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Abstract

micro(mi)RNAs are small non-coding RNAs that negatively regulate expression of most mRNAs. They are powerful regulators
of various differentiation stages, and the expression of genes that either negatively or positively correlate with expressed
miRNAs is expected to hold information on the biological state of the cell and, hence, of the function of the expressed
miRNAs. We have compared the large amount of available gene array data on the steady state system of the NCI60 cell lines
to two different data sets containing information on the expression of 583 individual miRNAs. In addition, we have
generated custom data sets containing expression information of 54 miRNA families sharing the same seed match. We have
developed a novel strategy for correlating miRNAs with individual genes based on a summed Pearson Correlation
Coefficient (sPCC) that mimics an in silico titration experiment. By focusing on the genes that correlate with the expression
of miRNAs without necessarily being direct targets of miRNAs, we have clustered miRNAs into different functional groups.
This has resulted in the identification of three novel miRNAs that are linked to the epithelial-to-mesenchymal transition
(EMT) in addition to the known EMT regulators of the miR-200 miRNA family. In addition, an analysis of gene signatures
associated with EMT, c-MYC activity, and ribosomal protein gene expression allowed us to assign different activities to each
of the functional clusters of miRNAs. All correlation data are available via a web interface that allows investigators to identify
genes whose expression correlates with the expression of single miRNAs or entire miRNA families. miRConnect.org will aid
in identifying pathways regulated by miRNAs without requiring specific knowledge of miRNA targets.
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Introduction

Micro(mi)RNAs are small, 19–22 nucleotide long, non-coding

RNAs that regulate gene expression mostly by targeting the

39UTR of mRNAs resulting in reduced translation of proteins or

degradation of the mRNAs. miRNAs are fundamental regulators

of cell differentiation and developmental processes. They have also

been recognized to be highly relevant in cancer formation and

progression [1]. Recently it was demonstrated that almost all

human genes are under control of miRNAs [2]. However, because

miRNAs regulate the expression of hundreds of target genes [3],

and many genes are targeted by multiple miRNAs [4], assigning

biological functions to miRNAs or miRNA families has been a

difficult task.

miRNAs contain at their 59 end a short stretch of 6–8

nucleotides complementary to the seed match in the target

mRNA. This complementarity is accessible to computational

analysis and multiple algorithms have been developed to predict

miRNA targets [5]. However, target predictions made with these

algorithms are not accurate enough to deduce biological function

of miRNAs solely based on the lists of predicted targets. Target

validation is usually done by either overexpressing miRNAs or by

inhibiting their function followed by measuring the changes in

mRNA or protein levels in transfected cells [2,6]. However, both

overexpression and inhibition of miRNAs have caveats [7] and it is

not clear whether the observed changes at the mRNA and protein

level are the result of direct regulation by miRNAs or are the result

of changes downstream of the miRNA-targeted genes.

We have recently used the NCI60 cells [8], a panel of 60 cancer

cell lines maintained at the NCI, to identify and validate

connections between miRNAs and their targets. Unperturbed

array data points on expression levels of hundreds of miRNAs and

more than one hundred thousand gene probes on multiple array

platforms make the NCI60 cells a unique system to identify cancer

relevant connections between miRNAs and genes regulated by

miRNAs. Using the NCI60 system we previously validated

HMGA2 and IMP1 as targets of the let-7 family of miRNAs

[9,10]. In addition, we identified the members of the miR-200

family and validated two E-box binding transcription factors,

ZEB1 and ZEB2 as targets [11]. Most recently we validated the

tyrosine phosphatase FAP1 as a miR-200 target [12]. These

examples demonstrate the power of the NCI60 data sets to

connect miRNAs with their targets. However, identification of

single miRNA targets without a cellular context or knowledge of
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all the targets for a miRNA makes it difficult to connect miRNAs

with biology or pathology. Our studies of let-7 and miR-200 in the

NCI60 cells also allowed prediction and confirmation of the

biological function of these miRNAs. Let-7 was found to be a

marker for differentiated cancer cells [9,13], and miR-200 was

identified as a powerful marker and regulator of the epithelial-to-

mesenchymal transition (EMT) [11,14].

Most of our findings were made by comparing miRNA and

mRNA expression levels, which at the time was surprising,

considering that miRNAs in mammalian cells were believed to

mostly act by translational silencing without affecting mRNA

expression levels. However, it had also been demonstrated that

mRNA abundance of the majority of the targeted genes was

somewhat affected by miRNAs [15,16]. While there is still

controversy on the predominant way by which miRNAs regulate

gene expression [17], a recent study suggested that, for a

substantial number of genes targeted by miRNAs, destabilization

of mRNA is the main mechanism of protein repression by

miRNAs [18], an observation that makes the NCI60 mRNA/

miRNA data sets a valuable tool for studying miRNA function in

cancer cells.

Transfecting cells with either miRNAs or miRNA inhibitors

usually results in changes in abundance of a large number of

mRNAs. Interestingly, mRNAs that are negatively regulated by

miRNAs are found, as well as a large number of mRNAs that

positively correlate with miRNA expression. These changes in

mRNA levels have generally been considered to be caused by

genes coregulated with miRNAs or to be secondary events.

Indeed, it is likely that the majority of genes whose expression

responds to changes in the expression of miRNAs are not direct

targets of the miRNA per se, but are biological effectors relevant

to the function of the miRNA. Especially when detected with

the steady state system of the NCI60 cells, these biological

effector genes may hold important information regarding the

endogenous function of miRNAs. This was most obvious for

miR-200. A small change in miR-200 expression (about 2 fold)

resulted in a moderate change in mRNA levels of its targets

ZEB1 and ZEB2 (about 5–7 fold), which resulted in a massive

change in the E-cadherin/Vimentin ratio (over 8 orders of

magnitude) [11]. The enormous positive correlation between

the expression of miR-200 and the E-cadherin/Vimentin ratio

allowed us to assign the function of ‘‘epithelial regulator’’ to the

miR-200 family even before we had identified ZEB1 and ZEB2

as targets. Encouraged by this analysis, we have now used the

NCI60 system to identify secondary correlators of miRNAs

(which can be in the thousands as in the case of EMT [19]) in a

genome-wide analysis as they can hold important information

on the biological state of a cell.

We have developed a novel method to cluster miRNAs or

miRNA families according to their biological correlators rather

than their predicted targets or their chromosomal colocalization or

their tissue specific expression. miRNAs were clustered into

distinct functional groups according to the expression of their

biological effector genes. We have validated the activity of one of

these clusters, which contains all members of the miR-200 family,

in regulating the epithelial nature of cells. This resulted in the

identification of three novel miRNAs, miR-7, miR-203 and miR-

375, to function in epithelial maintenance. In addition, we have

identified clusters of cancer relevant miRNAs that are either

growth promoting or growth suppressing in nature based on the

correlation of their expression with the expression of either

ribosomal proteins or c-MYC regulated genes. We have created a

web-based interface, miRConnect.org, which provides a robust

and easy-to-use tool for investigators to identify novel connections

between miRNAs or miRNA families and groups of genes that are

markers for various biological states.

Results

Generation of correlations between miRNA and gene
expression

In order to explore biological activities of miRNA we first

established the correlations between expression of miRNAs and

genes. We made use of several data sets available for the NCI60 cells

(59 cell lines): 1) the expression profile of 208 human miRNAs

quantified by real-time PCR (the ‘‘Q’’ data set) [20]; 2) four data sets

of human gene expression profiles (STANFORD, GENELO-

GIC_U95, GENELOGIC_U133 and NOVARTIS) available on

the NCI Developmental Therapeutics Program (DTP) server. In the

Q data set, 136 miRNAs were defined as being expressed at

detectable levels (as assessed by real-time PCR) in at least 30 of 59

cell lines (Table S1). The NCI60 cells represent 9 different cancers.

The cutoff of 30 cell lines was chosen to include at least half of cell

lines, and to ensure that at least four different tissue origins were

represented. An advantage of the NCI60 system is the ability of

combining individual endogenous miRNA expression in a way

represented by correlating gene expression with the expression of an

entire miRNA family (i.e., all 9 let-7 activities represented in the Q

data set). The 136 miRNAs contained members of 24 seed families

(miRNAs that share the same seed sequence with more than one

family member, Table S2). In addition, due to their predicted

overlapping function, we generated an additional custom family of

all miR-200 family members; miR-200 falls into two different seed

families, miR-141/200a and miR-200bc/429, distinguished by only

one nucleotide difference in the center of the seed sequence [11,14].

