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Abstract

Breast cancer often metastasizes to bone causing osteolytic bone resorption which releases active TGFb. Because TGFb
favors progression of breast cancer metastasis to bone, we hypothesized that treatment using anti-TGFb antibody may
reduce tumor burden and rescue tumor-associated bone loss in metastatic breast cancer. In this study we have tested the
efficacy of an anti-TGFb antibody 1D11 preventing breast cancer bone metastasis. We have used two preclinical breast
cancer bone metastasis models, in which either human breast cancer cells or murine mammary tumor cells were injected in
host mice via left cardiac ventricle. Using several in vivo, in vitro and ex vivo assays, we have demonstrated that anti-TGFb
antibody treatment have significantly reduced tumor burden in the bone along with a statistically significant threefold
reduction in osteolytic lesion number and tenfold reduction in osteolytic lesion area. A decrease in osteoclast numbers
(p = 0.027) in vivo and osteoclastogenesis ex vivo were also observed. Most importantly, in tumor-bearing mice, anti-TGFb
treatment resulted in a twofold increase in bone volume (p,0.01). In addition, treatment with anti-TGFb antibody increased
the mineral-to-collagen ratio in vivo, a reflection of improved tissue level properties. Moreover, anti-TGFb antibody directly
increased mineralized matrix formation in calverial osteoblast (p = 0.005), suggesting a direct beneficial role of anti-TGFb
antibody treatment on osteoblasts. Data presented here demonstrate that anti-TGFb treatment may offer a novel
therapeutic option for tumor-induced bone disease and has the dual potential for simultaneously decreasing tumor burden
and rescue bone loss in breast cancer to bone metastases. This approach of intervention has the potential to reduce skeletal
related events (SREs) in breast cancer survivors.
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Introduction

Breast cancer remains the second leading cause of cancer-

related death among women, although in recent years there has

been significant advancement in terms of treatment and

prevention. This disease poses a serious threat due to the high

incidence of metastasis to other organs, such as lung and bone.

More than 75% of patients with breast cancer develop osteolytic

bone metastasis, leading to tremendous bone loss [1], [2], [3], [4]

and resulting in a significant burden on health care cost and poor

quality of life for patients. Although currently used anti-resorptive

therapies, such as bisphosphonates and denosumab, are successful

in reducing further osteolysis, they cannot improve the existing

damage in the residual bone [5], [6], [7], [8], [9], [10], [11].

Therefore, the surviving population remains prone to a high risk of

skeletal-related events (SREs), such as pathological fracture, spinal

cord compression, bone pain and hypocalcaemia [12], [13]. To

address this issue, new therapeutic approaches to rescue cancer-

induced bone loss are urgently required [14], [15].

Therapeutic approaches involving anti-TGFb present an

obvious choice in the rescue of cancer-induced bone loss for

several reasons. Bone is the largest reservoir of TGFb in the body
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and one of the major osteogenic cytokines. Both bone mass and

bone matrix properties are regulated by TGFb [16] and genetic

manipulation of this pathway has been shown to affect bone mass

in several murine models [17], [18], [19], [20]. Normal bone

remodeling requires a balance between bone resorption and bone

formation. However, in cancer-induced bone disease normal

remodeling is interrupted. During the progression of osteolytic

breast cancers, an increase in the osteoclastic bone resorption takes

place. As a result, an excess of active TGFb is secreted in the bone

microenvironment, which in turn mediates a cascade of events

that favor the vicious cycle of bone metastasis [21]. Although

TGFb is growth inhibitory for normal epithelial cells, it plays a

favorable role in late tumor progression [22]. It has been

demonstrated that active TGFb signaling is needed for the

establishment of bone metastasis [23]. This is in agreement with a

study reporting higher plasma levels of TGFb associated with poor

prognosis in breast cancer patients [24]. Upon reaching the bone

microenvironment, tumor cells are exposed to several growth

factors including TGFb which leads to upregulation of Gli2, a

hedgehog family transcription factor. In osteolytic breast cancer

cells, Gli2 has been shown to regulate the expression of

parathyroid hormone related protein (PTHrP), a major osteolytic

factor [25]. Intact TGFb signaling in the breast cancer cells is

necessary for the PTHrP secretion, suggesting a direct mechanistic

link between TGFb and tumor- induced osteolytic bone

destruction [23]. In addition to promoting the growth of cancer

cells in bone, TGFb increases osteoclast differentiation [26], [27]

and suppresses osteoblast differentiation [28]. All of these events

contribute to the accelerated bone destruction in the tumor-

infested bone, in a TGFb-dependent manner. Increased TGFb
production in mice has been implicated in bone fragility and

osteoporosis [18], suggesting that blockade of excess TGFb may

rescue bone loss. Therefore, anti-TGFb antibody seems a logical

approach to rescue bone loss.

Several attempts have been made to develop anti-cancer

therapies involving an anti-TGFb approach. Despite the predict-

able side effects, a number of anti-TGFb compounds have been

shown to inhibit primary and metastatic cancer and are in

preclinical or clinical trials [29]. In a mouse model of bone cancer,

blockade of TGFb signaling in breast cancer cells has been shown

to inhibit breast cancer to bone metastasis [23]. Yang et al.

reported that lifelong treatment with a soluble TGFb receptor II

protects mice against metastasis [30]. A study using 4T1 mouse

mammary cancer cells indicated that blocking TGFb signaling

systemically reduces metastatic events [31]. Small-molecule

inhibitors of transforming growth factor b receptor I (TbR1) have

been shown to reduce tumor burden in preclinical models of breast

cancer bone metastasis and pulmonary metastasis [32]. Moham-

mad et al have recently shown that a small molecule inhibitor of

TGFb was able to inhibit melanoma bone disease in a preclinical

model [33]. Whether these approaches also improve breast

cancer-induced bone loss has not yet been reported.

