
Does Reduced IGF-1R Signaling in Igf1r+/2 Mice Alter
Aging?
Alex F. Bokov1,2., Neha Garg3., Yuji Ikeno1,5,7., Sachin Thakur3, Nicolas Musi1,6,7, Ralph A. DeFronzo6,

Ning Zhang6, Rebecca C. Erickson8, Jon Gelfond1,4, Gene B. Hubbard1,5, Martin L. Adamo1,3, Arlan

Richardson1,2,7*

1 Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America, 2 Department

of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America, 3 Department of Biochemistry,

University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America, 4 Department of Epidemiology and Biostatistics, University of

Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America, 5 Department of Pathology, University of Texas Health Science Center at San

Antonio, San Antonio, Texas, United States of America, 6 Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United

States of America, 7 Geriatric Research, Education, and Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, Texas, United States of America,

8 College of Natural Sciences, University of Texas at Austin, Austin, Texas, United States of America

Abstract

Mutations in insulin/IGF-1 signaling pathway have been shown to lead to increased longevity in various invertebrate
models. Therefore, the effect of the haplo- insufficiency of the IGF-1 receptor (Igf1r+/2) on longevity/aging was evaluated in
C57Bl/6 mice using rigorous criteria where lifespan and end-of-life pathology were measured under optimal husbandry
conditions using large sample sizes. Igf1r+/2 mice exhibited reductions in IGF-1 receptor levels and the activation of Akt by
IGF-1, with no compensatory increases in serum IGF-1 or tissue IGF-1 mRNA levels, indicating that the Igf1r+/2 mice show
reduced IGF-1 signaling. Aged male, but not female Igf1r+/2 mice were glucose intolerant, and both genders developed
insulin resistance as they aged. Female, but not male Igf1r+/2 mice survived longer than wild type mice after lethal paraquat
and diquat exposure, and female Igf1r+/2 mice also exhibited less diquat-induced liver damage. However, no significant
difference between the lifespans of the male Igf1r+/2 and wild type mice was observed; and the mean lifespan of the
Igf1r+/2 females was increased only slightly (less than 5%) compared to wild type mice. A comprehensive pathological
analysis showed no significant difference in end-of-life pathological lesions between the Igf1r+/2 and wild type mice. These
data show that the Igf1r+/2 mouse is not a model of increased longevity and delayed aging as predicted by invertebrate
models with mutations in the insulin/IGF-1 signaling pathway.
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Introduction

One of the major discoveries in aging during the past decade

has been the observation that mutations in insulin/IGF-1 signaling

led to increased longevity in various invertebrate models [1].

Hypomorphic alleles of the age-1 [2] and daf-2 [3] genes, orthologs

of phosphoinositol-3-kinase [4], and the insulin/IGF-1 receptor

[5] extend lifespan in C. elegans [6,7]. Mutations in the insulin/IGF

receptor (InR) also increase the median lifespan of female

Drosophila [8] as do mutations in CHICO, the Drosophila IRS1

(insulin receptor substrate 1) ortholog [9]. Selman et al. [10]

reported that female mice null for insulin receptor substrate 1

(Irs1) showed a 32% increase in median lifespan compared to WT

while male Irs12/2 mice showed no significant increase in lifespan.

In contrast, mice null for Irs2 die before 30 months of age.

Taguchi et al. [11] reported that Irs2+/2 mice lived 17% longer

than WT mice. However, neither the number of mice nor the sex

of the mice was given, and in a subsequent lifespan study, Selman

et al. [12] found no significant increase in the lifespan of either

male or female Irs2+/2 mice compared to their WT littermates.

Irs1 is thought to be more important in mitogenic signaling

whereas Irs2 is more involved in metabolic signaling [13] so the

more robust lifespan extending effect in Irs1 mutants could be due

to reduced cell division while Irs2 mutants may fail to show robust

lifespan extension due to metabolic dysregulation These data point

to the complexities that alterations in components of the IGF-1/

insulin signaling pathway might have on mammalian aging.

The most direct evidence that mutations affecting the insulin/

IGF-1 signaling pathway lead to increased longevity in mammals

has come from studies with Igf1r+/2 mice (i.e., mice lacking one

copy of the gene coding for IGF-1 receptor; mice lacking both

copies die shortly after birth but the Igf1r+/2 mice were reported to
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be phenotypically normal [14]). In 2003, Holzenberger et al. [15]

reported that female Igf1r+/2 mice exhibited a 33% increase in

lifespan and were resistant to the oxidative stressor, paraquat.

Males showed a statistically non-significant 16% increase in life-

span, and were not resistant to paraquat. These data supported the

previous studies in invertebrates showing that reduced IGF-1

receptor (IGF-1R) signaling also leads to increased lifespan in

mammals.

However, the lifespan data in the Holzenberger study are

problematic because of the small sample size and the very short

lifespan of both the wild type (WT) and Igf1r+/2 mice studied

(reviewed in [16] and [17]); therefore, we have reassessed the effect

of reduced expression of the IGF-1R on lifespan using the rigorous

criteria recommended by Ladiges et al. [18], e.g., lifespan and

end-of-life pathology were assessed using large sample sizes and

husbandry conditions that permitted the control lifespan to

approach its full potential, which are necessary if the longevity

differences in the experimental group are to be relevant to healthy

aging. In agreement with Holzenberger et al. [15], we found that

the female Igf1r+/2 mice were more resistant to the oxidative stress

than were WT female mice while no difference was observed

between the male Igf1r+/2 and WT mice. However, there was only

a modest increase in the mean lifespan (4.7%) of female Igf1r+/2

mice compared to their WT littermates and no significant change

in end-of-life pathology. Thus, our data show that haploinsuffi-

ciency of Igf1r does not produce a robust increase in lifespan as

previously reported, demonstrating that reduced IGF-1R signaling

in mammals does not play the same major role in aging that is

observed in invertebrates.