The most common and well-defined strategy to explore miRNA-

gene associations is the Pearson’s Correlation Coefficient (PCC)

[21,22]. While the PCC is a powerful tool to detect correlations, it

has limitations. For example, PCC gives equal weight to every

sample to be measured (e.g. a cell line, a specific tissue or a patient

sample). It does not differentiate between samples with high

expression and ones with low expression. This may lead to distortion

of the correlation analysis, because: 1) the expression level of

miRNAs holds important regulatory information; and 2) noise is

more likely to exist in samples containing genes of low expression.

We therefore thought of a way to overcome some of these

limitations. One solution would be to assign different weights to high

and low expression levels. However, because the PCC calculation is

not a linear process, it is not practical to add weights directly to each

sample. Instead, weighting at the level of the sample selection was

found to be more practical since PCCs of different arrays of cell line

data could be added up and the corresponding modeling would

again be linear. Based on this consideration, we developed a novel

method, the ‘‘summed PCC’’ (sPCC). A standard (direct) PCC

(dPCC), the sPCC and a randomized sPCC (rsPCC) were applied to

generate correlations between expression of miRNAs and genes, to

test the reproducibility of the correlations and explore the particular

biology of how miRNAs work.

Direct (d)PCC
In this method we performed a standard COMPARE analysis

[23], which produces PCCs, to identify mRNAs that correlated with

the expression of each of the 136 miRNAs. In this and all subsequent

COMPARE analyses we set 30 as the minimal number of detectable

cell lines. To normalize the detecting variation among probes

respectively included in the four gene array platforms, the PCCs were

averaged for each gene. This method gave a PCC value for each

mRNA that significantly correlated with the expression of a miRNA.

Biological Function of miRNAs
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Summed (s)PCC
In this method (illustrated in Figure S1) we modified the

calculation process of miRNA-mRNA correlation by adding up a

series of PCC values mimicking a ‘‘titration’’ of miRNA by ranking

cell lines according to their expression of miRNAs. For each

miRNA-mRNA pair, we sorted miRNA expression in 59 cell lines

from highest to lowest, and selected the top 30 cell lines as the initial

condition, because these 30 cell lines represented the top half of all

the cell lines and included cells from at least 4 different tissue origins.

We performed a COMPARE analysis for these 30 cell lines (pattern

30). Next, the cell line with rank No. 31 was included and a

COMPARE analysis was repeated for these 31 cell lines (pattern

31). Repeated COMPARE analyses were performed until all the 59

cell lines were included in an incremental way, and a total of 30

PCC values were generated (pattern 30 to pattern 59). We did not

use a sliding window of a fixed size (1 to 30, 2 to 31, …, 30 to 59)

because we always wanted to include the cell lines with the highest

expression of a miRNA expecting to have the greatest effect on

target/effector genes in these cell lines. This additive method

assigned weights in a gradient (or titration) way based on miRNA

expression levels. The 30 cell lines with the highest expression were

always included in each COMPARE calculation and assigned

highest weights, since we expected the greatest effects on target/

effector genes from these cell lines. The PCC sums were averaged

for each gene among the four gene array platforms.

Randomized summed (rs)PCC
In order to test the stability and reproducibility of the sPCC

method, we designed a randomized from of sPCC as an internal

control. The only difference between this method and the sPCC

method was that cell lines were sorted in a randomized way. For

each miRNA-mRNA pair, the randomized sorting was repeated

10 times and the 10 rsPCCs were averaged.

The sPCC method accurately detects both downstream
effector genes and predicted targets correlating with
miRNAs

It is known from multiple studies that although altering miRNA

expression levels in cancer cells causes both up and down

regulation of genes, miRNAs predominantly work through

negative regulation of downstream effector genes [15,16]. In

order to test this observation with our methods, the log2 ratio

values of all negative vs. all positive correlations were calculated

for 136 miRNAs respectively with the three methods (dPCC,

sPCC and rsPCC). A comparison of distribution of 136 ratio

values demonstrated that negative correlations significantly

outnumbered positive ones in the sPCC analysis but not in the

two other analyses (Figure 1A). The log2 ratio with the sPCC

method significantly shifted to the right compared to the dPCC

method. A higher number of miRNAs in the sPCC method had

negative correlating genes, which was canceled out by random

noise in the dPCC method (the median value was roughly zero).

The cumulative curve of rsPCC was similar to that of dPCC, but

was significantly different from that of sPCC. This demonstrates

that the sPCC method was more effective in detecting negative

correlations than either the dPCC or the rsPCC method.

Next we sought to compare the efficiency of the three methods

in detecting predicted targets. We chose TargetScan, a widely used

target prediction algorithm, to assemble a list of all human

miRNA-gene pairs involving the 136 miRNAs. The list was sorted

by total context score (defined by TargetScan for the conserved

targets) from highest to lowest (Table S3). Then incrementally

from top 50 to top 500 miRNA-gene pairs, the ratios of negative

vs. positive correlation numbers were calculated and plotted. Only

with the sPCC method, this ratio increased along with the increase

of total context score (Figure 1B). Therefore, results for all

correlations and the correlations with regard to predicted targets

both suggested that the sPCC method performed significantly

better at the theoretical level than either the dPCC or the rsPCC

method.

The sPCC method accurately detects expression of
miRNAs that are linked to single host genes as well as to
clusters of HOX genes

In addition to the theoretical level, it was necessary to test the

ability of the sPCC method to identify miRNA/gene connections

that have been established in known biological systems. We

therefore made use of both host genes and homeobox (HOX) genes

that have well characterized links to the expression of certain

miRNAs.

Many miRNAs are encoded within co-located genes (host genes)

and share promoters with them. Expression of these miRNAs

is driven by the promoters of their host genes, and positive

Figure 1. Performance of the NCI60 data sets to detect mRNA/miRNA correlations and to predict miRNA targets. (A) Cumulative plot
of log2 ratio of negatively vs. positively correlating gene numbers for 136 miRNAs calculated with the dPCC, sPCC and rsPCC methods, respectively.
The X-axis denotes the log2 ratio values of 136 miRNAs according to their ranking from lowest to highest, and the Y-axis denotes the cumulative
fraction of 136 miRNAs. The differences in the cumulative curves were measured by one-sided Kolmogorov-Smirnov Test. (B) Comparison of the three
methods to identify the most likely conserved TargetScan predicted targets in the human genome (a total of 33,535 predicted targeting events).
Target predictions were ranked by total context score from highest to lowest. Incrementally from top 50 to top 500 miRNA-gene pairs with the
highest total context scores, the ratio values of negative vs. positive correlation numbers were calculated and plotted for the three methods.
doi:10.1371/journal.pone.0026521.g001
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correlations between expression of miRNAs and their host genes

have been reported [22,24]. By utilizing this information, we

analyzed how often the co-transcription of miRNAs and their host

genes could lead to positive correlations in the NCI60 data sets. Of

the 136 miRNAs, 65 are encoded within host genes (Figure 2). In

both the sPCC and dPCC analyses the number of positive

correlations between host genes and their co-located miRNAs far

out-numbered the ones of negative correlations (Figure 2A and

2B). In contrast the analysis with the rsPCC method resulted in a

random distribution of positive and negative correlations (data not

shown). The results of the sPCC/dPCC methods were compara-

ble, suggesting that the reproducibility of NCI60 data sets was high

and the sPCC method to identify correlations was as good as the

dPCC method in the case of single host genes.

Next, we wanted to determine if the sPCC method would

perform better than the dPCC method in identifying specific co-

transcription. We took advantage of the HOX genes as a unique

system of four gene clusters, each containing at least one intergenic

miRNA. HOX genes regulate embryonic development and in

mammals they are grouped into 4 clusters (HOXA-D) including 9

to 11 genes [22,24]. Most of the HOX genes were positively

correlated with co-localized miRNAs (red boxes in Figure 3A).