Recently, a small molecule inhibitor of TbR1 kinase was shown

to have anabolic and anti-catabolic effects on normal bone

formation [34]. In addition, our group recently reported that the

anti-TGFb antibody has the potential to increase bone volume in

normal mice [35]. These results prompted us to test the efficacy of

anti-TGFb antibody in preventing cancer-induced bone disease.

To investigate the effect of anti-TGFb antibody on both tumor

burden and bone loss, we obtained a pan-TGFb antibody from

Genzyme Corporation that blocks all three isoforms of TGFb.

Our in vivo results show that an anti-TGFb antibody (1D11)

significantly increased bone mineral density (BMD), trabecular

thickness and bone volume, along with significant reduction in

tumor burden and osteolytic bone damage in preclinical breast

cancer bone metastasis models using both human and murine

breast cancer cell lines. In vitro, 1D11 was able to block TGFb
induced expression of both Gli2 and PTHrP, which provides a

mechanistic explanation of reduced tumor burden in our model.

To our knowledge, this is the first demonstration of dual efficacy of

an anti-TGFb antibody to both inhibit tumor burden and rescue

bone loss in a breast cancer to bone metastasis model [33].

Materials and Methods

Animals
All procedures were performed with the approval of the

Vanderbilt University Institutional Animal Care and Use

Committee and in accordance with Federal guidelines. For all in

vivo experiments, 4- to 5-week-old female athymic nude mice (for

MDA-MB-231 human breast cancer cells) or Balb/C mice (for

4T1 mouse mammary tumor cells) were used.

Study design
Both the anti-TGFb (1D11) and control antibody (13C4),

directed against Shigella toxin, were obtained from Genzyme

Corporation, MA. To test the efficacy of anti-TGFb antibody

1D11 in the inhibition of bone metastases, we used preclinical

models of breast cancer to bone metastases. Mice were inoculated

with breast tumor cells into the left cardiac ventricle and were

treated with either anti-TGFb antibody (1D11, 10 mg/kg body

weight) or control antibody (13C4, 10 mg/kg body weight),

starting either one day after tumor cell inoculation (the adjuvant,

or metastasis prevention regimen) or 2 weeks after tumor cell

inoculation (the established metastasis regimen); in both regimens,

treatment frequency was 3 days per week and continued until 4

weeks after tumor cell inoculation. Any mice showing the sign of

distress before this period was sacrificed immediately. 1D11 is a

murine monoclonal antibody which is able to neutralize all three

isoforms of TGFb in vitro [36] and in vivo [36], [37], [38]. This

antibody only recognizes the active form of the cytokine. The

vehicle used for preparing the antibodies showed no significant

difference in the tumor burden in comparison to the control-

antibody-treated group during initial experiments and was

therefore excluded from these studies (communication with

Genzyme Corporation). The outcome measures included quanti-

fication of osteolytic bone destruction using X-ray and histology.

Additionally, trabecular bone volume and architecture were

measured using microCT. Bone quality parameters were mea-

sured using Confocal Raman spectroscopy. Tumor burden and

osteoclast numbers were quantified by means of histology.

Cell culture
The human cancer cell line MDA-MB-231 was obtained from

ATCC (American Type Culture Collection), and a bone metastatic

variant generated and reported previously by our group [39] was

used for all in vitro and in vivo studies. The murine mammary cell line

4T1 had previously been obtained from another investigator [40]

and used in a cardiac injection model within our group [41]. Both

cell lines were maintained in DMEM (Invitrogen, Carlsbad, CA)

containing 10% Fetal Bovine Serum (FBS: Hyclone Laboratories,

Logan, UT) and 1% penicillin/streptomycin (Mediatech). Cells

were cultured in a 37uC atmosphere of 5% CO2 and 95% O2 using

standard tissue culture techniques.

Intracardiac bone metastasis model
MDA-MB-231 or 4T1 cells were trypsinized, washed and then

resuspended in ice-cold sterile PBS at a final concentration of
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16106/ml. Four- to 5-week-old female nude (for MDA-MB-

231cell injection) or Balb/C (for 4T1cell injection) mice were

anesthetized using a ketamine/xylazine mixture. Mice were

positioned ventral side up, and tumor cells were injected into the

left cardiac ventricle using a percutaneous approach with a 27-

gauge needle attached to a 1 ml syringe, as described previously

[42], [23]. Correct injection position in the left ventricle was

confirmed by the appearance of bright red blood at the hub of the

needle in a pulsatile fashion. Each mouse received 16105 cells in a

100-ml volume (resuspended in PBS) which was injected slowly

over 1 minute. For the adjuvant, or metastasis prevention

regimen, mice were treated starting 1 day after tumor cell

inoculation. For established metastasis protocol, mice were imaged

until visible lesion detection (approximately two weeks) and

treatment was started at that point and was continued for another

two weeks. All mice were imaged weekly and sacrificed 4 weeks

post-tumor inoculation. Any mice showing signs of distress prior to

4 weeks were sacrificed immediately.

Radiographic analysis of bone lesions
Beginning 1 week after tumor cell inoculation, tumor-bearing

animals were subjected to radiographic imaging. In brief, mice

were sedated using ketamine/xylazine and placed in a prone

position. X-ray images were then taken at 35 kVp for 8 s using a

digital radiography system (Faxitron LX-60). Images were saved

and lesion area and lesion numbers were evaluated using image

analysis software (Metamorph, Molecular Devices, Inc.). Data

presented are the average of lesion area and lesion numbers per

mouse in each treatment group.

