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Abstract

Objective: A recent collaborative genome-wide association study replicated a large number of susceptibility loci and
identified novel loci. This increase in known multiple sclerosis (MS) risk genes raises questions about clinical applicability of
genotyping. In an empirical set we assessed the predictive power of typing multiple genes. Next, in a modelling study we
explored current and potential predictive performance of genetic MS risk models.

Materials and Methods: Genotype data on 6 MS risk genes in 591 MS patients and 600 controls were used to investigate
the predictive value of combining risk alleles. Next, the replicated and novel MS risk loci from the recent and largest
international genome-wide association study were used to construct genetic risk models simulating a population of 100,000
individuals. Finally, we assessed the required numbers, frequencies, and ORs of risk SNPs for higher discriminative accuracy
in the future.

Results: Individuals with 10 to 12 risk alleles had a significantly increased risk compared to individuals with the average
population risk for developing MS (OR 2.76 (95% CI 2.02–3.77)). In the simulation study we showed that the area under the
receiver operating characteristic curve (AUC) for a risk score based on the 6 SNPs was 0.64. The AUC increases to 0.66 using
the well replicated 24 SNPs and to 0.69 when including all replicated and novel SNPs (n = 53) in the risk model. An additional
20 SNPs with allele frequency 0.30 and ORs 1.1 would be needed to increase the AUC to a slightly higher level of 0.70, and at
least 50 novel variants with allele frequency 0.30 and ORs 1.4 would be needed to obtain an AUC of 0.85.

Conclusion: Although new MS risk SNPs emerge rapidly, the discriminatory ability in a clinical setting will be limited.
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Introduction

Multiple sclerosis (MS) is caused by an interplay of multiple

genetic variants and environmental factors. The genetic influence

on MS is substantial, as evidenced by the 20-fold risk increase for

siblings of MS patients [1]. Part of the genetic risk is explained by

the MHC class II locus (HLA-DR15) [2]. In 2007 several novel risk

alleles for MS were identified by a genome-wide association

(GWA) study [3] and others confirmed the susceptibility loci by

meta-analyses and replication [4]. Since GWA the progress has

been rapid and more new risk loci have been identified and

confirmed [5,6,7,8,9]. A recent study in 9,722 cases and 17,376

controls identified 53 associated variants [9].

Given the gene-environmental and multi-genetic causes of MS,

these susceptibility variants mainly have weak effects and are likely

to contribute to a small increase in MS risk individually. It is

commonly agreed that testing single susceptibility genes is not

useful for prediction of MS risk, but the question remains whether

combining susceptibility loci in risk models could have an added

value on MS prediction in individuals. The predictive perfor-

mance of genetic risk models has been investigated for other

diseases in simulation studies [10,11]. These studies suggest that

the predictive value improves by combining multiple common

low-risk loci.

We investigated the extent to which MS risk can be predicted

using genetic risk models. First of all we tested in our empirical

data the predictive performance of 6 combined genotyped SNPs,

using risk scores compared to a prior chance of someone in our

population having MS. However whether genetic risk models will

potentially be used in clinical or public health practices depends on

the accuracy of the test to discriminate between individuals who

will develop MS and who will not. The discriminative accuracy is

generally expressed as the area under the receiver operating

characteristic curve (AUC). Therefore, secondly we tested the

potential performance of SNP genotyping in a simulation study by

adding risk genes into the model. For this, we constructed a risk

model based on 1) the 6 genotyped SNPs, 2) the 24 recently well

replicated genome-wide associated polymorphisms [9] and 3) the

53 replicated genome-wide associated polymorphisms including

the 29 newly identified polymorphisms [9]. Finally, we included

hypothetical variants in the risk model, in order to investigate the

future potential.
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Methods

Empirical study
Ethics Statement. This study was approved by the Ethics

Committee of the Erasmus University Medical Centre, METC

Erasmus MC Rotterdam. All participants were recruited in

Erasmus University Medical Centre and written informed

consent was obtained.

Study population. A total of 591 MS patients and 600

controls were included in this study. The MS patients were

recruited and ascertained as part of an ongoing nationwide study

on genetic susceptibility in MS and fulfilled McDonald criteria for

MS [12]. Details on ascertainment are given elsewhere [13].

Genotyping. The HLA-DRB rs3135388, EVI5 rs10735781,

CLEC16A rs64981169, CD58 rs12044852, IL7R rs6897932, and

IL2RA rs2104286 SNPs (table 1) were genotyped using the

MassARRAY system/Homogeneous MassExtend assay, following

the protocol provided by Sequenom. PCR extension primers were

designed using the Assay Design 3.0 program (Sequenom).

ThermoSequenase (Sequenom) was used for the base extension

reactions. Analysis and scoring were performed using the program

Typer 3.3 (Sequenom).