Interestingly, the HOXA, HOXC, and HOXD clusters harbor one

miRNA gene each and the HOXB contains two (Figure 3A). We

first calculated dPCCs and sPCCs between the four miRNAs (miR-

10a, -10b, -196a, -196b), which are encoded within the HOX

clusters, and all human genes. We observed that in the sPCC

method, in 3 of 4 of the clusters a HOX gene adjacent to the co-

Figure 2. The endogenous miRNAs positively correlate with their host genes. (A) sPCC and (B) dPCCs values are given for the 73 miRNA/
host gene pairs represented in the Q data set and gene expression data sets which occurred with at least one of the methods. Reanalysis of the data
by comparing sPCC/30 with dPCC values with a cutoff of 0.2 revealed that the two methods do not differ in their ability to predict host genes (either
by paired t-test or paired Wilcoxon test).
doi:10.1371/journal.pone.0026521.g002
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localized miRNAs had the highest positive correlation with these

miRNAs out of ,18,000 human genes (miR-196b/HOXA9,

miR-196a/HOXC10 and miR-10b/HOXD8; bold red boxes in

Figure 3A). However, in the dPCC method, this was only true for

two clusters (miR-196b/HOXA10 and miR-196a/HOXC10) (data

not shown). For each of the 136 miRNAs, we calculated sPCC

values with genes in the 4 HOX gene clusters. The sPCCs of all

HOX genes within a cluster were added up and the miRNAs were

ranked according to the cumulative sPCC for each HOX cluster

(Figure S2). Remarkably, for each cluster there was one miRNA

that most clearly correlated with the expression of the HOX genes

in that cluster (red column in Figure S2), and in each case it was

the miRNA encoded within that cluster. To further compare the

performance of the sPCC and dPCC methods we plotted the

cumulative sPCC and dPCC scores for each HOX gene cluster

versus the correlating miRNAs (Figure 3B and 3C). The

cumulative sPCC and dPCC of the negatively correlating HOX

genes are also shown but were negligible. We also included miR-

99a/99b and miR-100 in this analysis because they share extensive

homology with miR-10a and miR-10b [25]. Once again, the sPCC

performed better than the dPCC method detecting the correct

HOX gene cluster for each correlating miRNA against a minimal

background signal from other clusters.

In summary, these data demonstrate that the steady state system

of the NCI60 mRNA and miRNA data is useful in detecting

biologically meaningful connections between miRNAs and their

host genes. The sPCC method, which was designed to mimic a

miRNA titration experiment, was superior to the dPCC method in

two assays (negative correlation with expressed mRNAs and HOX

gene cluster correlation) used for characterizing our approach.

The sPCC method was, therefore, used in the subsequent analyses.

miRConnect.org, a searchable web interface to explore
connections between miRNAs and their biological
effector genes

As introduced above, in addition to actual target genes, genes

that are not predicted to be miRNA targets as well as the large

number of both positively and negatively correlating genes may

hold important information with respect to the status of miRNA

cellular expression levels, which may provide insight into the

biological activities of miRNAs. All negatively and positively

correlating genes for the 136 miRNA and the 25 miRNA families

determined with both the dPCC and the sPCC method in the Q

data set, as well as the information on how many of them are

predicted targets by TargetScan 5.0, can be found under

miRConnect-Q at a searchable web interface: miRConnect.org

(or miRConnect.net)

Clustering of miRNAs based on overlap of their
correlating genes

Our data suggested that using the NCI60 data sets and the

sPCC method could be useful to detect biologically relevant

connections between miRNAs and their downstream effector

genes, which might provide new insights into biological activities

of miRNAs. We argued that genes either negatively or positively

correlated with a specific miRNA will be equally important

because each set may contain markers of a biological status

regulated in opposite directions. For example, E-cadherin and

Vimentin, which positively and negatively correlate with the

expression of the miR-200 family, respectively (CDH1 and VIM

in Table 1), both point at the EMT-related function of miR-200.

Therefore, we suggested that either negative or positive correla-

Figure 3. HOX genes positively correlate with the expression of the endogenous miRNAs that are encoded within these gene
clusters. (A) Structure of the four mammalian HOX gene clusters with the location of the hosted miRNAs. HOX genes boxed in red were detected as
positively correlated with the hosted miRNA using the sPCC method. For each cluster the HOX gene most strongly correlated with the miRNA that is
in that cluster is boxed in bold red. (B) sPCCs of all individual HOX genes in each cluster were cumulated and plotted against the members of the miR-
10/miR-196 family and miR-99a, -99b and -100. (C) Same as B but generated using the dPCC method.
doi:10.1371/journal.pone.0026521.g003
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tions might independently define a specific biological status of a

miRNA or a group of miRNAs.

In order to test this assumption, we selected the top 2000

positive and top 2000 negative correlations and the corresponding

genes for each of 136 miRNAs, and performed a hierarchical

clustering to group the 136 miRNAs. We chose 2000 as a cutoff

because this number covered about 10% of all genes, which should

result in the elimination of most background noise. The clustering,

which is based on pair-wise comparisons represents the intersec-

tion of the genes that significantly correlate in their expression with

the expression of two different miRNAs (Figure 4 and Figure S3).

When positively correlating genes were assessed, a number of

miRNAs tightly clustered together (Figure 4). Similarly many of

the same miRNAs clustered together when negatively correlating

genes were used (Figure S3). Although numerous mechanisms may

be responsible for this clustering, we will refer to these as

‘‘functional clusters’’.

Interestingly, all 5 members of the miR-200 family were tightly

clustered, consistent with their similar biological activity (cluster I

in Figure 4 and cluster VI in Figure S3). In addition to miR-200, a

number of other structurally-related miRNAs formed functional

clusters according to the shared numbers of their effector genes.

Several seed families, such as miR-181abc, miR-19ab, miR-221/222,

miR-103/107 and miR-135ab, were clustered together tightly. In

contrast, members of several other seed families were found

scattered across different functional clusters (e.g. the let-7 or the

miR-30 family). This phenomenon suggested that the grouping of

miRNAs was partly based on, but not restricted to miRNA seed

sequences.

The clustering of miRNAs in this analysis was partially due to

the fact that some family members are part of the same

transcriptional unit. miRNAs that share chromosomal co-locali-

zation and also found in the same functional clusters included the

transcriptional units of miR-106b/93/25, miR-17,92, miR-194-2/

192, miR-183,182, miR-99b/let-7e/125a, miR-206/133b.

In some cases, miRNA clustering was based on neither the seed

match nor the genomic localization. For example, the members of

both the miR-141/200a and miR-200bc/429 seed families were

clustered together although they comprise two gene clusters on

separate chromosomes (cluster I, ‘‘Gene cluster’’ column in

Figure 4).

The NCI60 cell lines represent 9 different human cancers. To

determine whether the observed clustering of miRNAs was in part

due to tissue specific expression of either miRNAs or mRNAs, we

identified miRNAs that were preferentially expressed in any of the

9 human cancer types (Table S4; Table S5). Some correlations

with tissue of origin were found. For example, both clusters I

(including miR-200 family and miR-194) and XI (including the

miR-30 family) contained most of the miRNAs that are enriched in

colon cancer cells (Figure 4). Colon cancer cells may have a more

epithelial-like characteristic than most other cancer cell lines.

In summary, these data suggested that while common seed

sequences, chromosomal co-localization, and tissue specific

expression likely affected the co-expression of miRNAs with

certain genes and hence their grouping, many miRNAs were

clustered for other reasons. A major factor that determines

clustering could be the biological function of a miRNA, since the

clustering is based on the intersection of gene sets that positively

correlate significantly with two paired miRNAs. For example, miR-

200, -203, -375 and -7, which are grouped together in Figure 4

and Figure S3, do not have the same seed sequence, genomic

colocalization or specific expression in same tissue. The reason for

them to group together seems to be that they share similar

biological function in EMT regulation.

Identification of miRNA families involved in cell growth
regulation

c-MYC is not only a general regulator of miRNA function and

expression, but also itself regulated by miRNAs [26,27]. To

determine whether grouping miRNAs according to the identity of

correlating genes would detect the connection between miRNAs

and c-MYC, we used lists of genes that are either upregulated (460

genes) or downregulated (211 genes) by c-MYC (obtained from

http://www.myc-cancer-gene.org/) and determined how many of

them were either positively or negatively correlated with the

expression of each of the 136 miRNAs. The result is visualized in

Figure 5. The significance of enrichment of correlating genes was

determined by performing a Wilcoxon Rank-Sum Test. The

significance level is indicated by boxes with different colors.