Bone histology and histomorphometry
After sacrifice, hind limbs (tibiae and femora) from each mouse

were harvested, fixed in 10% neutral-buffered formalin (Fisher

Scientific) for 48 h and stored in 70% ethanol for further

processing. Following microCT analysis, the tibiae and femora

were decalcified in 10% EDTA for two weeks and embedded in

paraffin using an automated tissue processor for histological

analysis. Mid-sagittal sections (5 mm) of tibiae or femora were

stained with hematoxylin, orange G (Sigma) and phloxine B

(Sigma). Separate sections were also stained for TRAPC activity

for visualization of osteoclasts. Histomorphometric analysis of

tumor burden, osteoclast numbers and osteoblast numbers was

conducted on digital micrographs (1006) using an image

quantification software (Metamorph, Molecular Devices, Inc)

software. Tumor burden, defined as area occupied by tumor

within the medullary region, was calculated. Osteoclasts numbers

per area of trabecular bone surface was measured in a blinded

fashion in the TRAP stained mid section of long bones using

Metamorph software.

Quantitative microCT
MicroCT analysis was performed in the Vanderbilt University

Institute of Small Animal Imaging. To assess the effect of anti-

TGFb treatment on the architecture and structure of bone in

tumor bearing mice, long bones were used. Micro-computed X-

ray tomography (MicroCT) was used to measure trabecular bone

volume within the metaphysis of the tibia and trabecular bone

volume, architecture and density in the metaphysis of the femur.

The long axis of each specimen was aligned with the scanning axis.

One hundred slices from the proximal tibia were scanned at a 12-mm

resolution (mCT40 Scanco Medical, Switzerland). The region of

interest was trabeculae within the proximal metaphysis of the tibia

(0.24 to 1.20 mm) below the growth plate. Images were acquired

using 55 kV, 114 mA, 300-ms integration, and 500 projections per

180u rotation. Contiguous cross sectional images of the entire

metaphyseal region were acquired. Following reconstruction, the

bone tissue was segmented from air or soft tissue using a threshold of

270 per thousand (or 438.7 mgHA/cm3), a Gaussian noise filter of

0.8 and support of 2. Standard architectural characteristics such as

trabecular bone volume (BV/TV), trabecular thickness (Tb.Th*),

trabecular number (Tb.N*), connectivity density (Conn.D) and mean

volumetric density of the mineralized tissue (Tb.TMD or mBMD)

were calculated using the Scanco evaluation software.

Raman micro-Spectroscopy
To determine whether neutralizing TGFb in the tumor-bone

microenvironment affected composition at the tissue level, we

collected Raman spectra from the cortex of the tibial metaphysis.

Chemical bonds naturally absorb a small amount of energy from a

laser photon as they vibrate (known as Raman scattering of light).

In Raman spectroscopy, the spectrum of reflected light (shift in

wave number) is collected after the laser excites the bonds in a

tissue at a given wavelength, which for these purposes is near-

infrared (785 nm). This spectrum then characterizes the physio-

chemical properties of the tissue. Using the confocal Raman

microscope (Renishaw Inc., Ramanscope Mark III) with a spatial

resolution of 2–5 mm and a spectral resolution of 1 cm21, we

acquired nine spectra from polished sections of embedded tibia

(,150 mm below growth plate) and quantified the intensities of key

peaks related to mineral (v1 phosphate and Type-B carbonate) and

collagen (proline ring). Thus, mineral-to-collagen ratio, type-B

carbonate substitution and crystallinity were the averages of v1

phosphate/proline, v1 phosphate/carbonate, and the inverse of

the full width at half the maximum of v1 phosphate per bone.

Osteoclastogenesis assay
Mouse long bones were flushed with PBS, resuspended by

pipeting, and strained through a cell strainer (BD Biosciences,

40 mM). Mononuclear cells were isolated from resuspended bone

marrow using Histopaque 1077 (Sigma), following manufacturers’

instructions. Cells were plated in alpha-MEM media supplement-

ed with 10% fetal bovine serum, RANKL (100 ng/ml) and MCSF

(30 ng/ml) to support osteoclast formation. Both reagents were

obtained from R&D systems. Two treatment groups were used,

one treated with isotype antibody (13C4, 25 ug/ml) and other

treated with anti-TGFb antibody (1D11, 25 ug/ml). TRAP

staining was performed using Leukocyte Acid Phosphatese kit

(Sigma) and number of osteoclasts per field was counted under

microscope.

Osteoblast differentiation assay
Primary cultures of calvarial osteoblasts were prepared using a

modified sequential collagenase/trypsin digestion method [43].

Briefly, calvaria were removed from 3- to 4-day-old C57Black 6

mice, cleaned free from soft tissue, washed for 10 min with PBS

containing 0.025% trypsin, and digested with type-IV Collagenase

p (1 mg/ml; source: Clostridium histolyticum, Roche) and 0.025%

trypsin for 30 min at 37uC in HBSS with gentle agitation. The

procedure was repeated twice, with a 1-h digestion followed by a

30-min digestion using above mentioned concentration of

collagenase p and trypsin. The cells from the second and third

digestions were collected and centrifuged at 25006g for 10 min.

The supernatant was aspirated and discarded, and the pellet was

resuspended in alpha-MEM containing 10% fetal bovine serum.

The culture was kept undisturbed for at least 2 days. At

confluence, cells were trypsinized using the standard procedure

and plated in 24 well plates for osteoblast differentiation assay.

Cells were cultured in alpha-MEM containing 2.5% fetal bovine
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serum for a further 3 weeks in the presence of 5 mM beta

glycerophosphate (Sigma) and 100 ug/ml L-ascorbic acid (Sigma)

either in the presence of isotype control antibody (13C4, 25 mg/

ml) or anti-TGFb antibody (1D11, 25 mg/ml). 6 wells were

dedicated to each treatment group. Media containing ascorbic

acid and beta glycerophosphate was changed every 2 days until

mineralized nodules (approximately 15–28 days) were formed.