Materials and Methods

Ethics Statement
All procedures involving mice were approved by the subcom-

mittee for Animal Studies at the Audie L. Murphy Veterans

Administration Hospital (protocol #0508-001, ‘‘Role of IGF-1

Receptor in Aging and Age-Related Diseases’’) and the University

of Texas Health Science Center at San Antonio IACUC (protocol

#06053, ‘‘IGF-1 Signaling and Aging’’).

Animals
The Igf1r+/2 mice were kindly provided by Dr. Argiris Ef-

stradiatis (Columbia University College of Physicians and Sur-

geons, New York) who derived them in a 129Sv background by

homologous recombination, which ablated the third exon of the

Igf1r gene [14]. The mice were backcrossed into the C57Bl/6

background for at least 10 generations. To establish the colony of

mice used in this study, Igf1r+/2 males were bred to C57BL/6 WT

(i.e., Igf1r+/+) females purchased from the Jackson Laboratory (Bar

Harbor, ME), producing offspring of which half were Igf1r+/2 and

half, WT. Mice were weaned into their final cages, genotyped, and

randomly assigned to the experiments. In all studies described

below, age-matched littermates were used as controls. The

genotypes of the mice were determined as described by Liu

et al. [14]. In the lifespan study, mice were maintained under

pathogen-free barrier conditions and permitted to die of natural

causes, i.e., there was no censoring of the animals. Cages assigned

to longevity experiments were checked twice daily for dead

animals but otherwise undisturbed. Upon death, the mice were

necropsied for gross pathological lesions as previously described

[19]. For each mouse, a list of pathological lesions was constructed

and graded as previously described [19–22]. All mice were fed a

standard NIH-31 chow ad libitum and maintained in micro-isolator

cages, 4 to a cage, on a 12-hour dark/light cycle. C57Bl/6 mice

are mature both sexually and with respect to body size at 6 months

of age. At 25 months of age, typically fewer than 15% of the mice

have died and pathology is minimum, so measurements are not

confounded by disease/pathology. Therefore these were the two

ages used in all the experiments presented here unless otherwise

indicated.

Paraquat and diquat
Paraquat was injected interperitoneally at dose of 50 mg/kg of

animal body weight. Diquat was injected interperitoneally at a

dose of 100 mg/kg for survival studies and 50 mg/kg for

hepatotoxicity studies. A Hamilton syringe demarcated in 2.5 ml

increments was used for the injection, making it possible to adjust

dosage for body weight differences as small as 0.6 g. To track the

survival of mice after paraquat or diquat treatment, the cages

containing the treated mice were placed under an array of digital

surveillance cameras (Strategic Vista, Ontario, Canada). These

cameras monitored the animals continuously, and the footage was

used to determine the time of death with a precision of 1 min. The

time of injection was subtracted from the recorded time of death to

obtain the survival time for each animal. For studies of diquat-

induced hepatotoxicity, mice were anaesthetized with a standard

ketamine/acepromazine/xylazine cocktail (0.02 cc/25 g body

weight) 6 hr after diquat administration (50 mg/kg) and 200–

400 ml of blood were collected by cardiac puncture then trans-

ferred to heparinized storage tubes. The animals were euthanized

by cervical dislocation, and livers were removed and preserved in

10% neutral buffered formalin. Blood collected from diquat-

treated mice was stored on ice in lithium heparin tubes, and as

soon as possible after collection, plasma was separated by cen-

trifugation for 10 min at 1.5 kG and 4uC. ALT activity in the

plasma was measured as per manufacturer’s instructions using the

ALT Colorimetric Kit from Teco Diagnostics (Anaheim, CA).

Liver samples in 10% neutral buffered formalin were paraffin

embedded, sectioned, and fixed on slides. Apoptotic cells in these

sections were identified on the basis of double strand DNA breaks

using the ApopTag Kit from Chemicon (Temecula, CA, USA).

Cell nuclei that were both dark and compacted were identified

under a light microscope and scored as apoptotic. The number of

apoptotic nuclei in the entire cross section was divided by cross

sectional area (arbitrary grid units) to give number of apoptotic

cells per cross sectional area of liver.

Real-time PCR
Mice were fasted overnight and tissues were removed and frozen

in liquid nitrogen. Total RNA was isolated using RNA STAT-60

(Tel-test, Friendswood, TX, USA). Single stranded cDNA was

synthesized from 3.0 mg of RNA using the High-capacity cDNA

Archive Kit (P/N 4322171; ABI, Foster City, CA, USA). Real-time

PCR reaction was performed using TaqMan Universal PCR

Master Mix (P/N 4324018) and TaqMan-MGB probes for IGF

-1 (Mm00439561_m1), IGF-1R (Mm00802831_m1) and B2M

(Mm00437762_m1) all of which were purchased from ABI. All

samples were run in duplicate and quantitated in an ABI 7500

thermal cycler.

In vivo IGF-1R signaling
After an overnight fast, mice were given an i.p. injection of

1 mg/kg body weight of rhIGF-1 (Austral Biologicals, San

Ramon, CA, USA) or an equivalent volume of sterile saline.