Clearly, certain clusters of miRNAs were positively, and others

were negatively correlated with either c-MYC induced or c-MYC

repressed genes. Examples are the miRNAs in cluster V which

positively correlated with c-MYC induced genes and negatively

correlated with c-MYC repressed genes (Figure 5). In contrast

almost all miRNAs in clusters VIII, X and XIII showed the

opposite behavior.

c-MYC is known to be an important regulator of cancer cell

growth in part by regulating ribosomal biogenesis [28]. To

confirm the correlation found between clusters of miRNAs and the

growth of cells, we identified all ribosomal protein genes (RPs,

total number in the data set = 99) with a sPCC of either .1 or

,21 in the data sets of correlating genes for each individual

miRNA. We would argue that a miRNA that is positively

correlated with a large number of RPs suggests a strong activity in

cell growth. In contrast miRNAs that are strongly negatively

correlated with RPs would indicate growth suppressive activity.

Table 1. sPCCs for a number of known EMT marker genes.

Mesen. Gene sPCC Epith. Gene sPCC

VIM 215.95 CLDN7 22.83

TWIST 215.13 CLDN4 19.77

SPARC 213.29 KRT8 17.96

ZEB1 213.05 JUP 17.94

CD44 28.20 CDH1 17.20

SMAD4 27.73 OCLN 15.53

FN1 26.22 KRT18 14.82

ZEB2 25.65 CTNND1 11.37

MMP2 24.67 KRT14 10.38

CDH2 24.63

MMP14 24.06

MMP16 23.91

TGFB1 23.34

FGF2 23.25

CDH11 22.51

SMAD2 22.51

SNAI2 22.33

FGFR1 21.89

TNC 21.45

COL3A1 21.23

Only sPCCs of .1 and ,21 are shown.
doi:10.1371/journal.pone.0026521.t001
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This was confirmed with the c-MYC regulated genes, in that every

cluster of miRNAs that positively correlated with c-MYC induced

genes also positively correlated with the expression of RPs, and

every cluster that negatively correlated with the expression of c-

MYC induced genes also negatively correlated with the expression

of RPs (Figure 5). As the most significant examples, both c-MYC

induced genes and RPs positively correlated with the miRNAs in

cluster V, but negatively correlated in the miRNAs in cluster XIII

(Figure 5). We therefore concluded that clustering miRNAs

according to the expression of c-MYC regulated genes or RPs

allowed us to assign growth promoting and growth suppressing

activities to different miRNA functional clusters.

Identification of epithelial and mesenchymal specific
miRNAs

After we established the power of our analysis to functionally

link miRNAs with mRNAs, we sought to test the data in

identifying mRNAs that correlate with miR-200 and known EMT

markers. To identify EMT relevant genes that correlate with miR-

200, we determined the total activity of all 5 miR-200 family

members in the NCI60 cells. A number of well known EMT

marker genes and their sPCC are listed in Table 1. Canonical

mesenchymal genes such as Vimentin or Twist gave highly negative

sPCCs, and well-known epithelial marker genes such as E-cadherin

or cytokeratins 8 and 18 produced highly positive sPCCs.

Figure 4. Cluster analysis of 136 miRNAs based on a pairwise comparison of positively correlating genes using the sPCC method.
The miRNAs were divided into 13 functional clusters (I–XIII). Information is given for each miRNA on tissue specific expression, genomic co-
localization, and seed family. Stippled line: threshold of 12.5% of groups that was chosen to defined the 13 clusters.
doi:10.1371/journal.pone.0026521.g004
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While all 5 miR-200 family members were tightly clustered

together regardless of the approach used for clustering (cluster I in

Figure 4 and cluster VI in Figure S3), some other miRNAs were

co-clustered with the miR-200 family, such as miR-7, miR-203, miR-

375, miR-192 and miR-194. In order to determine whether these

miRNAs were positively correlated with the enrichment of

epithelial genes and negatively correlated with mesenchymal

genes, we analyzed three EMT-related gene signatures, each

representing a particular type of EMT process. EMT signature 1

was derived from primary human tubular epithelial cells

(HUTEC) before and after a 4-day treatment with TGF-b [29].

EMT signature 2 stemmed from Ha-Ras-transformed EpH4 cells

Figure 5. Correlation between selected gene signatures and the 13 miRNA functional clusters described in Figure 4. From left to right:
Signatures of c-Myc regulated (induced and repressed) genes, ribosomal proteins (RPs) and 3 groups of EMT-related genes. For the c-Myc and RP
signatures, each bar represents the number of genes that negatively correlate with a miRNA subtracted from the number of positively correlating
genes. Details on the gene signatures and the calculation of the E and M factors used to analyze the EMT signatures are described in the Method
section. Wilcoxon Rank-Sum Test was used to calculate significance for each functional cluster against the other clusters. Red, p,0.0001; orange,
p,0.001; yellow, p,0.01.
doi:10.1371/journal.pone.0026521.g005

Biological Function of miRNAs

PLoS ONE | www.plosone.org 8 October 2011 | Volume 6 | Issue 10 | e26521



before and after TGF-b induced EMT [30]. EMT signature 3 was

derived by comparing the differences in gene expression of

metaplastic carcinomas of breast (MCBs) and ductal carcinomas of

breast (DCBs) [31]. The three EMT gene signatures therefore

represented cases of a normal tissue, a transformed cancer model

and a primary human cancer, respectively.

In all three models, all 5 members of the miR-200 family

segregated in the cluster including the most epithelial miRNAs

together with miR-7, miR-203, and miR-375 (cluster I in Figure 5).

Figure S4A shows all miRNAs sorted from highest to lowest by

their E/M nature. For this analysis a universal EMT signature was

generated by taking the average of the EMT signatures 1–3. This

universal EMT signature was compared to miRNA regulated

genes determined using the sPCC method. Interestingly, miRNAs

identified as having the most mesenchymal nature, such as miR-

100, miR-125b and miR-99a, were also clustered together in all

three EMT signatures (cluster XIII in Figure 5). Figure S4B shows

the actual similarity of positively correlated genes among the

miRNAs with the highest and lowest E/M nature (colored

columns), generated by calculating overlapping percentages in

positively correlated genes between 16 miRNAs and the total

activity of the entire miR-200 family. The percentages among the

miR-200 family members ranged from 72% (for miR-141) to more

than 81% (for miR-200c). The miR-200 miRNAs were closely

followed by miR-203 (55%), miR-7 (48%) and miR-375 (45%). miR-

425* showed a much lower degree of identity in correlating genes

(22%). However, for the 7 most mesenchymal miRNAs, virtually

no genes were found to overlap with the genes that correlated with

expression of miR-200 (blue columns in Figure S4). These results

further validated the NCI60 data set as well as the sPCC method,

and identified novel, putative EMT-regulating miRNAs.

There were 10 miRNAs which were consistently grouped in an

‘‘epithelial’’ cluster, regardless of whether they were clustered

based on the positively or negatively correlated genes (Figure 6A).

Consistent with the analysis shown in Figure 5 and Figure S4, miR-

203, miR-7 and miR-375 were more closely related to miR-200

than miR-192 and miR-194. This was also confirmed by a

Principal Component Analysis for 136 miRNAs based also on

Figure 6. Validation of three predicted EMT-regulating miRNAs. (A) The EMT-related miRNA subcluster derived by using either positive
(upper) or negative (lower) sPCC values as described in Figures 4 and S3. (B and C) Ability of miRNAs in the epithelial cluster to cause upregulation of
E-cadherin in mesenchymal ACHN cells. ACHN cells were either transfected (B) once or (C) 3 times with the indicated miRNAs, and after (B) 3 days and
(C) 12 days respectively, the expression of E-cadherin mRNA was quantified by real-time PCR. The Western blot inserted in C confirmed that the
upregulation of E-cadherin mRNA also resulted in a induction of E-cadherin protein. (D) Comparison of the expression of the three new EMT-
regulating miRNAs between the epithelial (E) and mesenchymal (M) cell lines among the NCI60 cells recently described [11].
doi:10.1371/journal.pone.0026521.g006
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positively correlated genes (Figure S5). miR-135a and miR-135b were

excluded from this analysis based on a previous analysis when only

the sPCC values were used to produce the cluster map rather than

the degree of overall in coexpressing genes (data not shown). In

addition, these two miRNAs also did not cocluster with the other

epithelial miRNAs in the Principal Component analysis (Figure S5).

