nasal

colonization of mice with pneumococci, the majority of the

colonizing pneumococci are tissue-associated and of the opaque

phenotype [68]. This observation suggests that the opaque

pneumococci may have either invaded the nasal tissue or may

be sequestered in deep crypts and are not removed by the nasal

wash. While secretory-IgA (SIgA) antibodies play an important

role in the protection against nasopharyngeal colonization of

Figure 5. Protection against nasal carriage of pneumococci by
maternal immunization with PspA among offspring. Offspring at
7-day-old were intranasally challenged with 16105 CFU TIGR4 strain
(5 ml/mouse) without anesthesia. Two days after challenge, nasal
washes and homogenized washed nasal tissues were collected and
the numbers of pneumococci colonies were determined. No evidence
of protection was observed in CFUs in nasal washes (not shown).
Results are shown for CFU in homogenized washed nasal tissue. Each
dot represents the Log10 CFU/mouse. Each horizontal line depicts the
median Log10 CFU/mouse. Group A (n = 11), B (n = 10), C (n = 13), and D
(n = 15) mice were produced in the same manner as the corresponding
groups in figure 3. Group A differed from Group D at p,0.05 by Kruskal-
Wallis test with Dunn’s multiple comparison test.
doi:10.1371/journal.pone.0027102.g005

Figure 6. Protection against lung infection by maternal
immunization with PspA among offspring. Seven-day-old mice
were intranasally challenged with 56105 CFU TIGR4 strain (10 ml/
mouse) with anesthesia. Three days after challenge, lungs were
collected and the numbers of pneumococci colonies in the lung
homogenate were determined. Each dot shows the Log10 CFU/mouse.
Each horizontal line shows the median Log10 CFU/mouse. Group A
(n = 18), B (n = 16), C (n = 20), and D (n = 27) mice were produced in the
same manner as the corresponding groups in figure 3. p,0.05 and
p,0.01 are p-values for differences between the indicated group and
the non-immune mice in Group D by Kruskal-Wallis test with Dunn’s
multiple comparison test.
doi:10.1371/journal.pone.0027102.g006

Figure 7. Protection against fatal systemic pneumococcal
infections by maternal immunization with PspA among
offspring. Offspring at 10-days of age were intraperitonally challenged
with 16104 CFU TIGR4 strain (100 ml/mouse) with anesthesia. After
challenge, offspring were monitored for 5 days to determine survival.
Group A (n = 24), B (n = 28), C (n = 24), and D (n = 38) mice were
produced in the same manner as the corresponding groups in figure 3.
Group A mice are offspring delivered from PspA-immunized mothers
and breast-fed by the same mothers (n = 24). Group B mice are
offspring from sham-immunized mothers and breast-fed by PspA-
immunized mothers (n = 28). Group C mice are offspring from PspA-
immunized mothers and breast-fed by sham-immunized mothers
(n = 24). Group D mice are offspring from sham-immunized mothers
and breast-fed by the same mothers (n = 38). * p,0.01 when compared
with control offspring in Group D by Kaplan-Meier test with Log rank
test.
doi:10.1371/journal.pone.0027102.g007
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pneumococci [69], SIgA make little sense for protecting against

pneumococci once they have invaded the nasal tissues [69].

Ferreira et al reported that the reduction of nasal colonization

was strongly associated with increased levels of IgG2a complement

fixing antibody and lower levels of IgG1 antibody which had less

complement fixing activity [70,71]. As a consequence, lower

IgG1/IgG2a ratios were also correlated with lower levels of

colonization [70,71]. In this study, IgG1/IgG2a ratio was

decreased on day 0 to 14 in both mother’s sera and breast milk.