Ten min post injection, quadriceps muscle was collected and

frozen in liquid nitrogen. Whole tissue homogenates were

prepared and protein concentration was determined by Bradford

assay [23]. For immunoblotting, primary antibody directed against

Reduced IGF-1R Signaling in Igf1r+/2 in Mice
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IGF-1R (anti-IGF1R) and HRP-linked secondary antibody were

purchased from Santa Cruz Biotechnology (Santa Cruz, CA,

USA) and primary antibody directed against phospho-Akt (anti-

pAkt Ser473) and total Akt (anti-Akt) were purchased from Cell

Signaling Technologies (Danvers, MA, USA). For the glucose

tolerance assay, mice were fasted overnight. Blood glucose was

measured using an Accucheck glucometer (Roche Diagnostics,

Indianapolis, IN, USA) at 0, 30, 60 and 120 min after i.p. injection

of 2 g/kg body weight of dextrose. Insulin tolerance tests were

performed by fasting the mice for 4 hr followed by i.p. injection

of 0.5 U/kg body weight of insulin (Novolin, Novo Nordisk,

Princeton, NJ, USA). Blood glucose was measured at 0, 30, 60 and

90 min. Serum IGF-1 assays of unstimulated WT and Igf1r+/2

animals were performed using kits from ALPCO (Windham, NH,

USA) as described by Delahunty et al. [24] to determine baseline

circulating IGF-1 levelsanimals to determine circulating IGF-1

levels were performed using kits from ALPCO (Windham, NH,

USA) as described by Delahunty et al. [24].

Euglycemic hyperinsulinemic clamps
Insulin clamps were done as described by Wang et al. [25]. Five

days prior to insulin clamp, mice were anesthetized using 150 mg

ketamine, 30 mg xylazine and 5 mg acepromazine sc, and a

catheter was inserted into the right jugular vein. Clamps were

performed on awake, unrestrained mice. At the start of the experi-

ment, a primed (5.3 ml/h61 min) continuous (0.3 ml/h) infusion

of human insulin (3.6 mU/min/kg) was started simultaneously

with a variable infusion of 10% dextrose in order to maintain

euglycemic conditions. Blood glucose levels were monitored by tail

vein sampling. At the end of the clamp, animals are anesthetized

with ketamine, and tissues were collected.

Statistics
The Cox-Mantel Log rank test was used to evaluate all survival

curves. Quantile regression as described by Koenker [26] was used

to compare means and medians. The Student’s t-test was used for

all two-sample comparisons reported other than survival data. For

all statistical tests returning significant p-values, these p-values are

reported to the first significant digit. Pathological lesions in post-

mortem samples collected from mice in the longevity study were

graded for severity on a scale of 1–4. For each lesion in each

organ, both severity and incidence were analyzed using the

following formula:

X ~ genotype z age z genotype:age

where X is incidence, severity, or burdenð Þ

For incidence (presence or absence of a lesion) the above formula

was used in a general linear model with a binomial error

distribution. For severity, the above formula was used in a

proportional-odds logistic regression model. For each organ,

neoplastic, non-neoplastic, and overall disease burdens (i.e., the

number of distinct lesions observed in that organ) were also

compared as was the aggregate severity of each type of lesion (i.e.,

the number of different organs in which that lesion was observed).

Finally, the animal-level disease burden (number of distinct lesions

per animal) was compared for neoplastic, non-neoplastic, and

overall lesions. For the three animal-level comparisons, the

following lesions were only counted once per animal even if they

were detected in more than one tissue: lymphacytic infiltration,

lymphoma, suppurative inflammation, carcinoma, metastatic

carcinoma, adenobranchiolar carcinoma, pheochromocytoma,

and lymphoid hyperplasia. These tests were done for any lesion

or grouping of lesions that occurred in more than five animals

of the same genotype. Male and female data were analyzed

separately. Altogether, 50 distinct lesions or groups of lesions were

analyzed in males and 53 in females and the Holm [27] method

was used to correct for multiple comparisons. The R statistical

language [28] with the binom [29] and car [30] packages was used

for the pathology analysis. In addition, the quantreg [26],

surv2sample [31], and eha [32] packages were used for survival

analysis.

Results

Characterization of Igf1r+/2 Mice
The body weights of male and female Igf1r+/2 mice were 9%

(20.8 vs. 22.8, p,0.001) and 12% (16.2 vs. 18.2, p,0.001) lower

than those of their WT littermates, respectively. The expression of

IGF-1R was measured in young (6 months) and old (25 months)

WT and Igf1r+/2 mice. The levels of Igf1r mRNA were

significantly reduced (,50%) in all tissues studied from young

(Figures 1a and 1c) and old (Figures 1b and 1d) Igf1r+/2 mice of

both sexes and paralleled by a decrease in Igf1r protein levels as

shown in Figures 1e and 1g which is similar to that reported for

young mice by Holzenberger et al. [15]. However, we also show in

Figures 1f and 1h that the expression of IGF-1R is reduced in old

mice. The reduced expression of Igf1r had no effect on serum

IGF-1 levels (Table S1) or tissue expression (mRNA levels) of IGF-

1 in various tissues, with the exception of kidneys in young males

(Table S2).

Previously, Holzenberger et al. [15] showed that the IGF-1

signal as measured by IGF-1-induced phosphorylation of IGF-1R,

Figure 1. Igf1rb expression. The mRNA and protein levels of the b
subunit of Igf1r were measured in the kidney, lung, and muscle
(quadriceps) from male and female mice that were 6 (Graphs A, E, C,
and G) and 25 (Graphs B, F, D, and H) months old. The graphs on the left
represent data from qRT-PCR and those on the right represent data
from Western blots. Three to 6 animals were used per group. Black bars
represent WT mice and red bars represent Igf1r+/2 mice; the mean and
SEM are shown, and asterisks indicate tissues showing a difference
between WT and Igf1r+/2 where p,0.05. The Student’s t-test was used
for the comparisons.
doi:10.1371/journal.pone.0026891.g001

Reduced IGF-1R Signaling in Igf1r+/2 in Mice
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IRS-1 and that Shc, was reduced in embryonic fibroblasts isolated

from Igf1r+/2 mice. To determine whether reduced IGF-1R levels

compromise signaling in whole animals, we compared the ability

of Igf1r+/2 and WT mice to respond to a bolus of IGF-1 in vivo by

measuring the phosphorylation of Akt in muscle. Akt phosphor-

ylation in muscle was induced by IGF-1 in all mice: young

(Figures 2a and 2c) and old (Figures 2b and 2d), WT and Igf1r+/2.