Risk score analysis. All statistical analyses on empirical data

were performed using SPSS version 15. Associations of individual

SNPs were investigated using logistic regression. We also applied

logistic regression analyses to investigate the combined predictive

value of the risk allele score based on all SNPs with and without

HLA-DRB (rs3135388) using the a priori probability of an individual

in our population developing MS as reference. As we tested a total

of 6 SNPs in our empirical study, the Bonferoni-corrected p-value

for significance was 0.008. The weighted risk allele score was

calculated by multiplying the number of risk alleles with the effect

size for each SNP obtained from the literature and summing this

up for each participant with complete genotype information, with

risk alleles being the alleles associated with increased risk of MS.

All analyses were adjusted for age and sex.

Simulation study
Modelling strategy. We used a modelling procedure that

has been developed and published previously [14], and which has

also been used by others [15]. Briefly, the procedure creates a

dataset with information on genotypes and disease status for a

population of 100,000 individuals. The dataset is constructed in

such a way that the odds ratios and frequencies of the genotypes

and the disease risk match the specified values, which are obtained

from the literature. Predicted MS risks are calculated using Bayes’

theorem, which states that the posterior odds of MS for each

individual is obtained by multiplying the prior odds by the

likelihood ratio (LR) of their genotype status on all polymorphisms.

The prior odds is calculated from the baseline population MS

risk (p) using the formula p/(1-p). Under the assumption of

independent genetic effects i.e., no linkage disequilibrium between

the genetic variants, the LR is obtained by multiplying the LRs of

all individual genotypes that are included in the risk model [16].

The LRs of the genotypes of each single genetic variant are

calculated from a genotype by disease status contingency table

[14]. This table is constructed from the frequency and ORs of the

genotypes and the population MS risk. The table can also be

constructed from allele frequencies and per allele ORs when

Hardy-Weinberg Equilibrium is assumed for the distribution of

the genotypes. The frequencies and ORs all are specified as

study parameters and varied between the simulation scenarios.

The posterior odds are converted into MS risks using the formula

odds/(1+odds).

Discriminative accuracy. The discriminative accuracy is

the extent to which the test results can discriminate between

individuals who will develop MS and those who will not [17]. The

AUC gives an assessment of the discriminative accuracy of a

prediction model and ranges from 0.5 (equal to tossing a coin) to

1.0 (perfect prediction). All simulations were repeated 100 times to

obtain robust estimates of the AUC. All results are presented as

averages of the repeated simulations. The obtained confidence

intervals were extremely small, often equal to the point estimate,

and therefore not presented in this paper. Analyses were

performed using R software (version 2.12.1) [18].

Simulation scenarios. Recently, a large GWA study was

presented as part of the collaboration between Wellcome Trust

Case Control Consortium 2 (WTCCC2) and the International

Multiple Sclerosis Genetics Consortium (IMSGC) [9]. Twenty-

three MS associated non- major histocompability complex (MHC)

loci were replicated in the primary GWAS involving 9,772 cases

and 7,296 controls with PGWAS,1*1023. Table 2 provides the 23

replicated non-MHC SNPs with the combined ORs and p-value.

The risk allele frequency represents the allele frequency in control

population of UK, as being the largest sample. Table 2 also

includes the HLA-DRB1*15:01 MHC SNP, which have been

shown to significantly increase the risk for MS. These 24 risk SNPs

also include the 6 polymorphisms of our empirical data. The

collaboration also presented the identification of 29 novel

susceptibility loci as shown in table 3. This leads to a total of 53

risk SNPs.

Three different simulation scenarios were considered. In each

scenario genotypes and MS status were simulated for 100,000

individuals, assuming a lifetime MS risk of 0.1%. The first scenario

Table 1. Individual association of 6 genotyped SNPs in the empirical study.

Controls Cases

Gene Variant Risk Allele n genotyped RAF n genotyped RAF OR (95% CI) p-value

HLA-DRB rs3135388 T 599 0.14 588 0.28 2.53 (2.02–3.17) 8.14*10216

EVI5 rs10735781 G 597 0.33 586 0.38 1.19 (1.01–1.42) 0.044

CLEC16A rs64981169 G 593 0.33 583 0.39 1.27 (1.07–1.51) 0.006

CD58 rs12044852 C 599 0.88 587 0.91 1.50 (1.14–1.97) 0.004

IL7R rs6897932 C 599 0.72 588 0.76 1.21 (1.00–1.46) 0.045

IL2RA rs2104286 A 595 0.73 581 0.76 1.14 (0.95–1.38) 0.157

RAF: risk allele frequency, OR: odds ratio, 95% CI: 95% confidence interval.
doi:10.1371/journal.pone.0026493.t001
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calculated the AUC within the empirical data weighted on

literature frequency. The second scenario assessed the increase in

AUC by adding additional risk alleles, starting with the 6

genotyped risk loci given the replicated ORs. We compared this

to the calculated AUC for validation of the simulation model.

Next, the AUC was calculated with the 24 replicated SNPs in the

recent Nature paper including the 6 genotyped SNPs. And finally,

the AUC was assessed on a risk model including the 29 novel

susceptibility loci on top of the replicated SNPs, leading to a total

of 53 SNPs. The third scenario investigated the magnitude of the

allele ORs of 1 to 100 polymorphisms that need to be added to the

risk model to increase the discriminative accuracy. Since there are

no models known in the literature for predicting MS risk we

pursued AUCs known to be used for other diseases in the literature

[19,20]. We investigated AUC thresholds of 0.70, 0.75, 0.80 and

0.85. The ORs were obtained for different frequencies of the risk

alleles.