As for the offspring’s sera in our study, the anti-PspA specific

IgG2a antibodies were increased in sera from offspring in Group A

where immunized mothers nursed their own pups. A balanced

IgG1/IgG2a antibody response was maintained in the Group A

offspring over time. The fact that the only group that showed even

a hint of protection against colonization was group A, which had

the highest relative concentrations of IgG2a as compared to IgG1,

is consistent with the earlier published observations from

experiments with adult mice [71]. Our failure to see stronger

protection against carriage, may in retrospect be due the fact that

our mice were sacrificed only 2 days post challenge. In most adult

mouse studies sacrifice at 5-day, 7-day, or later time points, which

may have permit the cumulative actions of immunity over time

may have had larger effects on colonization.

As compared to colonization, where the protective effects were

quite modest if at all, maternal immunization was clearly

protectected the offspring against pneumococcal lung infections

and fatal sepsis. The absence of bacteremia and sepsis in the

aspiration-pneumonia infection model might suggest that the

observed protection against lung infection results from direct

protection in the lung, rather than just being realized through a

protection against septicemia. Offspring delivered from mother

mice immunized intranasally with PspA were protected from

systemic pneumococcal infections. Intranasal immunization with

PspA has been shown to protect adult mice against pneumonia

and fatal sepsis and occasionally against nasal carriage [72,73].

The present studies have shown that similar immunizations of

mother mice can protect progeny in these models and that the

protection is to some extent independent of the PspA family of the

challenge strain.

While significant protection was seen against infection of

TIGR4 PspA2 strain by maternal immunization with homologous

PspA2, we observed strong portection against invasive infection

with only one of four PspA1 challenge strains. The current findings

caution that for protein vaccines one must take care to include

PspAs representative of both major PspA families: PspA1 and

PspA2. Darrieux M. et al. demonstrated that a chimeric fusion

Figure 8. Cross-protection against fatal infections with pneumococcal strains expressing family 1 PspA. As in the prior studies the
mother mice were immunized with a rPspA2 of strain TIGR4. Offspring at 10-days of age were intraperitoneally challenged with D39 (PspA1, serotype
2; 50 CFUs/mouse), BG7322 (PspA1, serotype 6B; 20 CFUs/mouse), EF3030 (PspA1, serotype 19F; 56106 CFUs/mouse), and L82016 (PspA1 serotype 6B,
56106 CFUs/mouse) in 100 ml with anesthesia. After challenge, the mice were monitored for 10 days to determine the day of death. Group A mice
were offspring delivered from PspA-immunized mothers and breast-fed by the same mothers (n = 6 for D39, n = 10 for BG7322, n = 7 for EF3030, n = 6
for L82016). Group B mice were offspring from sham-immunized mothers and breast-fed by a PspA-immunized mothers (n = 7 for D39, n = 11 for
BG7322, n = 4 for EF3030, n = 10 for L82016). Group C were offspring from PspA-immunized mothers and breast-fed by sham-immunized mothers
(n = 9 for D39, n = 11 for BG7322, n = 5 for EF3030, n = 11 for L82016). Group D mice were offspring from sham-immunized mothers and breast-fed by
the same mothers (n = 9 for D39, n = 5 for BG7322, n = 6 for EF3030, n = 6 for L82016). p,0.05 and p,0.01 for the indicated comparisons with
offspring in Group D by Kruskal-Wallis test with Dunn’s multiple comparison test are shown.
doi:10.1371/journal.pone.0027102.g008
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protein of PspA1 and PspA2 fragment extend protection against

pneumococcal infection with strains bearing diverse PspA

fragments [74].

Although the immune systems are different between mice and

human being, maternal intranasal immunization can induce

specific immune responses in mothers and that this immunity is

effectively transferred to their infants. The findings strongly

suggest that maternal mucosal (intranasal) immunization would

be an attractive procedure to elicit early immunity against S.

pneumoniae infections among young children. It is anticipated that

this immunity is mediated by transplacental immunoglobulin (Ig)

transferred during pregnancy and via breast milk. Naturally

acquired IgA and IgG antibodies to PspA have been shown to be

transferred from mother to child and to protect against early

pneumococcal infections. Baril et al reported that transplacental

transfer of IgG antibody to PspA was more efficient with IgG1

than IgG2 [75]. This finding is not inconsistent with a potential

protective role of transplacental IgG in humans since human IgG1

and IgG2 are both highly complement fixing like IgG2 in the

mouse [76–78]. Mouse IgG1 is poorly complement fixing and this

observation may explain its weaker association with protection in

this paper and in earlier studies [70].