Mineralized matrix formation was detected by means of Von

Kossa staining and quantified using Metamorph image analysis

software.

Co-culture assay
Ex vivo co-culture assay was done using mouse calverial

osteoblasts and adult mouse bone marrow mononuclear cells.

Calverial osteoblasts were isolated from 3–4 days old pups

following the method described previously [43] and cultured in

6 well tissue culture plates until confluent. After these cells were

confluent, bone marrow mononuclear cells were isolated from

normal mice and plated on top of the osteoblast layer. The co-

culture system was treated with either control antibody (13C4,

25 mg/ml) or anti-TGFb antibody (1D11, 25 mg/ml) every other

day for 7–10 days. Cells were fixed and stained for assessment of

mature osteoclasts formation using Leucocyte Acid Phosphatase

kit (Sigma) according to manufacturer’s instruction and mature

osteoclasts (red) were scored using microscope.

Quantitative real-time PCR
Total RNA was extracted using RNeasy Mini Kit (QIAgen)

according to the manufacturer’s instruction. cDNA was synthe-

sized using SuperScript III First-Strand Synthesis System for RT-

PCR (Invitrogen) and random hexamers from 2 mg of total RNA

per manufacturer’s instructions. cDNA (2 mg) was used for

quantitative real-time PCR using the Real MasterMix (Eppendorf,

Hamburg, Germany) and 0.5 mL of prepared cDNA per

manufacturer’s instructions. Real-time PCR was done in triplicate

using the Real Plex Machine (Eppendorf) with the following

cycling conditions: 95uC for 15 seconds, 58uC for 30 seconds, and

68uC for 30 seconds. Normalization was done using 18S as an

internal control.

Statistical Considerations
The data are presented using box plots showing the quartiles

along with the raw data, plotted separately for each group and for

each outcome. Wilcoxon rank-sum tests and Kruskal-Wallis tests

were used to test the null hypotheses of no difference in the

distribution of the outcomes among the treatment groups. All

analyses were performed using R version 2.11.1. In vivo results

presented are from the 4 week treatments; however, the two week

treatment showed similar outcome.

Results

Anti-TGFb antibody treatment reduces tumor burden in
bone

Using two preclinical mouse models of breast cancer to bone

metastases, we have assessed the efficacy of the anti-TGFb
antibody 1D11 in reducing tumor burden. Female nude mice (4

weeks old) were inoculated with MDA-MB-231 cells via the

intracardiac route. Mice were treated with either control antibody

(13C4) or anti-TGFb antibody (1D11), either from one day after

tumor cell inoculation (the adjuvant, or metastasis prevention

regimen) or 2 weeks after tumor cell inoculation (the established

metastases regimen), as described in the Materials and methods

section. Following 4-weeks of treatment, anti-TGFb treatment

significantly reduced the tumor burden in the long bones (p

value = 0.001; Figure 1b) and only microscopic small foci of tumor

cells were observed in most mice treated with 1D11 (Figure 1a,

white line indicates area occupied by tumor). Following 2-weeks

treatment (established metastases protocol), a similar but less

dramatic effect was observed (p value = 0.016; Figure 1c).

To test whether this treatment was effective in other bone

metastases models, female Balb/C mice was inoculated with 4T1

murine mammary breast cancer cells and mice were treated one

day after tumor cell inoculation and continued to be treated for 4

weeks. Tumor burden was significantly reduced in mice treated

with anti-TGFb antibody compared to the isotype control group

(p = 0.03, Figure 1d).

Anti-TGFb antibody reduced PTHrP and Gli2 expression
in breast cancer cells

It has been reported that TGFb can upregulate the expression

of Gli2, a hedgehog signaling molecule which is one of the driving

factors of osteolytic bone metastasis, we have tested whether

treatment with 1D11 might suppress Gli2 expression. As

anticipated, TGFb-induced expression of Gli2 was decreased

when MDA-MB-231 tumor cells were treated with 1D11

(Wilcoxon rank-sum p-value for TGFb versus TGFb and 1D11

is 0.005) (Figure 1e). This might be one of the mechanisms by

which anti-TGFb antibody 1D11 inhibited osteolytic bone

damage in our model. Gli2 is also known to increase the secretion

of parathyroid hormone-related protein (PTHrP), another major

osteolytic factors, in a TGFb dependent process. Inhibition of

PTHrP can prevent tumor induced bone destruction, therefore,

we tested whether by neutralizing excess TGFb, 1D11 may also

decrease PTHrP expression in the tumor cells. Using real time

PCR, we found that 1D11 significantly reduced TGFb-induced

expression of PTHrP in the MDA-MB-231 cells (Wilcoxon rank-

sum p-value for TGFb versus TGFb and 1D11 is 0.005) (Figure 1f).

Anti-TGFb antibody treatment reduces osteolytic lesions
in MDA-MB-231 cardiac injection model

Advanced metastatic breast cancer in patients leads to severe

osteolytic damage. MDA-MB-231 cells injected via the left cardiac

ventricle of female nude mice give rise to comparable metastatic

lesions, which can be quantified using X-ray image analysis.

Radiographic image analysis in MDA-MB-231 tumor-bearing

mice treated with either control antibody (13C4, 10 mg/kg,

Figure 2a, left panel, arrow indicating osteolytic damage) or anti-

TGFb antibody (1D11, 10 mg/kg, Figure 2a, right panel) has

indicated that the average number of osteolytic lesions was

reduced by more than three-fold (Figure 2b; p,0.001) and the

average lesion area was reduced ten-fold in the anti-TGFb
treatment group when compared with control (Figure 2c;

p,0.001).