All the cluster I miRNAs were found to co-cluster except for the two

miR-135 miRNAs. While miR-135a and miR-135b were above the

chosen cutoff in the analysis shown in Figure 4, they are the most

remotely related miRNAs to the core of the cluster I miRNAs. To

test whether the miRNAs in the epithelial cluster were merely

markers or were actively involved in the maintenance of epithelial

cells, we transfected each of the 10 miRNAs in this cluster (Figure 6A)

into the mesenchymal cell line ACHN, which does not express E-

cadherin [11]. Transfection of miR-7, miR-203, or miR-375 in addition

to the members of the miR-200 family caused upregulation of E-

cadherin mRNA within 3 days (Figure 6B). After three transfections

over 12 days, the level of E-cadherin mRNA induced by miR-203 was

even higher than that observed with miR-200c (Figure 6C). However,

on the protein level, miR-203 was less effective than miR-200c, but

still significantly effective in upregulating E-cadherin (Figure 6C).

This analysis identified miR-7, miR-203, and miR-375 as novel EMT

regulators in cancer cells and validated the core part of the cluster I

miRNAs (Figure 4) as regulators of EMT. Consistently, miR-7, miR-

203, and miR-375, closely aligned with the miR-200 family, were

preferentially expressed in the epithelial cell lines that we have

recently described among the NCI60 cells (Figure 6D) [11]. This

suggests their epithelial role in vivo.

The identification of miR-7, miR-203, and miR-375 as markers for

epithelial cancer cells validated our hypothesis that the clustering of

miRNAs according to correlating gene overlap reveals new

functional similarities between miRNAs. We concluded, therefore,

that this analysis grouped miRNAs primarily according to their

function rather than their predicted targets, seed families or

genomic organization. Thus, miRConnect-Q can be used to

identify novel miRNA targets and downstream biological effectors.

Expanding miRConnect: miRConnect-L
miRConnect-Q is based on a set of expression levels of 208

miRNAs quantified by real-time PCR. Recently an additional set of

miRNA expression data became available based on LNA-

oligonucleotide arrays (the ‘‘L’’ data set) [32]. This new data set

contained information on 571 individual miRNAs for which the

oligonucleotides were uniquely selective. This number of miRNAs

allowed us to generate data on 53 miRNA seed families. We again

calculated the expression of the miR-200abc/141/429 custom

family. We generated correlation data sets using either the sPCC or

the dPCC method (with some modifications - see Method section).

Similar to the Q-data set we performed the analysis on the

correlation of miRNAs with their host genes (see Figure 2) and the

expression of the miR-10ab/196ab families with Hox genes (see

Figure 3) and again found a similar level of positive correlations

between the miRNAs and the host genes (data not shown). Similarly

both the analysis of EMT genes (see Table 1) and the cluster analysis

(see Figure 4) gave confidence that the new L data were as useful as

the Q data (data not shown). Both data sets now cover a total of 583

individual miRNAs/376 miRNA seed sequences and 54 miRNA

seed families with more than one family member. All data can be

found as miRConnect-Q and miRConnect-L at miRConnect.org.

Discussion

While the ability to predict miRNA targets represented a great

advancement in the field and has helped to identify many miRNA

targets, the false positive rate of all of the algorithms is high. This

hampers accurate prediction of miRNA function based solely on

the list of predicted targets. While it is well established that the co-

expression of miRNAs which are part of the same transcriptional

unit is often indicative of a common biological function, it has not

been consistently so, and also has not permitted accurate grouping

of miRNAs according to their function. We now present a new

method to group miRNAs, which relies on identification of co-

expressed effector genes for which a large amount of functional

data is available.

Our analysis is based on three premises: 1) Cancer-relevant

miRNAs act in pathways that regulate cellular differentiation

stages which can be recognized by the signature of expression of a

number of stage-specific marker genes (i.e. E-cadherin for epithelial

cells or early carcinomas). 2) A substantial change in the expression

of these marker genes is brought about by a relatively small change

in the expression of genes that are actual miRNA targets (i.e.

ZEB1/2). MiRNAs therefore are part of amplification loops. 3) A

cancer-relevant differentiation stage is characterized as much by

expression of positively correlating marker genes (i.e. E-cadherin) as

by negatively correlating ones (i.e. Vimentin) which are not direct

targets of the correlating miRNA (i.e. miR-200 does not target

Vimentin). Our method is complementary to existing methods and,

in conjunction with prediction algorithms and improved methods

for confirmation of actual in vivo targeting events [33], should allow

better prediction of the cancer relevant function of miRNAs.

A number of studies have addressed the question of miRNA

function using biocomputational approaches. These approaches

have all used target predicting information based on sequence

complementarities (e.g. TargetScan).

In one early work, a computational strategy to predict miRNA

regulatory modules (MRMs) was developed using bipartite graphs

to model miRNA-mRNA binding structures [34]. An extension of

the MRM concept was incorporated into a later computational

method to discover functional miRNA-mRNA regulatory modules

(FMRMs) [35]. This method associated expression data and

specific biological conditions (cancer versus normal tissue) with the

previous bipartite graph structure. An algorithm of population-

based probabilistic [36] and an alternative method of rule-based

learning [37] were also employed. However, these approaches all

relied on known target prediction algorithms and/or gene

ontology (GO) data, and were either theoretical, or did not

consider actual expression data, or were based on rules that were

generated using over-expression systems.

Two approaches [38,39] used Bayesian Network methods to

explore interactions between miRNAs and mRNA transcripts.

The first report developed a probabilistic graphical model for

miRNA regulation and variational learning for detecting miRNA

targets. The second report developed a strategy of splitting and

averaging of Bayesian networks (SA-BNs). In this method,

miRNA-mRNA interactions in the NCI60 cell lines were split

into different sample categories, and both up- and down-

regulation information was included. These improvements were

believed to capture stronger interactions than were detected using

conventional Bayesian Networks. However, this study only

described a subset of miRNAs and genes regulating EMT. The

analysis culminated in predictions on signaling networks regulated

by miRNAs using the Ingenuity pathway analysis software, which

is based on published data and requires constant updating. While

a Bayesian Network provides a powerful method for constructing

regulatory networks, it has its limitations in predicting miRNA

regulatory modules. 1) According to the definition of a Bayesian

Network, loop structure is not allowed, which means a Bayesian

Network cannot be applied to regulatory feedback loops as they
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are common between miRNAs and their targets (e.g. the relation

between ZEB1 and the miR-200 family). 2) The learning procedure

of a Bayesian Network is computationally exhaustive [40], and the

space of possible structures is limited by gene number, as linear

increases in gene number cause exponential growth of the

required space.

A recent approach was based on the statistical enrichment of

miRNA targeting signatures in annotated gene sets. It allowed

prediction of a number of novel targets for various miRNAs and

prediction of disease relevant pathways [41]. However, this

analysis was again based solely on predicted functions of genes

and predicted seed matches, and actual expression data were not

considered. In addition, it used target prediction algorithms as well

as GO data. The analysis was based on a number of assumptions

and requires frequent updating, which may affect some of the

reported findings. In contrast to the previous approaches, our

study is based on actual and unperturbed gene expression data,

and none of our key findings rely on any known target prediction

algorithm or GO data.

The in silico titration method sPCC
Due to the nature of how miRNAs function, we designed the

sPCC method as an in silico titration. We argued that, in order to

detect mRNAs whose expression was repressed by miRNAs, the

miRNA had to be expressed. We predicted that very high

expression of miRNAs would suppress expression of targets

representing certain biological processes. In contrast, in cells

completely lacking expression of miRNAs, targeted genes would

either be expressed or not expressed as a consequence of other

regulatory mechanisms. In other words the ‘‘pressure’’ of a

miRNA on a gene should be best detectable by comparing cells

with high versus low expression of a miRNA. In order to reflect

this pressure, different weights were assigned to each of the cell

lines based on their miRNA expression levels. One could argue

that the classical PCC method might also be modified in this way.