Thus, infants may be able to be protected by prior

immunization of their mothers. If pneumococcal protein-based

vaccines are found to be efficacious, the direct correlation of the

magnitude of the mother’s IgG to PspA and that of the infant

could be an indicator that the immunization of women of

childbearing age with protein pneumococcal vaccine could protect

their infants from pneumococcal disease. A clinical trial could be

designed to test the potential of immunization of young adult

women or infants with a combination of pneumococcal proteins as

an experimental vaccination approach to prevent against invasive

pneumococcal disease.

In conclusion, the current findings suggest that maternal

intranasal immunization would be an attractive procedure against

pneumococcal infections among during childhood because the

transport of the specific antibody to the neonate can be expected

to occur through both the placenta and mother’s milk.

Materials and Methods

Bacterial strains
S. pneumoniae strains TIGR4 (serotype 4, PspA2), D39 (serotype

2, PspA1), EF3030 (serotype 19F, PspA1), L82016 (serotype 6B,

PspA1), and BG7322 (serotype 6B, PspA1) used in this study. All of

S. pneumoniae strains were grown in Todd-Hewitt broth with 0.5%

yeast extract (THY) at 37uC until mild log-phase and stocked in

aliquots at known CFU concentrations in THY broth containing

10% glycerol at 280uC until use for infections.

Recombinant PspA
rPspA for immunization was PspA2/TIGR4 including a-helical

region [37]. Briefly, an internal gene fragment of pspA was

amplified by polymerase chain reaction from S. pneumoniae strain

TIGR4. The amplified gene fragment of the expected sizes were

sub-cloned by TOPO TA Cloning Kit (Invitrogen Inc., Carlsbad,

CA, USA) and then cloned to the pET20b vector (Novagen Inc.,

Madison, WI, USA) incorporating between NcoI and XhoI sites.

The pET20b vector containing pspA fragment was transformed

into the E. coli strain BL21 (DE3) for protein production.

Expression of rPspA was induced with 1 mM isopropylthio-ß-D-

galactoside (IPTG) for 2 h. The six-histidine-tagged rPspA was

purified by nickel affinity chromatography.

Immunization
Four-week-old BALB/cByJ female mice were maintained

under specific pathogen-free condition. They were immunized

twice each week with 1 mg of rPspA mixed with 4 mg cholera

toxin B subunit (CTB) (List Biological Labs, Campbell, CA, USA)

on the Mondays and Fridays of 3 consecutive weeks [32]. During

the first two weeks the immunization included CTB. During the

last week, the two immunizations contained antigen alone.

Control mice received only CTB for the first 2 weeks and only

saline for the last week. After the final immunization, the female

mice were mated with male mice for two weeks. Offspring were

obtained approximately 3 weeks after mating. All animal

experiments were approved by the Institutional Animal Ethics

Committee of the Wakayama Medical University (Project

Number: 237 and 429).

Division of offspring
In order to evaluate the importance of feeding status, we further

divided offspring into 4 groups as follows. In Group A, offspring

were delivered form PspA-immunized mother and breast-fed by

their PspA-immunized mother. In Group B, offspring were

delivered from sham-immunized mother and breast-fed by

PspA-immunized mother. In Group C, offspring were delivered

from PspA-immunized mother and breast-fed by sham-immunized

mother. In Group D, offspring were delivered from sham-

immunized mother and breast-fed by sham-immunized mother.