Anti-TGFb antibody treatment reduces osteoclast
numbers in tumor-bearing mice

Increased bone resorption in the tumor-bearing bone has been

associated with increased osteoclast numbers. Since, X-ray

imaging has revealed that treatment with anti-TGFb antibody

resulted in fewer osteolytic lesions and overall smaller osteolytic

area, we have anticipated that, anti-TGFb treatment may reduce

number of osteoclasts in vivo. Mouse long bones from both control

antibody and anti-TGFb antibody treatment groups were stained

with TRAP stain. As anticipated, histological analysis revealed that

the number of TRAP-positive osteoclasts per millimeter of bone

surface was significantly lower in the group treated with anti-
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TGFb antibody (1D11) compared to the isotype control (13C4)

(Figure 3a; p = 0.027).

Bone marrow microenvironment is a complex multicellular

system. The differentiation of osteoclasts is also regulated by

osteoblasts. Therefore, fewer osteoclasts in vivo may be a direct

effect of the treatment on the osteoblast precursor cells (bone

marrow mononuclear cells) or mediated via osteoblasts.

In an attempt to test the direct effect of anti-TGFb treatment on

osteoclastogenesis, mononuclear cells were isolated from mouse

bone marrow and subjected to osteoclast differentiation, either in

the presence control antibody (13C4) or anti-TGFb antibody

(1D11) (Figure 3b). As anticipated, TGFb significantly increases

the number of TRAP-positive osteoclasts and treatment with

1D11 significantly reduced TGFb-mediated osteoclast formation

(p = 0.024, compared between TGFb versus TGFb and 1D11

treatment).

By secreting both OPG and RANKL, osteoblasts maintain the

homeostasis of osteoclasts in bone microenvironment [44], [45],

[46], [47], [48]. Since TGFb has also been reported to alter the

RANKL/OPG ratio, we asked whether the TGFb neutralizing

antibody interfered with osteoblast-induced osteoclastogenesis.

Mouse calvarial osteoblasts and mouse bone marrow mononuclear

cells were co-cultured in the presence of the control antibody or

anti-TGFb antibody (3c, representative images. Arrow indicates

presence of TRAP positive osteoclasts). The anti-TGFb treatment

resulted in almost fivefold reduction the number of osteoclasts

(Figure 3d, Wilcoxon rank-sum p value = 0.006). The result of the

ex vivo assay are in agreement with the in vivo data and reinforce the

notion that TGFb plays a critical role in tumor-induced bone

resorption at least in part through the induction of osteoclastogen-

esis.

Anti-TGFb antibody treatment increases bone volume
and improves bone architecture in breast cancer to bone
metastasis

We have used either MDA-MB-231 cells and injected those in

the left ventricle of nude mice or 4T1 cells and injected those in

Balb/C mice for assessing the efficacy of anti-TGFb treatment in

cancer induced bone disease. Representative 3D images of mice

tibiae from both 13C4 (left panel) and 1D11 (right panel)

treatment groups are shown in figure 4a, from the experiment

where MDA-MB-231 cells were injected in nude mice. MicroCT

analysis of tibia from mice bearing MDA-MB-231 human breast

cancer cells in bone following intra-cardiac injection demonstrated

that a 4-week treatment with anti-TGFb antibody 1D11 resulted

in an approximately 5-fold increase in the overall bone volume

when compared with the isotype control 13C4 treated group

(Figure 4b; p,0.001). A similar but less dramatic effect was

observed with murine 4T1 mammary cancer cells injected into

syngeneic Balb/C mice via intra-cardiac route (Figure 4c;

p,0.036). Further analysis using quantitative microCT showed

that treatment with 1D11 resulted in a greater number of

trabeculae, in thicker trabeculae, and in higher connectivity

density (lack of fenestrations) of the trabecular bone, suggesting

that suppression of TGFb improves trabecular architecture in the

presence of a tumor (Table 1). However, bone mineral density

(mBMD or Tb.TMD) of the trabeculae was unchanged.

Anti-TGFb antibody increases osteoblast differentiation
in vitro

To investigate whether increased bone volume and improved

architecture observed in anti-TGFb antibody-treated animals are

a reflection of increased osteoblast differentiation, an ex vivo

osteoblast differentiation assay was performed. Mouse calverial

osteoblasts were isolated and cultured in presence of either isotype

control (Figure 4d, top panel) or anti-TGFb antibody (Figure 4d,

bottom panel) as described in the Materials and Method section.

As indicated by Von Kossa staining, upon treatment with anti-

TGFb antibody, mineralized matrix production in primary

calverial osteoblasts was increased by approximately 2-fold, when

compared with isotype control antibody (Figure 4e, e; p = 0.005).

This suggests anti-TGFb antibody directly increases osteoblast

differentiation, a parameter likely to contribute to the overall

increase in bone mass.

Anti-TGFb antibody treatment increases mineral-to-
collagen ratio in tumor-bearing animals

Confocal Raman Spectroscopy revealed that inhibiting TGFb
signaling with 1D11 increased the mineral-to-collagen ratio in the

metaphyseal cortex of the tibia (Table 2). Of note, 1D11 did not

affect the Type-B carbonate substitution, a measure of mineral

distortion. Moreover, it did not affect crystallinity. This suggests

that the suppression of TGFb increased the rate of mineral

accumulation in the organic matrix but not the structure of

mineral crystals themselves. We anticipate this to be a reflection of

improvement of osteoblastic activity with anti-TGFb treatment.