However, induction of Akt in both male and female Igf1r+/2 mice

was approximately half that observed in the WT mice. Akt inhibits

GSK3b by phosphorylating it, and IGF-1 signaling induces Igfbp5

expression [33,34] therefore we also measured the phosphoryla-

tion of GSK3b and mRNA transcript levels of Igfbp5 in the

quadriceps of WT and Igf1r+/2 mice. We observed a decrease

both in IGF-1 stimulated phosphorylation of GSK3bb (Figures 3a

and 3b) and in Igfbp5 transcript levels (Figures 3c and 3d),

confirming a reduction of IGF-1 dependent signaling in Igf1r+/2

mice as would be predicted for a biologically significant

impairment of IGF-1R function.

Glucose and Insulin Tolerance Tests
Holtzenberger et al. [15] reported that adult male Igf1r+/2 mice,

but not female Igf1r+/2 mice, were less glucose tolerant than WT

mice when given a bolus of glucose. In our study, we measured both

glucose and insulin tolerance in young (5 months) and old (25

months) male and female Igf1r+/2 and WT mice. We found that

young male and female Igf1r+/2 mice showed the same glucose

tolerance as age-matched WT mice (Figures 4a and 4b). In contrast,

old male Igf1r+/2 mice were significantly less glucose tolerant

compared to old male WT mice whether assessed by comparison of

blood glucose levels at each time point post-glucose injection or as

AUC (Figure 4c) while old female Igf1r+/2and WT mice showed no

difference in glucose tolerance (Figure 4d). Of interest, when

comparing young and old wt mice, old mice were more glucose

tolerant than young mice and also had lower fed levels of serum

glucose. Our observation of paradoxical age-related enhancement

of glucose tolerance is exactly as has been reported previously in

wild type C57BL/6J mice by Leiter’s lab [35]. Young male and

female Igf1r+/2 and WT mice experienced similar declines in blood

glucose after insulin injection (Figures 4e and 4f). )ld Igf1r+/2 males

showed a significantly attenuated response to an insulin challenge as

compared to WT mice (Figure 4g). The old Igf1r+/2 female mice,

though glucose tolerant, displayed an overall trend toward insulin

resistance compared to WT mice (Figure 4h). Therefore, we

measured insulin sensitivity in the old female Igf1r+/2 and WT mice

using the hyperinslinemic-euglycemic clamp. As shown in Figure 5,

the glucose infusion rate required to maintain euglycemia was

significantly lower in the aged Igf1r+/2 females as compared to the

WT, indicating that female Igf1r+/2 mice were less sensitive to the

glucose lowering effect of insulin.

Sensitivity of Igf1r+/2 Mice to Oxidative Stress
Paraquat is a superoxide-anion generator that is commonly used

to induce oxidative stress in cells and whole animals and was used

Figure 2. Induction of AKT phosphorylation by IGF-1 in WT and
Igf-1r+/2 mice. Levels of phosphorylated AKT were measured in the
muscle (quadriceps) of 6- (graphs A and C) and 25- (graphs B and D)
month-old male and female mice following injection of saline or rhIGF-1
(1 mg/kg body wt.) using Western blots as described in Materials and
Methods. Three to 4 animals were used per group.
doi:10.1371/journal.pone.0026891.g002

Figure 3. Induction of GSK3b phosphorylation and levels of Igfbp5 mRNA transcript in WT and Igf1r+/2 mice. Levels of phosphorylated
GSK3b were measured in the muscle (quadriceps) of 25-month-old male (graph A) and female (graph B) mice following injection of saline or rhIGF-1
(1 mg/kg body wt.) using Western blots as described in Materials and Methods. Three animals were used per group. The expression of Igfbp5 was
measured in the same samples using qRT-PCR (graphs C and D). The vertical axis represents expression levels relative to B2M and the error bars
represent SEM. P-values of 0.01 and 0.005 are represented by * and **, respectively.
doi:10.1371/journal.pone.0026891.g003

Reduced IGF-1R Signaling in Igf1r+/2 in Mice
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by Holzenberger et al. [15] to show that female, but not male

Igf1r+/2 mice were more resistant to oxidative stress than WT

mice. Male Igf1r+/2 and WT mice show no statistically significant

difference in survival when given a lethal dose of paraquat; 89% of

the WT mice and 92% of the Igf1r+/2 mice died within eight days

(Figure 6a). However, female Igf1r+/2 mice were more resistant to

paraquat toxicity; 82% of the WT female mice died during the 8-

day observation period compared to 37% of the Igf1r+/2 mice

(Figure 6b).

Because the effect of paraquat is concentrated mainly in the

lung, we also compared the sensitivity of Igf1r+/2 and WT mice to

diquat, another superoxide anion generator that affects a variety of

tissues to assess the generality of the increased resistance of the

female Igf1r+/2 mice to oxidative stress. Again, there was no

significant difference between WT and Igf1r+/2 male mice; all

mice died within 31 hours of diquat administration (Figure 6c).

However, the female Igf1r+/2 mice showed a significantly

increased resistance to diquat toxicity; all WT females died within

36 hours of treatment but only 60% of the Igf1r+/2 females did so

(Figure 6d). We also determined the sensitivity of the liver of

female WT and Igf1r+/2 mice to oxidative stress by measuring the

activity of alanine-leucine transaminase (ALT) in the plasma six

hours after treatment with a sub-lethal dose of diquat. ALT

activity of Igf1r+/2 mice was significantly (42%) lower compared

to WT mice (Figure 6e) indicating reduced liver damage in the

Igf1r+/2 mice. In the same mice, we measured the induction of

apoptosis in liver and found a significant reduction (64%) of

apoptotic cells in Igf1r+/2 mice compared to WT mice (Figure 6f).