However, in practical terms, it would be arbitrary to add weights

directly to each cell line. First, the PCC calculation is not a linear

process, and hence any change within the PCC function may have

uncontrollable consequences. Second, it would not be clear how

much weight to assign to each cell line. To solve this problem, we

adopted the ‘‘titration’’ method sPCC, with a gradient weighting

approach for cell lines sorted according to miRNA expression. We

decided to pick 30 cell lines as a threshold, for the following

reasons: 1) the model adds weight at the level of cell line selection,

so it is linear and additive for PCCs with different cell line

selections (e.g. from pattern 30 to pattern 59); 2) the model fully

considers the biological importance of the 30 cell lines with the

highest expression of each miRNA, as every pattern includes them;

and 3) the minimal number of 30 cell lines ensured the

methodological stability, as PCC is highly unstable and easy to

be interfered by background noise when its sample size is too small

(e.g. ,10). We intentionally reduced the importance of the rest of

the 29 cell lines, rather than simply neglecting them. If we had

performed the dPCC analysis by only using the 30 highest

expressing cell lines, it would be problematic since different sets of

cell lines would be selected for each miRNA. In order to test the

stability of our threshold selection, we used a randomized sPCC

(rsPCC) method as an internal negative control (Figure 1).

The performance advantage of the sPCC was obvious when the

methods were tested for the ability to detect the conserved miRNA

targets with the highest total TargetScan context score in the

human genome. Only with the sPCC method the correlation

increased with the more strongly predicted targets (Figure 1B). We

chose to use the TargetScan predicted genes as opposed to a list of

experimentally validated targets because TargetScan provides

total context scores, which can be used to rank predicted miRNA-

gene pairs (e.g. from top 50 to top 500). While most of these targets

are not validated it has been demonstrated that the number of

likely targets is greater towards the very top of each ranked list of

targets [15]. Our sPCC analysis confirmed this. Furthermore, the

sPCC method performed better in two other analyses (host gene

and HOX gene cluster gene correlations) when compared to the

dPCC method. Interestingly, only the sPCC was good enough to

group miRNAs for exploring their potential biological functions.

Regardless of whether positively or negatively correlating genes

were used, the dPCC method failed to group some of the most

biologically relevant miRNAs, such as members of the miR-200

and miR-17 families (data not shown). As an important control the

sPCC method performed far better than the randomized rsPCC

method. Hence, this method is robust enough to explore biological

functions of miRNAs. We decided to let the user decide whether to

use the dPCC or sPCC analysis on miRConnect.org. In summary,

our data demonstrate that across all NCI60 cells the sPCC method

performed best at both the theoretical and biological level,

permitting detection of general connections between miRNAs and

their downstream effectors.

Host genes and HOX genes
One mechanism that determines co-expression of miRNAs and

mRNAs is when both are driven by the same promoter. This is the

case for miRNAs that are part of host genes. A similar situation

occurs at the 4 human HOX gene clusters, which provided us with

a unique system in which each cluster of multiple genes contained

at least one miRNA gene. For both the host gene and the HOX

gene cluster case we found a highly significant correlation between

the expression of the gene(s) and the miRNAs that are linked to

their co-transcription. Of the 73 host gene/miRNA pairs in our

analysis of the Q data set, 37 showed a positive sPCC, but negative

sPCCs were only found in 5 cases and they were of low

significance (Figure 2A). The correlation of miRNAs with their

hosting HOX genes was even more impressive. In each case a

substantial number of HOX genes positively correlated with the

expression of the miRNA in that cluster (9/11 HOXA genes with

miR-196b, 8/10 HOXB genes with miR-10a, 5/9 HOXC genes with

miR-196a, and 6/9 HOXD genes with miR-10b), and few HOX

genes negatively correlated with these miRNAs. This analysis in

particular illustrates the strength of the expression correlation that

can be found using the NCI60 data analysis. The sPCC method

achieved the highest positive correlations between the four

miRNAs and their adjacent HOX genes. Out of ,18,000 human

genes the following HOX genes had the highest positive sPCC for

the miRNAs that are coded within a HOX gene cluster: HOXA9

and miR-196b, HOXB7 and miR-10a, HOXC10 and miR-196a and

HOXD8 and miR-10b. Interestingly, our data allow us to predict

that miR-196a-1, which is part of the HOXB gene cluster, is not

significantly expressed in cancer cells, since neither of the two

methods of analysis detected any HOXB genes that were co-

expressed with this miRNA (Figure 3B and 3C).

Novel and unusual predictions that come out of our
analysis

Our analysis makes a number of predictions that cannot be

explained based on current knowledge. These include the

prediction that let-7 is a family of at least 6 different potential

activities in cancer cells (functional clusters II, IV, V, VI, X and

XIII in Figure 4). Our data now provide the impetus to look into

this phenomenon. We hypothesize that nine different let-7 family
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members do not just exist to allow tissue-specific expression of

let-7.

The finding that seems to be most at odds with published data is

our results on miR-21. miR-21 is the miRNA upregulated in the

most human cancers when compared to normal tissue [42], and

miR-21 was recently shown to induce neoplastic transformation

when expressed as a transgene in mice [43]. Confirming published

data, miR-21 expression negatively correlated with two of its main

validated targets, PDCD4 [44,45] (sPCC = 24.7) and PTEN [46]

(sPCC = 21.05). miR-21 has, therefore, been viewed as an

oncogenic miRNA, and one would expect it to be one of the

most growth-promoting miRNAs. It was surprising, therefore, that

in our study miR-21 was co-clustered with miRNAs that had a

strong negative correlation with genes induced by c-MYC

(functional cluster X in Figure 5), which would indicate a growth

suppressing activity. We also determined the extent of correlation

between the expression of miRNAs and 99 ribosomal genes as

markers for cell growth. Interestingly and consistently with the

results on the c-MYC regulated genes, expression of miR-21 had a

strong negative correlation with the expression of almost all

ribosomal genes. In fact when the miRNAs were ranked according

to the correlation with ribosomal genes, miR-21 was the third most

clearly negatively correlating miRNA (Figure S6). How could this

finding be reconciled with the existing paradigm of miR-21 being

such a significant marker for cancer cells? We recognize that all

reports identifying miR-21 as being overexpressed in cancer cells

were based on comparisons of cancer with normal cells [42], while

our analysis does not include normal cells. Our finding may,

therefore, have revealed a cellular function of miR-21 that is not

cancer specific. Interestingly, there is very little information on the

physiological function of miR-21 outside of cancer. However, two

pieces of data provide a clue as to the physiological activity of miR-

21. In the context of a cancer cell line, in an unbiased approach 94

different endogenous miRNAs were individually inhibited in HeLa

cells. Inhibition of most miRNAs resulted in reduced growth of the

cells. Only two miRNAs were identified as growth repressors, as

their inhibition accelerated the growth of the cells. By far the most

growth suppressing miRNA was miR-21 [47]. In normal tissues

miR-21 has also been recognized as a paradoxical miRNA [48]. In

the context of heart hypertrophy, miR-21 was reported to inhibit

hypertrophy of cardiomyocytes [49]. Based on these data and our

analysis we predict that one of the physiological activities of miR-

21 is to inhibit, rather than to promote, cell growth.