Enzyme linked immunosorbent assay (ELISA)
Sera and milk were collected from mother mice at birth of their

pups (day0), and on days 7, 14 days after their birth. Sera were also

collected from offspring at birth (day 0), 7, 14 days after birth.

Anti-PspA specific antibodies in milk and sera were evaluated by

the solid ELISA. Briefly, 96 well microplates (MaxiSorp, Nunc,

Roskilde, Denmark) were coated with 50 ml of rPspA (2 mg/ml) in

phosphate buffered saline (PBS) overnight at 4uC. After washing

three times with PBS containing 0.05% Tween 20 (PBS-T), the

wells were blocked for 1 h with casein buffer (0.2% casein, 0.05%

Tween 20 in PBS) at room temperature. Then, 50 ml of samples

diluted with casein buffer were incubated at 4uC overnight. To

determined PspA specific antibody isotypes, after washing with

PBS-T, the plate was incubated with 50 ml of 1/3000 biotinylated

antibody to mouse IgG, IgA or IgM (Southern Biotechnology

Associates, Birmingham, AL, USA) diluted in casein buffer for 2 h

at room temperature, respectively. Then, after washing with PBS-

T, the plate was incubated with 1/4000 alkaline phosphatase

conjugated streptavidin (Southern Biotechnology Associates) for

2 h at room temperature. Color was developed with p–nitrophenyl

phosphate (PNPP) (Sigma Chemical Co., St. Louis, MO, USA)

and the optical density of each well was measured by a

spectrophotometer at 405 nm. The subclass of anti-PspA specific

IgG antibody was also determined using 1/2000 biotinylated

antibodies to mouse IgG1, IgG2a, IgG2b or IgG3 (Southern

Biotechnology Associates).

Challenge with pneumococci in nasal carriage,
pneumonia, and bacteremia models

For nasal carriage, 7-day-old offspring were given the bacteria

in a 5-ml volume of sterile Ringer’s solution in a single nostril

without anesthesia. Two days after inoculation, offspring were

euthanized by CO2 inhalation and the nasal cavity of each

offspring was washed by flushing 100 ml of Ringer’s solution into

the trachea and out through the nostrils. Next, the nasal tissue

including nasal conchae, olfactory epithelium, and sinus mucosa

Maternal Immunization against S. pneumoniae
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was excised and were homogenized individually in 1 ml Ringer’s

solution as described previously [79].

For lung infection, the bacteria were given in a 10-ml volume of

sterile Ringer’s solution in a single nostril to 7-day-old offspring

anesthetized with diethylether (Wako Chemical Co., Japan) to

facilitate aspiration. After 3 days, offspring were sacrificed and the

lungs were removed. The lobes of the lungs were placed into 1 ml

of Ringer’s solution in a stomacher bag and homogenized. Blood

from the euthanized mice was also plated to determine numbers of

CFU/ml. All specimens were serially diluted and plated on blood

agar plates, blood agar plates supplemented with 4 mg/ml

gentamicin, and blood agar plates supplemented with 4 mg/ml

gentamicin and 5 mg/ml optochin. The viable pneumococcal

counts were determined after overnight incubation.

For systemic fatal infection, 10-day-old offspring were given the

bacteria in 0.1 ml sterile Ringer’s solution intraperitoneally with

anesthesia. The offspring were observed for 5 days to determine

survival or the day of death.

Statistics
The levels of PspA specific antibody in each group were

compared by ANOVA test with Dunn’s multiple comparison test.

The IgG1/IgG2a ratio was compared by Kruskal-Wallis test with

Dunn’s multiple comparison test. The carriage density of

challenged offspring in each group was expressed as log10 CFUs

and compared by Kruskal-Wallis test with Dunn’s multiple

comparison test. Survival of challenged offspring in each group

was assessed by Kaplan-Meier test with Log-rank test. Statistical

values were calculated with Prism 4 (GraphPad Software, La Jolla,

CA, USA). For all comparison, p,0.05 was considered to

represent a significant difference.
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