Thus, female Igf1r+/2 mice show increased resistance to diquat-

induced toxicity both in the liver and at the whole animal level.

Longevity and End-of-Life Pathology of Igf1r+/2 Mice
The survival curves for male and female Igf1r+/2 and WT mice

are shown in Figures 7a and 7b, respectively, and the detailed

statistical analysis of the survival data are given in the Table 1. The

mean survival of the WT male and female mice was 32.8 and 30.8

months, respectively, and fewer than 7% of the mice of either sex

or genotype died before 20 months of age. Thus, the baseline

lifespans in our aging colony are optimal, clearly not limited by

disease or environmental stress and are representative of age-

related processes independent of preventable extrinsic causes. The

mean and median survival of the male Igf1r+/2 mice were slightly

(4 to 8%) shorter than the male WT mice; however, these

differences were not statistically significant, nor were the overall

distributions of survival times according the log-rank test. The

female Igf1r+/2 mice showed a 5 to 7% increase in mean, median,

and 90th percentile survival compared to female WT mice; and,

these differences also were not significant; however, the overall

distributions of survival times were significantly different at the

P = 0.02 level according to the log-rank test.

We also conducted a comprehensive analysis of end-of-life

pathology in the 222 mice used in the lifespan study. As expected

for mice in the C57BL/6 background at the end of life [36,37], the

most common neoplastic lesion in both sexes and genotypes was

lymphoma, which affected 75 to 89 percent of the mice. In male

mice, the only lesions showing any evidence of a difference in

incidence were the 36% decrease in all fatal tumors and the 47%

decrease in fatal lymphoma in Igf1r+/2 mice compared to WT

mice (Table S3); however, these differences do not attain

significance when corrected for multiple comparisons. In female

mice, only the incidence of lymphocytic infiltrates, which is one

measure of chronic inflammation, showed any evidence for a

difference between Igf1r+/2 and WT mice (a 30% decrease in

Igf1r+/2 mice) (Table S4); however, these differences also do not

attain significance when corrected for multiple comparisons. We

also measured the severity of the major pathological lesions in

Igf1r+/2 and WT mice (Table S5). The only lesions that showed

any evidence for a difference in severity were all fatal tumors in

Figure 4. Glucose and Insulin Tolerance Tests. GTTs (2 g/kg, i.p.)
were performed in 6-month-old male (A) and female (B) as well as 25-
month-old male (C) and female (D) mice after a 12 hr fast, and blood
glucose was recorded at times indicated. ITTs (0.5 U/kg, i.p.) were
performed in 6-month-old male (E) and female (F) as well as 25-month-
old male (G) and female (H) mice after a 5 hr fast. The data were
obtained from 6 to 8 animals per group and the SEM is shown. Black
lines show the blood glucose levels of WT (black lines) and Igf1r+/2 mice
(red lines). The Student’s t-test was used for the comparisons of the
areas under the curve (AUC) and the p-values are shown on each graph.
Individual points were also compared in the same manner and
corrected for multiple comparisons, and corrected p-values less than
0.05 are denoted by asterisks.
doi:10.1371/journal.pone.0026891.g004

Figure 5. Peripheral Insulin Sensitivity. Peripheral (muscle) insulin
sensitivity was measured with a 90 min hyperinsulinemic euglycemic
clamp performed in 4 WT and 5 Igf1r+/2 females, all 25 months old. Bars
represent the average 6 SE glucose infusion rate during the last 20 min
of the clamp. A student’s t-test was used to compare the infusion rates
between the two groups, averaged over the 20 min period for each
animal.
doi:10.1371/journal.pone.0026891.g005

Reduced IGF-1R Signaling in Igf1r+/2 in Mice
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males (a 36% decrease in Igf1r+/2 mice) and lymphocytic infiltrates

in females (a 52% decrease in Igf1r+/2 mice). However again, these

differences do not attain significance when corrected for multiple

comparisons. The total disease burden and tumor burden of the

Igf1r+/2 and WT mice were also measured because previous

studies show that disease burden is significantly reduced in

established mouse models of longevity, e.g., dietary restriction

[21], Ames Dwarf mice [20], and growth hormone receptor

knockout mice [22]. No significant differences were observed in

either disease or tumor burden between Igf1r+/2 and WT mice for

either males or females (Table S6). Thus, our detailed pathological

analyses of Igf1r+/2 mice show that reduced IGF-1 signaling had

no major effect on end-of-life pathology in either male or female

mice as would be predicted if reduced IGF-1 signaling delayed

aging.

Discussion

The major observation of our study is that reduced IGF-1

signaling had no significant effect on the mean, median, or 90%

survival of either male or female Igf1r+/2 mice compared to WT

mice. Only when the overall distributions of survival times were

analyzed by the log-rank test was a significant difference observed

between WT and female Igf1r+/2 mice (mean survival was

increased less than 5%, p = 0.02). This finding is in sharp contrast

to the previous study by Holzenberger et al. [15], which reported

that the mean lifespan of female Igf1r+/2 mice was increased 33%

compared to WT mice (756646 vs. 568649 compared to the

967629 vs. 923621 from our study shown in Table 1). It should

be noted that we studied larger cohorts of 47 to 68 animals, which

allowed us to detect a 10% change in mean survival with a power

of 0.8 [16].

We identified three likely explanations for the disparity between

our observations on lifespan and those by Holzenberger et. al [15].

First, is the possibility that the mutations in the two Igf1r+/2 mouse

models are not equivalent because they were produced indepen-

dently by two laboratories using different methods for generating

knockout mice. The Holzenberger Igf1r+/2 mice were produced

by replacing exon 3 of Igf1r (which encodes most of the ligand

binding domain on the a subunit of the receptor), with a loxP

flanked exon 3 that had an adjacent neomycin resistance cassette.