EMT markers and new EMT regulators
Induction of EMT induces changes in expression of thousands

of genes in the human genome. Many of these changes involve

sharp on-off regulation of genes. Examples of genes that are

regulated in a switch-like manner are E-cadherin and Vimentin where

the difference in the ratio of their expression across the NCI60

cells spans 8 orders of magnitude [11]. Neither E-cadherin nor

Vimentin are direct targets of miRNAs that regulate EMT, but they

are powerful markers for the two cellular stages of epithelial and

mesenchymal cells. Interestingly, the remarkable similarity in the

genetic programs of EMT is documented by the three EMT gene

signatures used in this study, and the resulting similarity in

correlation of gene expression with that of certain groups of

miRNAs. Our analysis allowed us to identify and validate three

new regulators of epithelial cells, miR-7, miR-203 and miR-375.

miR-7 was previously shown to target the epidermal growth factor

receptor (EGFR), a known regulator of EMT [50], and EGFR was

also the gene with the highest TargetScan total context score that

was most negatively correlated with miR-7 expression

(sPCC = 22.26; see miRConnect.org). miR-203 was recently

linked to EMT regulation and stem cells [51]. In our analysis,

miR-203 was a potent inducer of E-cadherin upregulation. Predicted

targets include the EMT regulator Snail2 (Slug) which also had a

low negative sPCC of 28.01 (miRConnect.org). Finally miR-375

was recently reported to target 3-phosphoinositide-dependent

protein kinase-1 (PDK1) [52] which promotes invasion and

activation of matrix metalloproteinases [53]. We also identified a

number of miRNAs that are co-expressed with mesenchymal

genes. Among these we found miR-155, which we had already

identified as most highly expressed in mesenchymal cancer cells

[11], and this was recently confirmed by others [39].

miRConnect-Q and miRConnect-L
On the miRConnect.org site we have made data sets available

based on two different miRNA expression data sets. In a recent

analysis the level of concordance between 4 different miRNA

expression data sets obtained with the NCI60 cells was moderate

[32]. The PCC between the L and the Q data sets used in our

study was found to be 0.56. Nevertheless we found that the

discrepancies were often in miRNA species with relatively low

expression levels. Data on major miRNA families including let-7,

miR-200 or the miR-17,93 family were more consistent (data not

shown). Regardless of the nature of the differences they must not

necessarily be due to fluctuation between the analyses. The two

platforms that generated the Q and the L data sets are very

different and each has both advantages and caveats. The LNA-

based arrays that underlie the L data set cannot discriminate

between mature miRNAs and their pre-miRs but are more robust

in detecting different isomiRs. In contrast, the Q data set relies on

real-time PCR involving loop primers. While they are highly

selective for the mature miRNAs they cannot distinguish between

certain isomiRs. This could be relevant because in a recent study it

was demonstrated that miRNAs exit as multiple isomiRs and this

varies among species and tissues [54]. We therefore decided to

make the analysis based on both data sets available on

miRConnect.org.

Expression levels of miRNAs and mRNAs have been correlated

previously in attempts to establish causality [22,55,56,57,58]. This

has been complicated by the fact that certain mRNAs are both

regulators of miRNA expression/biogenesis and targets of these

miRNAs. Examples are c-MYC and let-7, and ZEB1/ZEB2 and

miR-200 [59,60]. Our work provides an additional way to link

miRNA expression to biological function (i.e. miR-200 to EMT or

miR-10/miR-196 to HOX gene expression) without the need to

validate specific mRNAs as miRNA targets.

Based on our data, we propose to focus more on individual

pathways when assigning cancer relevant functions to miRNAs

and less on global activities. We believe that the functional

grouping of miRNAs using miRConnect will significantly aid

miRNA researchers and will provide a novel resource to the field

that complements the study of miRNA function based on their

seed sequences. We propose to group miRNAs families according

to seed families, gene clusters, and functional correlations.

Methods

The miRNA data sets
The Q data set. The real time PCR data (ct values) for 207

individual miRNAs was previously described [20], and expression

data for each miRNA can be found at http://dtp.nci.nih.gov/

mtargets/download.html as WEB_DATA_ISRAEL_MIR.ZIP.

For each miRNA the number of cell lines with an expression

level above the limit of detection was determined. The real time

PCR data set for miR-429, which was not part of the original data
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set, was provided by Dr. Arti Gaur (Dartmouth Medical School,

Lebanon, NH). Expression of the miRNA was determined by

normalizing the data set as previously described [11]. Each

miRNA was assigned to a miRNA seed family (miR_family) as

defined by TargetScan.org. To develop the sPCC method, the

integration of miRNA IDs and measurements was done using a

customized Java platform (Netbeans java console project

MicroRNAparser). A few miRNAs were not explicitly included

in the TargetScan family assignments and a few used different

nomenclatures than that used in TargetScan. In these instances

miR_family assignments were made based on sequence (see Table

S5). For any miR_family that contained two or more miRNAs

detectable in at least 30 cell lines, an average expression of 59 cell

lines (family_average) was calculated for the mir_family. The

miRNA and miR_family data were used to generate linked subsets

of cell line data. Each member of these subsets was used as a seed

for COMPARE analysis, and the sets of COMPARE results,

linked by miRNA or miR_family, were aggregated.
The L data set. The LNA array based expression data (log2

ratios) of 955 individual miRNAs were recently described [32] and

can be found at GEO (accession number: GSE26375). Of these

955 miRNA probes 571 were specific for only one miRNA (with

no crossreactivity with other miRNAs) and were therefore used in

our study. Total expression of an entire seed family was

determined by adding the individual expression values of all

members. To have more control of the analysis locally we chose to

analyze the L data set by using R software.

The mRNA data sets
The analyses performed in this work covered a total of 130,368

individual gene array probes in the MICROARRAY_ALL target

set available at the DTP site (http://dtp.nci.nih.gov/mtweb/

search.jsp). Of these, 82,564 gene probes had GeneCard identifiers

(distributed over 4 array platforms: STANFORD: 7328 genes,

GENELOGIC_U95: 34,309 genes, GENELOGIC_U133: 31,266

genes, and NOVARTIS: 9661 genes) and they represented 18,462

uniquely known genes in the human genome.

COMPARE analysis
COMPARE analysis was used to generate correlations between

the data in the miRNA Q data set and the gene array data.

COMPARE is a computational tool available through the NCI

DTP web site. (http://dtp.nci.nih.gov/compare). It was developed

in the early 1990’s to explore the results from the NCI60-cell line

screen [23] but has since been adapted as a web based tool

[61,62]. The COMPARE algorithm ranks the members of the

data set based on the similarity of the responses or expression

levels of a single set of cell line measurements. The similarity

metric used is a Pearson Correlation Coefficient (PCC).

The dPCC method
To generate miRConnect-Q, each of the 136 miRNAs with at

least 30 cell lines with detectable expression and each miRNA of

the 25 families was used as a seed for a single COMPARE analysis

against 18,747 genes. The microarray features for all COMPARE

correlations were collected. Correlations for microarray features

associated with named genes (GeneCard/Human Genome

Organisation/HUGO, www.HUGO-international.org) were then

determined by averaging the individual correlations for each gene.

To generate miRConnect-L, the expression profiles of 571

miRNAs/53 miRNA families and 18,747 genes in 59 cell lines

were used to calculate a Pearson Correlation Coefficient (PCC)

between each miRNA and each gene. Then, the average values of

PCCs between each miRNA and each gene were calculated across

all 4 gene array data sets for gene expression to normalize for

variation among different microarray platforms. These averaged

values were designated direct PCC (dPCC). During this process

missing values were excluded. The top 2000 positive and negative

dPCCs (covering about 10% of all genes) were collected to

perform the EMT, c-MYC, and RPs correlations. This resulted in

the elimination of 97% of the correlations with dPCCs

corresponding to values between 20.3 and +0.3.

The sPCC method
To generate miRConnect-Q, detectable miRNAs and miRNA

families were used to generate linked subsets of cell line expression

data, referred to as ‘‘patterns’’. Before creating the patterns, the

cell lines were ranked by their miRNA expression from highest to

lowest (or decreasing average expression in the case of miRNA

families). For each miRNA or miRNA family, pattern 30 consisted

of the first 30 cell lines (those with the highest levels of expression),

pattern 31 included all of the cell lines from pattern30 and the cell

line with the next highest level of expression, pattern 32 included

all of the cell lines from pattern 31 and the cell line with the next

highest level of expression, and so on. The last pattern, pattern 59,

consisted of all of the cell lines and completed the set of linked

patterns each with 30 members. Each individual pattern was used

as a seed for a single COMPARE analysis against the MICRO-

ARRAY_ALL target set. After COMPARE had been run on all

30 linked patterns, the sum of the COMPARE correlations

(sum_correlation) for each microarray feature for the 30 patterns

was determined. Correlations for microarray features associated

with named genes (GeneCard/HUGO) were then determined by

averaging the individual correlations for each gene. The top 2000

positive and negative sPCCs (covering about 10% of all genes)

were collected to perform the EMT, c-MYC, and RPs calculations.

For miRConnect-L, R software was used to generate sPCC values.

Subsequently the sum of PCCs for these 30 patterns was added up

to calculate each sPCC value. Variations within sPCCs across

different gene array platforms were eliminated by taking average

values across different platforms.