Discussion

Despite major advancement in the treatment and prevention of

early stage breast cancers, a large number of patients remain at

risk of developing painful osteolytic bone metastases [3]. Although

current anti-resorptive therapies using bisphosphonates are

successful in preventing further bone resorption, they cannot

repair the previously damaged bone. This leaves the patients with

a high risk of pathological fracture and an increased morbidity and

mortality. Thus, there is an urgent need for therapies directed at

rescuing bone loss. Anti-TGFb antibodies have been reported to

Figure 1. Anti-TGFb antibody treatment decreases tumor burden in tumor-bearing mice. Panel a: Representative H&E sections (56) of
tibia from tumor-bearing mice treated with control antibody (13C4) or anti-TGFb antibody (1D11). White line indicates the presence of tumor. Panel
b: A boxplot of tumor burden in MDA-MB-231 tumor-bearing mice treated with either 13C4 (10 mg/kg) or 1D11(10 mg/kg) for 4 weeks, starting 1
day after tumor cell injection (N = at least 7) showing decrease in tumor burden. Wilcoxon rank-sum p-value = 0.001. Mean 6 standard
deviation = 13C4: 0.7660.12, 1D11: 0.2560.1. Panel c: Boxplots of tumor burden in MDA-MB-231 tumor bearing mice treated with either
13C4(10 mg/kg) or 1D11(10 mg/kg) starting two weeks after tumor cell injection and continued to be treated until the end of 4 weeks post tumor
injection. Wilcoxon rank-sum p-value = 0.016. Mean 6 standard deviation = 13C4:0.6461 60.3599, 1D11: 0.111460.1919. (N = at least 5). Panel d:
Boxplot of tumor burden by group for the 4T1 tumor bearing mice (4T1 cells injected in Balb/c), treated 1 day post tumor cell injection and treated
for 4 weeks shown decrease in tumor burden. Wilcoxon rank-sum p-value = 0.03. Mean 6 standard deviation = 13C4: 0.033160.012,
1D11:0.00660.002 (N = 4). Panel e: Decreased relative mRNA expression of Gli2 in MDA-MB-231 upon 1D11 treatment. Wilcoxon rank-sum p-
value for TGFb versus TGFb+1D11 groups is 0.005. Mean 6 standard deviation = TGFb: 2.0860.06, TGFb + 1D11: 0.4260.05. Results presented here
are representative of at least two independent experiments. Panel f: Decreased relative mRNA expression of PTHrP in MDA-MB-231 upon treatment
with 1D11. Wilcoxon rank-sum p-value for TGFb versus TGFb + 1D11 groups is 0.005. Mean 6 standard deviation = TGFb: 6.2460.05, TGFb + 1D11:
0.4160.04. Results presented here are representative of at least two independent experiments.
doi:10.1371/journal.pone.0027090.g001
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reduce metastatic tumor burden related to breast cancers [31],

[49]. Our data presented herein confirms these results in two

preclinical breast cancers to bone metastases models and extends

those to demonstrate that anti-TGFb treatment increases

mineralized matrix formation by osteoblasts as well as increases

bone mass in preclinical bone metastasis models. Therapeutic

approaches with a potential to maintain normal osteoblast

activities and reducing osteoclastic bone resorption represent a

novel paradigm.

While several laboratories have tested the efficacy of the anti-

TGFb antibody against inhibition of tumor burden, much less has

been reported on the possible efficacy of this agent toward new

bone formation. In addition to histology and microCT analysis, we

have used cutting-edge biochemical techniques to analyze the

Figure 2. Anti-TGFb antibody reduces osteolytic lesions in MDA-MB-231 breast cancer bone metastasis cardiac injection model.
Mice were inoculated with MDA-MB-231 human breast cancer cells in the left cardiac ventricle and were treated with either isotype control (13C4,
10 mg/kg) or anti-TGFb antibody (1D11, 10 mg/kg) for 4 weeks, starting from 1 day post tumor cell injection. At the end of the experiment, whole
body X-ray images of mice from both control and anti-TGFb antibody treated group were taken and osteolytic lesion area and osteolytic lesion
counts were analyzed using image analysis software (Metamorph, Molecular Device). Panel a: Representative X-ray images of osteolytic bone lesions
in the hind leg of mice treated for 4 weeks either with control antibody (13C4, left panel) or anti-TGFb antibody (1D11, right panel). White arrows
indicate presence of osteolytic lesions. Panel b: A boxplot representing the average lesion counts in mice inoculated with MDA-MB-231 cells in the
left cardiac ventricle, treated with either control antibody (13C4, 10 mg/kg) or anti-TGFb antibody (1D11, 10 mg/kg) for 4 weeks, starting 1 day after
tumor cell injection shows decrease in lesion numbers after anti-TGFb treatment (6.961.7 for control and 1.960.7 for 1D11; Wilcoxon rank-sum p-
value = ,.001, N = 9). Panel c: A boxplot representing the lesion area from the same experiment shows decrease in the lesion area after anti-TGFb
treatment (2052066000 for control and 14976888 for 1D11; Wilcoxon rank-sum p-value = ,.001, N = at least 9). Lesion areas were measured using
arbitrary pixel unit.
doi:10.1371/journal.pone.0027090.g002
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Figure 3. Anti-TGFb antibody decreased osteoclast numbers and in vitro osteoclastogenesis. Panel a: Boxplot of number of TRAP
positive osteoclasts per millimeter of bone surface in MBA-MB-231 tumor-bearing tibiae, showing significantly decreased osteoclasts upon 1D11
treatment, compared to 13C4. Wilcoxon rank-sum p-value = 0.027. Mean 6 standard deviation = 13C4: 0.773360.3002, 1D11: 0.453960.1141. N = at
least 6). Panel b: To assess the effect of anti-TGFb treatment directly on osteoclast population, an ex vivo osteoclastogenesis assay was performed
using bone marrow mononuclear cells. Bone marrow mononuclear cells were isolated and cultured in presence of 13C4 (control antibody), 1D11(anti-
TGFb antibody), TGFb+13C4 or TGFb+1D11 in presence of both RANKL and MCSF. Both 13C4 and 1D11 was used at a concentration of 25 mg/ml.
TGFb as used at a concentration of 5 ng/ml. Osteoclasts were stained using using a Leucocyte acid phosphatase (TRAP) kit as per manufacturer’s
instruction (Sigma-Aldrich) and TRAP positive cells (reddish brown) were counted under microscope. Boxplots of number of osteoclasts by group for
osteoclastogenesis assay show that treatment with 1D11 significantly reduced TGFb-mediated osteoclast formation. Wilcoxon rank-sum p-value for
TGFb and TGFb + 1D11 groups is 0.01. Mean 6 standard deviation = TGFb: 26.563.83, TGFb + 1D11: 17.8364.17. Data presented here is
representative of two independent experiments. Panel c: To assess the effect of anti-TGFb antibody on osteoblast-mediated osteoclastogenesis,
bone marrow mononuclear cells were cultured on a layer of primary mouse calverial osteoblasts in the presence of either control antibody (13C4) or
the anti-TGFb antibody (1D11). After 7–10 days, TRAP staining was performed to identify mature osteoclasts (indicated by arrow). Panel d:
Osteoblast mediated osteoclastogenesis increases significantly upon 1D11 treatment compared to control, Wilcoxon rank-sum p-value = 0.006. Mean
6 standard deviation = 13C4: 26.5611.31, 1D11: 4.8362.48. Data presented here is representative of two independent experiments.
doi:10.1371/journal.pone.0027090.g003
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composition of the bone in the tumor-bearing animals. We have