The entire segment was then deleted by crossing into Cre

expressing mice. In contrast, the Efstratiadis group [14] performed

Figure 7. Longevity of WT and Igf1r+/2 mice. The survival curves of 55 WT and 52 Igf1r+/2 male mice (A) and 68 WT and 47 Igf1r+/2 female (B)
mice are shown in black for WT mice and red for Igf1r+/2mice. The survival curves were compared using the log-rank test, and the p-values are shown.
doi:10.1371/journal.pone.0026891.g007

Figure 6. Sensitivity of WT and Igf1r+/2 mice to oxidative stress. Paraquat (50 mg/kg) was administered to 37 male WT mice and 26 male
Igf1r+/2 mice (graph A) as well as to 39 female WT mice and 24 female Igf1r+/2mice (graph B). Diquat (50 mg/kg) was administered to 21 WT and 26
Igf1r+/2 male mice (graph C) as well as to 22 WT and 17 Igf1r+/2 female mice (graph D). The mice in graphs A–D were 5 to 9.5 months of age.
Censored data points (due to uncertainty about the exact minute of an animal’s death) are indicated by vertical tick-marks. Graphs E and F: Female
WT and Igf1r+/2 mice (10 to 11 months of age) were treated with diquat (50 mg/kg). Six hours after treatment the mice were killed and the ALT
activities in the plasma (graph E) and number of apoptotic cells per unit area in a liver cross section (graph F) of 7 WT and 8 Igf1r+/2mice were
determined. The mean and SEM are shown in the bar graphs. Black represents WT data and red represents Igf1r+/2data. Survival data were analyzed
using the log-rank test while the ALT and apoptosis data were analyzed using Student’s t-test and the p-values are shown.
doi:10.1371/journal.pone.0026891.g006
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a traditional knockout of the same exon, directly replacing it by

homologous recombination. However, in both cases, virtually the

same region was removed. Furthermore, both the Holzenberger

laboratory [15], the Efstratiadis laboratory [14], and our

laboratory observed ,50% decrease in IGF1r expression in

tissues of the Igf1r+/2 mice using quantitative RT-PCR and

Western blots. Therefore, we do not believe that the differences in

how the respective knockout mice were generated have any effect

of IGF-1R expression and are responsible for the contradictory

lifespan data.

The second possibility is that the difference in lifespan is due to

the genetic background of the Igf1r+/2 mice because the mice used

by Holzenberger et al. [15] were on the 129/J background, and

the mice used in our study were on the C57Bl/6 background. We

believe that it is unlikely that this is the reason for the

contradictory lifespan data because all the other major phenotypes

reported for the Igf1r+/2 mice by Holzenberger et al. [15] are

similar to what we observed. For example, both studies show the

Igf1r+/2 mice have slightly smaller body weights (,10%) than WT

mice, Igf1r+/2 mice show ,50% decrease in IGF-1R expression

and reduced IGF-1 signaling, and male Igf1r+/2 mice show

impaired glucose tolerance on the glucose tolerance test. In

addition, our data on the sensitivity of the mice to paraquat were

virtually identical to that reported by Holzenberger et al. [15];

male Igf1r+/2 and WT mice had a similar paraquat sensitivity

while female Igf1r+/2 mice showed significant resistance to

paraquat compared to female WT mice. In an ongoing study,

we are measuring the lifespan of female Igf1r+/2 mice on a

C57BL/66 129Sv F1 background. As shown in Figure S1, with

the majority of animals in both groups dead, we observe no

statistically significant difference between the censored survival

curves of WT and Igf1r+/2 mice nor between median survival

times. Thus, these preliminary data argue against strain back-

ground accounting for the observed results.

The final possibility, which we consider the most likely

explanation for the differences between our lifespan data and

those reported by Holzenberger et al. [15] is the number of

animals used in the lifespan studies and the housing conditions.