The rsPCC method
The only difference between the rsPCC method and the sPCC

method was that rsPCC generated patterns according to

randomized sorting of cell lines. Each rsPCC was repeated 10

times, and average of the calculations was taken.

Processing TargetScan
Predictions and underlying data for TargetScan version 5 were

downloaded at http://www.targetscan.org. The TargetScan data

sets were used to generate predictions for microRNA families, to

limit those predictions to conserved miRNA, and to generate

custom predictions for families that we defined. These manipu-

lations were based on the descriptions of the TargetScan

algorithms which were included on the TargetScan 4.2 web site,

with slight modifications to accommodate changes in the

downloadable data as follows: Predictions were limited to those

predictions that included at least one human example, context_

scores .0 were not included in the determination of total_con-

text_score, and the aggregate prediction for a miRNA family was

the minimum total_context_score for any miRNA that was a

member of that family.

Generation of the searchable web interface miRConnect
A table of miRNA/mRNA pairs was loaded into a (MySQL)

database along with their correlation values, mRNA chromosome
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locations, and function annotations (downloaded from the HUGO).

A web interface was built to filter and extract data from this table.

Genes can be shown that correlate positively or negatively with a

given miRNA or miRNA family, according to the dPCC or the

sPCC method. If no miRNA is selected but instead a list of mRNA

gene IDs are entered, then miRNAs that correlate will be listed. For

negative correlations, TargetScan total_context_score was also

provided. Functional annotation search words can be used to

constrain the output, and all output tables are downloadable in

spreadsheet-ready form. The site contains all data on miRConnect-

Q and -L and is accessible at miRConnect.org.

Host gene and HOX gene analyses
The miRNA host genes were retrieved by comparing the genomic

positions of miRNAs and genes as recently described [63]. All the

analyses were based on the genomic coordinates of human assembly

build 36.1. For both miRNA/gene association methods, we obtained

dPCC/sPCC statistics between host genes or HOX family genes and

the miRNAs. In order to spotlight the miRNAs associated with HOX

gene clusters, for each miRNA we summed up the dPCC/sPCC for

all the members in each HOX gene clusters.

Identification of cancer specific miRNAs
Specifically expressed miRNAs in each type of cancer were

screened out by Significance Analysis of Microarrays (SAM) with a

manually adjusted False Discovery Rate (FDR). FDR was set as

0.01 (Table S4).

Hierarchical clustering of miRNAs and Principal
Component Analysis based on identity of correlating
genes

For the sPCC positively and negatively associated gene lists, we

queried all possible pairs of miRNAs with either the top 2000 sPCC

values (for positive correlations) or bottom 2000 sPCC values (for

negative ones) and calculated the percent identity of overlapping

correlated genes between any two miRNAs. Thus 1366136

matrices for the overlapping gene numbers were generated. Then

both matrices were transformed to distance matrices by using

Euclidean distance measure (R function: as.dist). Complete linkage

method was used to find similar clusters (R function: hclust) for

dendrogram plotting. Functional clusters of miRNAs were defined

by miRNAs that shared more than 12.5% correlating genes (R

function: cutree). Principal component analysis (PCA) was adopted

to do a orthogonal transformation, converting correlated miRNAs

into an equal size of uncorrelated variables called Principle

Components (PCs). The 1366136 matrix for the positively

overlapping gene numbers was used to do orthogonal transforma-

tion using the R function prcomp. The two principal components

with the highest score were used to generate a PCA plot.

The gene expression signatures
Two sets of gene signatures were used. 1) c-MYC regulated genes.

A non-redundant list of 460 genes upregulated by c-MYC and 211

genes suppressed by c-MYC was obtained from the c-MYC target

gene database (http://www.myccancergene.org/) [64]. 2) Genes

regulated during EMT. Three EMT gene signatures from previous

studies were used in the analysis. There are 86, 72, and 121

epithelial genes and 59, 79, and 87 mesenchymal genes in the

studies of Campanaro et al. (EMT 1), Jechlinger et al. (EMT 2), and

Lien et al. (EMT 3) [29,30,31], respectively. We determined

whether the expression of every gene in these lists negatively or

positively correlated with the expression of the 136 miRNAs. The

number of genes whose expression negatively correlated with a

given miRNA was subtracted from the number of genes that

positively correlated and plotted across all 136 miRNAs in the

cluster analysis using either the dPCC or the sPCC method.

Statistically significant positive correlations between gene expression

and the expression of miRNAs in each of the 13 clusters detected

with the sPCC method were determined using the Wilcoxon Rank-

Sum Test. A p value of 0.01 was considered significant. For the

EMT analysis an epithelial/mesenchymal (E/M) factor was

determined as follows: (negatively correlating M genes - positively

correlating M genes)+(positively correlating E genes - negatively

correlating E genes) = E/M factor. The E/M factor was used to

rank miRNAs according to their E/M nature in Figure S4.

Testing epithelial specific miRNAs for their ability to
upregulate E-cadherin in mesenchymal cells

Mesenchymal ACHN cells which express little E-cadherin were

serially transfected with pre-miRNAs (Ambion) up to 3 times as

described [11]. Western blot analysis and real time PCR for E-

cadherin were performed as described [11].

Statistical analyses
R statistical program v2.10 (http://www.r-project. /) was

used to perform microarray data manipulation, dPCC calcula-

tions, sPCC/dPCC/rsPCC comparisons, miRNA target enrich-

ment, hierarchical clustering, host gene and HOX gene analyses,

PCA analysis, and gene expression signature calculations.

Supporting Information

Figure S1 Schematic to illustrate the sPCC method.

(PDF)

Figure S2 For each of the HOX gene clusters the
expression of the hosted miRNA best correlates with
the expression of the HOX genes in that cluster. The

sPCC values for the genes in each HOX gene cluster were

cumulated for the 136 miRNAs and plotted by ranking 136

cumulative sPCC values from highest to lowest. For each HOX

cluster the top ten miRNAs are listed in a table.

(PDF)

Figure S3 Cluster analysis of 136 miRNAs based on a
pairwise comparison of negatively correlating genes
using the sPCC method. The miRNAs were divided into 17

functional clusters (I–XVII). Stippled red line: threshold of 12.5%

of groups that defined the 17 clusters.

(PDF)

Figure S4 miRNAs that are most epithelial and most
mesenchymal in nature according to their positively
correlated genes. (A) Ranking of 136 miRNAs according to

their correlation with the expression of either E or M genes

calculated by taking sPCCs related to the average of EMT

signatures 1–3 (see Figure 5). All 5 miR-200 family members

(shown in red) were found in the top 9 miRNAs most positively

correlated with the expression of E genes (left stippled line).

Additional E related miRNAs, miR-203, miR-7, miR-375 and miR-

425* are shown in orange. The miRNAs best correlating with the

expression of M genes are labeled in blue (defined by stippled line

on the right). (B) Overlap in positively correlated genes between

the entire miR-200 family and the miRNAs that are most epithelial

in nature (red/orange) or most mesenchymal in nature (blue).

(PDF)

Figure S5 Principal Component Analysis of 136 miRNAs
according to positively correlating genes, with the two
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PCs (PC1 and PC2) with the highest score plotted. The

epithelial subcluster of miRNAs that regulated E-cadherin (see

Figure 6) is labeled by a red circle.

(PDF)

Figure S6 Correlation of miRNA expression with that of
ribosomal protein genes. The 136 miRNAs that correlated in

their expression with those of ribosomal genes (RPs) were ranked

according to the number of RPs that had positive or negative

sPCC values with individual miRNAs. Rank order was determined

by the factor: [number of positively correlating RPs] - [number of

negatively correlating RPs].

(PDF)

Table S1 Expression of miRNAs in 59 of NCI60 cell lines
sorted according to numbers of cell lines with detectable
expression. miR-429 was found to be significantly expressed in

more than 30 cell lines (data not shown).

(XLS)

Table S2 miRNA seed families represented in the Q
data set. miRNAs in red = family members for which no
data sets were available.
(XLS)

Table S3 Analysis of the top 500 conserved genes
predicted by TargetScan in the human genome to be
targeted by one of the 136 miRNAs.

(XLS)

Table S4 Identification of miRNAs with tissue specific
expression. FDR: False Discovery Rate.

(XLS)

Table S5 miRNAs that are part of either seed families,
gene clusters or are tissue specifically expressed.

(XLS)
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