previously reported that in normal murine bone, anti-TGFb
treatment increases the number of osteoblasts and decreases the

number of osteoclasts, thereby increasing the overall bone mass

[35]. In agreement with this, similar findings were noted by other

groups using a small-molecule inhibitor of TGFb receptor kinase,

SD208, suggesting that blocking excess TGFb is overall beneficial

to the bone [33,50]. Although the number of osteoblasts and

osteoclasts is critical in maintaining bone remodeling, healthy

bone formation also depends on the normal functioning of these

cell types. The amount of bone is not always the exact measure of

whether bone tissue is healthy and capable of normal load bearing

involved in everyday activities. Of note, patients suffering from

osteolytic bone damage often present with pathological fracture at

the time of diagnosis. The suppression of TGFb signaling affected

tissue-level properties, namely bone resorption and mineralization.

By studying TGFb1 transgenic mice, Balooch et al. [16] found

that decrease in tissue modulus is a function of increased TGFb
signaling. Likewise, treating young mice (4 weeks of age) with a

pharmacological inhibitor of the TGFb type I receptor (TbRI)

Table 1. Anti-TGFb antibody improves trabecular architecture in tumor bearing mice tibia and femur.

Tibia N 13C4 (N = 10) 1D11 (N = 11) p value

Bone Volume/Total Volume 21 0.06460.037 0.31660.095 p,0.001

ConnD mm23 21 40.414642.618 277.836673.712 p,0.001

SMI 21 2.78860.355 0.70160.946 p,0.001

Tb.N mm21 21 2.69960.69 6.55361.1 p,0.001

Tb.Th mm 21 0.04460.004 0.05860.007 p,0.001

Tb.Sp mm 21 0.39660.098 0.14660.03 p,0.001

Tissue MineralDensity (mgHA/cm3) 21 1031.672643.286 1008.325624.358 p = 0.091

Femur N 13C4 (N = 9) 1D11 (N = 6) p value

Bone Volume/Total Volume 15 0.07360.043 0.24760.08 p = 0.002

ConnD mm-3 15 60.685643.046 207.442683.689 p = 0.003

SMI 15 2.77860.455 1.36460.645 p = 0.002

Tb.N mm-1 15 2.9960.756 5.37160.939 p = 0.002

Tb.Th mm 15 0.04660.004 0.05760.004 p = 0.002

Tb.Sp mm 15 0.35360.069 0.18760.035 p = 0.002

Tissue Mineral Density (mg HA/cm3) 15 977.687640.562 985.161620.43 p = 0.814

MicroCT analysis of the tibiae from MDA-MB-231tumor-bearing mice treated for 4 weeks, starting one day after tumor cell inoculation, revealed that suppression of
TGFb by the antibody 1D11 increased trabecular bone volume through increases in trabecular number, and this improved the connectivity of the trabeculae (lack of
fenestrations), compared to isotype control. Wilcoxon rank-sum test was used for this analysis. Means and standard deviations by group for the MDA-MB-231 four week
data with p-values from Wilcoxon rank-sum tests. Quantitative analysis of microCT data from MDA-MB-231 tumor-bearing mice treated with 13C4 or 1D11 for weeks.
Trabecular bone volume (BV/TV), trabecular thickness (Tb.Th*), trabecular number (Tb.N*), and connectivity density (Conn.D), and mean volumetric density of the
mineralized tissue (Tb.TMD) were calculated using the Scanco evaluation software.
doi:10.1371/journal.pone.0027090.t001

Table 2. Suppression of TGFb by anti-TGFb antibody 1D11
increased the mineral-to-collagen ratio.