Holzenberger et al. [15] used a relatively small number of mice in

their lifespan study (12 to 20 mice per group). In our study, 47 to

68 mice per group were used. Using larger sample sizes reduces

the effects of uncontrolled variables, such as maternal- or paternal-

specific effects on lifespan [38]. In other words, a larger sample

size reduces the influence that each animal has on group

summaries of survival. Therefore, the lifespan data are less likely

to be distorted by any outlying observations and are more

reproducible. However, we believe that differences in housing

conditions, as evidenced by the length of the lifespans of the mice

in the two studies, is also a major factor in the contradictory

lifespan data. The mean lifespans of the WT and Igf1r+/2 female

mice reported by Holzenberger et al. [15] were 568 and 756 days,

respectively, while the WT and Igf1r+/2 male mice lived an

average of 585 and 679 days, respectively. In fact, 40% of the

female WT mice died by 12 months of age. In contrast, the mean

lifespans of 129/J mice maintained at The Jackson Laboratory are

reported to be 776 days and 855 days for female and male mice,

respectively [39]. In other words, the lifespan of the WT 129/J

female mice in the study by Holzenberger et al. [15] are 37%

shorter than the lifespan reported at The Jackson Laboratory, and

the Igf1r+/2 female mice merely attain a normal mean lifespan for

this strain of mice. The lifespan parameters of the C57BL/6 mice

in our study are in line with or greater than that reported by other

groups, e.g., National Institute on Aging [40] or The Jackson

Laboratory [39], for C57Bl/6 mice maintained under contempo-

rary pathogen-free, barrier conditions. For example, the mean

lifespan of the male and female WT mice were 983 and 923 days,

respectively, and fewer than 7% of the mice of either sex or

genotype died before 20 months of age. By maximizing the

lifespan of the mice, we have minimized the effect of genotype/

environment interactions on lifespan, i.e., one has a more accurate

measure of the effect of the genetic manipulation on aging. We

propose that that the increase in the lifespan of the female and not

male Igf1r+/2 mice observed by Holzenberger et al. [15] was due

largely to the increased resistance of the female Igf1r+/2 mice to

stress. Therefore, when the female mice are maintained in a more

optimal and less stressful environment where they are able to live

out their lifespan, such as in our study, no major difference in the

lifespan of female Igf1r+/2 and WT mice is observed. A similar

observation was made for mice lacking methionine sulfoxide

reductase-A (MsrA). Moskovitz et al. [41] reported that the MsrA

knockout mice, which are sensitive to oxidative stress, had a

shorter lifespan than WT mice when maintained in a colony with

a relatively short lifespan (e.g., the mean lifespan of WT mice was

680 days). However, when the MsrA knockout mice were

maintained under husbandry conditions that give optimal lifespan

(e.g., the mean lifespan of the WT mice was 925 days), Salmon

et al. [42] showed that the lifespan of the MsrA knockout and WT

mice were identical.

Although lifespan data are critical in determining whether a

manipulation retards aging, pathological data are also necessary

because a pathological assessment gives one the likely cause of

death and how the progression of pathological lesions are affected

Table 1. A summary of lifespan data for WT and Igf1r+/2 mice.

Male Female

WT Igf1r+/2 % Change P WT Igf1r+/2 % Change P

N 55 52 68 47

Mean
S EM

983
21

939
24

24.5 0.16 923
21

967
29

4.7 0.22

Median
(±95% CI)

1004
(937, 1048)

920
(873, 1013)

28.4 0.53 948
(896,1001)

1013
(924,1062)

6.9 0.64

90th Percentile
(±95% CI)

1139
(1128, 1240)

1160
(1138, 1205)

1.8 0.82 1110
(1091, 1127)

1184
(1143,1290)

6.7 0.26

In addition to the log-rank test, the means from the survival data shown in Figure 6A were compared using a bootstrap t-test and the medians and 90th percentiles were
compared using quantile regression as described in Materials and Methods.
doi:10.1371/journal.pone.0026891.t001
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by the experimental manipulation tested, i.e., how broadly a

manipulation affects age-related diseases [43]. For example, a wide

variety of age-related pathological lesions are significantly delayed

and/or reduced in three mouse models that show delayed aging,

e.g., dietary restriction [21,44], Ames Dwarf mice [20], and

growth hormone receptor knockout mice [22]. In addition, these

manipulations reduce the severity of many of the major

pathological lesions and reduce the disease burden. The extensive

pathological data we have obtained on the Igf1r+/2 mice show no

significant decrease in either the incidence or severity of any

pathological lesion and no difference in disease burden compared

to WT mice. Thus, the absence of an effect of IGF-1 signaling on

end-of-life pathology is quite different than that observed with

other manipulations that have been well documented to enhance

longevity and retard aging in mice.

In summary, our lifespan and pathology data show that the

Igf1r+/2 mouse is not a model of delayed aging. These data have

important consequences for the field of aging because it is well

established that loss-of-function mutations in the insulin/IGF-1

signaling pathway lead to increased lifespan and an anti-aging

phenotype in invertebrates [45]. Especially relevant to this study are

the mutations in the daf-2 gene in C. elegans and the InR gene in

Drosophila that effect the function of the insulin/IGF-1 receptor. C.

elegans and Drosophila have only one receptor for insulin and IGF-1,

while mammals, such as mice and humans, have two different

receptors, one for insulin and one IGF-1, each coded by a separate

gene. Our data demonstrate quite clearly that reducing IGF-1

signaling approximately 50% in Igf1r+/2 mice has very little effect

on lifespan and end-of-life pathology, i.e., there is no evidence that

these animals exhibit an anti-aging phenotype as has been observed

in invertebrates when a loss of function occurs in the insulin/IGF-1

receptor. In addition, it has been argued that the decrease in

circulating IGF-1 levels in dietary restricted mice [46], Ames and

Snell dwarf mice [47,48], and growth receptor knockout mice [49]

plays an important role in the extended lifespan of these models

through reduced IGF-1 signaling [45]. The Igf1r+/2 mouse model

has allowed us to study the effect of just reduced IGF-1 signaling on

lifespan/aging from the many other pathways that are affected by

dietary restriction and dwarfism. Our data demonstrate clearly that

neither male nor female Igf1r+/2 mice show the increase in lifespan

or reduced/delayed pathology that is observed in male and female

mice that are dietary restricted or have mutations resulting in the

dwarf phenotype. Based on these data, we conclude that the

reduced circulating IGF-1 levels in dietary restricted and dwarf mice

play little if any role the anti-aging phenotype observed in these

mice. In the case of dwarfs, it seems reasonable to conclude that

reduced GH signaling per se is far more important than reduced

IGF-1 in lifespan extension. Moreover, one common characteristic

of dwarf mice and CR rodents is increased insulin sensitivity

[50,51]; in contrast, Igf1r+/2 mice do not have increased insulin

sensitivity, and in fact become insulin resistant as they age. In

addition, old male Igf1r+/2 mice develop glucose intolerance (with

females exhibiting a tendency to glucose intolerance). Of interest

with respect to gluco-regulation in mice, our old wt mice were more

glucose tolerant than young wild type mice. This paradoxical

enhancement of glucose tolerance in old C57Bl/6J mice has been

previously reported by Leiter and colleagues [35], and has been

attributed to increased beta cell insulin secretory capacity in old

C57Bbl/6J wild type mice. This in turn suggests that the relative

glucose-intolerance in old male Igf1r+/2 mice is due to insulin

resistance and a relative failure of the glucose sensing capacity in

their beta cells thereby impairing glucose simulated insulin

secretion. A direction for future research would be to test this

hypothesis via islet morphometry and glucose-stimulated insulin

release studies. Our present results suggest that haploinsufficiency of

IGF-1R increases the probability for developing type 2 diabetes by

diminishing peripheral insulin action and by preventing glucose

stimulated compensatory increase in insulin secretion.

Our experiments follow the generally accepted reductionist

paradigm in that optimal conditions (e.g., nutrition, temperature,

humidity) and essentially a pathogen-free environment are used to

isolate the underlying process of organismal aging from prevent-

able pathologies as much as possible. In light of these results it

appears that Holzenberger’s group has demonstrated that female

Igf1r+/2 are rescued from some as-yet unidentified environmental

stressor, and we have demonstrated that the intrinsic aging process

is not affected by this mutation. However, as with any other

animal experiment conducted under carefully controlled condi-

tions, caution is advised in drawing inferences about other species,

particularly humans. Even with access to state of the art health

care, humans clearly do not live under optimal conditions. The

stressor against which female Igf1r+/2 mice are protected may well

be clinically relevant and identifying this stressor would be an

important avenue for future research. Such a search would

nevertheless need as its starting point an environment where

nothing interferes with an animal living to its naturally attainable

lifespan except a candidate stressor against which the Igf1r+/2

genotype is believed to be protective.

Supporting Information

Figure S1 Lifespan of Female WT and Igf1r+/2 Mice on
a C57BL/6X129Sv F1 Background. Male C57Bl/6 Igf1r+/2

mice were crossed to female 129 mice to generate female WT and

Igf1r+/2 mice on a C57BL/6x129Sv F1 background. Of the 66

WT mice, 47 mice died from natural causes, 5 mice were

censored, and 14 mice were alive at the time of data analysis. Of

24 Igf1r+/2 mice, 16 mice died of natural causes and 8 mice were

alive at the time of data analysis. Lifespans of female C57BL/66
129Sv F1 hybrids were analyzed using the log-rank test an no

significant difference was found (P = 0.48). The median survivals

were 1009 days (95% confidence interval 963–1079 days) for the

WT mice and 1016 days (95% confidence interval 956–1170) for

the Igf1r+/2 mice.

(PDF)

Table S1 Circulating Levels of IGF-1. Serum from three

mice from each group was assayed for IGF-1 as described in

Materials and Methods, and the IGF-1 levels (expressed in ng/ml)

are shown.

(PDF)

Table S2 Igf1r Expression. The mRNA levels of Igf1r were

measured in the indicated tissues from male and female mice at 6

and 25 months of age. The mean and SEM columns are for

DDCT values of Igf1r mRNA normalized to the median

expression level of the male WT group in each respective tissue.

The Student’s t-test was used for the comparisons. The p-values

are shown with the tissue having a p,0.05, highlighted.

(PDF)

Table S3 Incidence of Lesions in Males. The presence or

absence of each lesion or category of lesions shown was coded as 0

or 1, respectively, for each animal. Where a lesion was judged to

have caused the death of an animal, the total incidence and the

incidence of just the fatal instance of that lesion are shown on

separate lines indented below the name of the lesion. Where data

were obtained for both a category of lesion and organ-specific

lesions within that category, the latter are shown indented below

the name of the category. Otherwise the lesions are listed from
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most prevalent to least. Sample sizes vary because some tissues

could not be analyzed due to autolysis. Lesions that had an

incidence of 9 or more in the WT and/or Igf1r+/2 mice were

selected for statistical analysis. For each such lesion, a logistic

regression model was fitted with incidence as the response variable

and genotype, age, and the age-genotype as the covariates. The

p-values from the genotype and age:genotype effects were adjusted

for multiple comparisons using the Holm method [27]. The raw

and adjusted p-values for the genotype effect are shown. None of

the age:genotype p-values approached significance. The highlight-

ed rows indicate lesions where the uncorrected p-values are less

than 0.05. Given that none of these values were significant after

adjustment, the highlighted values should be interpreted as a

possibly meaningful trend rather than a significant difference.

(PDF)

Table S4 Incidence of Lesions in Females. See legend for

table S3.

(PDF)

Table S5 Males and Females, Severity. Organ-specific

lesions (glomerulonephritis, gonadal degeneration, nephrocalcino-

sis, pituitary adenoma, and subscapular hyperplasia) were assigned

a severity grade as described in Methods by Ikeno et. al. [20–22].

For lymphoma and lymphocytic infiltration, the number of organs

where those lesions were observed was used as a measure of whole-

organism severity. A logistic regression model was fitted to the

organ-specific data and a linear model was fitted to the lymphoma

and lymphocytic infiltrate data. In all cases, severity was the

response variable and genotype, age and the age-genotype

interaction were the covariates. The p-values for the genotype

and age-genotype effects were adjusted for multiple comparisons

using the Holm method [27]. The raw and adjusted p-values for

the genotype effect are shown. None of the age-genotype p-values

approached significance. The highlighted rows indicate lesions

where the uncorrected p-values are less than 0.05. Given that none

of these values were significant after adjustment for multiple

comparisons, the highlighted values should be interpreted as a

possibly meaningful trend rather than a strongly significant

difference.

(PDF)

Table S6 Males and Females, Disease Burden. Disease

burden is defined as the number of distinct lesions observed in an

animal (either total lesions or only neoplastic ones) as described in

Materials and Methods. In calculating neoplastic burden, lesions

were counted separately for each organ in which they were

observed with the exception of lymphoma, which was counted

only once regardless of how many organs it was found in. The p-

values from the genotype and genotype-age effects were adjusted

for multiple comparisons using the Holm method [27]. The raw

and adjusted p-values for the genotype effect are shown. None of

the genotype-age p-values approached significance.

(PDF)
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