13C4 1D11
%
change p-value

Mineral-to-collagen
ratio

18.762.2 20.862.1 11.2 0.0287

Carbonate substitution 0.13460.01 0.13760.009 2.3 0.4417

Crystallinity 0.046360.0005 0.046160.0005 20.3 0.5623

Confocal raman spectroscopy was performed on mice bearing MDA-MB-231
tumors in bone treated for 4 weeks with 1D11 or 13C4 antibodies as described
in materials and methods section. At least nine spectra were analyzed per
specimen and the mean mineral-to-collagen ratio, Type-B carbonate
substitution, and crystallinity were scored. Both mineral-to-collagen ratio and
carbonate substitution increased significantly upon 1D11 treatments compared
to control. Mean 6 standard deviation is shown, p value was determined using
Wilcoxon test.
doi:10.1371/journal.pone.0027090.t002

Figure 4. Anti-TGFb antibody increases bone volume in tumor bearing mice. MDA-MB-231 cells were injected via intra-cardiac route in 4
week old female nude mice and 4T1 cells were injected in 4–5 week old female Balb/C mice. Mice were treated either with control antibody (13C4,
10 mg/kg) or anti-TGFb antibody (1D11, 10 mg/kg) for 4 weeks, starting 1 day after tumor cell inoculation. Trabecular bone volume in the tibial
metaphysis of tumor-bearing mice was analyzed by microCT. Panel a: Representative three dimensional reconstitutions of microCT images from
both 13C4 and 1D11 treated groups from mice injected with MDA-MB-231 cells. Panel b: Boxplots of average BV/TV (bone volume/total volume) by
group for the MDA-MB-231 tumor- bearing mice show significant increase in bone mass after treatment with anti-TGFb antibody. Wilcoxon rank-sum
p-value = ,0.001. Mean 6 standard deviation = 13C4: 0.0660.04, 1D11: 0.3260.09. N = at least 10. Panel c. Boxplots of average BV/TV (bone volume/
total volume) by group for the 4T1 tumor- bearing mice show a significant increase in bone mass as a result of treatment with 1D11 as measured by
BV/TV. Wilcoxon rank-sum p-value = 0.036. Mean 6 standard deviation = 13C4: 0.0960.01, 1D11: 0.1160.01, N = at least 5. Panel d: Mouse calverial
osteoblasts were isolated and cultured for 7–10 days as described in the Materials and Methods, either in presence of anti-TGFb antibody (1D11) or
isotype control (13C4) and mineralized matrix formation was measured using Von Kossa staining as a surrogate for osteoblast differentiation. Panel
e: Boxplot analysis reveals treatment with anti-TGFb antibody (1D11) significantly increased percent areas of mineralized matrix. Images were taken
from representative fields and quantified using Metamorph software. Wilcoxon rank-sum p-value = 0.005. Mean 6 standard deviation = 13C4: 1663.7,
1D11: 32.361. Data presented here is representative of two independent experiments.
doi:10.1371/journal.pone.0027090.g004
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kinase for 6 weeks increased both the degree of mineralization, as

determined by X-ray tomography, and elastic modulus of the tibia

cortex, as determined by nanoindentation [33]. Similarly, the

current study using tumor-bearing animals found that TGFb
suppression increased the Raman-derived measure of mineraliza-

tion (mineral-to-collagen ratio). This suggests that an anti-TGFb
antibody may prevent, if not reverse, the negative effect of tumors

on bone quality.

Our finding using tumor-bearing animals has revealed that anti-

TGFb treatment modulated both osteoclast and osteoblast cell

compartments, making this therapy more appealing for rescuing

bone loss in osteolytic tumor models. We have demonstrated that

anti-TGFb antibody treatment inhibits osteoclast formation in vivo.

In addition, a direct negative effect on osteoclast formation was

demonstrated using bone marrow mononuclear cells. Of note, we

have previously reported that in normal bone, there is almost 50%

decrease in number of osteoclasts in 1D11-treated mice [35]. In

addition to the direct effect on both osteoblasts and osteoclasts,

osteoblast-mediated osteoclastogenesis was also inhibited using this

approach. Much focus has been given to develop therapies

directed to inhibition of osteoclastic bone resorption to prevent

osteolytic bone damage. In osteolytic bone disease, osteoblast

differentiation is often suppressed [51]. It has been reported that

TGFb modulates osteoblast differentiation [52]. Using an ex vivo

assay, we have demonstrated that 1D11 antibody treatment

increases mineralized matrix formation by calvarial osteoblasts,

compared to the control antibody, which may likely contribute to

an increase in the bone mass. In addition to make new bones,

osteoblasts also maintain the homeostasis of osteoclast formation in

the bone. Using a co-culture assay system, we have also

demonstrated osteoblast-mediated osteoclastogenesis was inhibited

by anti-TGFb treatment. This emphasizes an indirect yet very

important role for osteoblasts in affecting osteolytic bone damage.

Data presented here exploits the concept of intervention of

osteolytic bone damage by decreasing osteoclastic resorption and

increasing osteoblastic differentiation simultaneously.

In agreement with previously reported anti-tumor efficacy of

1D11, we have also shown that tumor burden has been

significantly reduced in both 4-week and 2-week treatment

regimen (data not shown). As a possible mechanism of reduced

tumor burden in the bone, 1D11 was able to inhibit TGFb-

mediated upregulation of Gli2 and PTHrP in MDA-MB-231 cells.

Since the vicious cycle of bone metastasis is driven by multiple cell

types in the bone [21], an effective therapy should target all these

components to successfully cure the disease. We conclude that, in

the two preclinical models used in this study, treatment with an

anti-TGFb antibody preserved bone volume and architecture,

decreased tumor lesion number and size, and decreased osteoclast

numbers. The overall effect of 1D11 appears to be partly on tumor

cells and partly on the bone microenvironment, resulting in both

improvement of bone volume and reduction in skeletal metastasis.

We suggest that an approach to neutralize excess TGFb might be

a promising therapy for the treatment of patients with breast

cancer metastasis to bone and may be successful in reducing bone

related complications.
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