Results

Empirical study
A total of 588 cases and 599 controls were successfully genotyped

for at least one polymorphism, while complete genotype informa-

tion on all polymorphisms was available for 564 cases and 581

controls. The mean age (SD) within the cases and controls was 45

(12) and 49 (17) years, respectively. The cases included 71% female

and the controls 55%. None of the polymorphisms deviated

significantly from Hardy Weinberg Equilibrium (lowest Hardy

Weinberg p-value = 0.15 for IL2RA: rs2104286).

Table 1 shows the individual effects of each SNP on MS risk in

our genotyped population. Increased risk for MS was confirmed

for the minor alleles of EVI5, HLA-DRB and CLEC16A, and for the

major alleles of CD58 and IL7R. For IL2RA the association was not

statistically significant (OR 1.14, 95% CI 0.95–1.38). When

adjusting for multiple testing only HLA-DRB, CLEC16A and CD58

remained statistically significant.

Figure 1A shows the risk score when including all SNPs into the

model. The reference category is based on the a priori risk for

developing MS, which in our population was 49% ( = 564 cases

divided by 581 controls). Individuals with 0 to 5 risk alleles have a

significantly decreased risk for developing MS of 0.28 (95% CI

0.16–0.48) compared to the a priori risk for developing MS. On the

other end of the spectrum, individuals with 10 to 12 risk alleles

have a significantly increased risk of 2.76 (95% CI 2.02–3.77).

Figure 1B shows that, when excluding the variant with the

strongest risk effect (HLA-DRB) from the risk score, individuals

with 0 to 5 risk alleles have a decreased risk of 0.50 (95% CI 0.34–

0.73) and individuals with 8 to 10 risk alleles have an increased risk

Table 2. Summary of the 24 replicated multiple sclerosis associated risk loci.

Gene Variant Chromosome Risk allele RAF OR (95% CI) P-value

MMEL1 rs4648356 1 C 0.67 1.14 (1.12–1.16) 1.00*10214

EVI5 rs11810217 1 A 0.25 1.15 (1.13–1.16) 5.80*10215

CD58 rs1335532 1 A 0.87 1.22 (1.19–1.24) 3.20*10216

RGS1 rs1323292 1 A 0.83 1.12 (1.10–1.14) 2.30*1028

KIF21B rs7522462 1 G 0.70 1.11 (1.10–1.13) 1.90*1029

CBLB rs2028597 3 G 0.91 1.13 (1.06–1.21) 2.10*1024

TMEM39A rs2293370 3 G 0.80 1.13 (1.11–1.15) 2.70*1029

IL12A rs2243123 3 G 0.29 1.08 (1.06–1.10) 7.20*1026

IL7R rs6897932 5 G 0.73 1.11 (1.09–1.13) 1.70*1028

PTGER4 rs4613763 5 G 0.13 1.20 (1.18–1.22) 2.50*10216

HLA-DRB rs3135388 6 A 0.13 3.08 (not shown) ,1.0*102320

OLIG3 rs13192841 6 A 0.27 1.10 (1.09–1.12) 1.30*1028

IL7 rs1520333 8 G 0.25 1.10 (1.08–1.11) 1.60*1027

IL2RA rs3118470 10 G 0.32 1.12 (1.10–1.13) 3.20*10211

ZMIZ1 rs1250550 10 A 0.35 1.10 (1.09–1.12) 6.30*1029

CD6 rs650258 11 G 0.63 1.12 (1.10–1.13) 2.00*10211

TNFRSF1A rs1800693 12 G 0.40 1.12 (1.11–1.14) 4.10*10214

CYP27B1 rs12368653 12 A 0.47 1.10 (1.09–1.12) 1.70*1029

MPHOSPH9 rs949143 12 G 0.28 1.08 (1.04–1.12) 1.50*1024

CLEC16A rs7200786 16 A 0.46 1.15 (1.13–1.16) 8.50*10217

IRF8 rs13333054 16 A 0.23 1.11 (1.10–1.13) 1.30*1028

STAT3 rs9891119 17 C 0.36 1.11 (1.09–1.12) 1.80*10210

TYK2 rs8112449 19 G 0.67 1.08 (1.07–1.10) 1.20*1026

CD40 rs2425752 20 A 0.25 1.11 (1.10–1.13) 5.10*10210

RAF: risk allele frequency, OR: odds ratio, 95% CI: 95% confidence interval.
OR and p-value represent the combined discovery and replication study results [9]. Risk allele frequency refers to allele frequency in control population of UK samples.
For CBLB is the discovery OR and p-value given.
Reprinted by permission from Macmillan Publishers Ltd: The International Multiple Sclerosis Genetics Consortium and The Wellcome Trust Case Control Consortium.
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. 2011, Nature 476: 214–219.
doi:10.1371/journal.pone.0026493.t002
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of 1.33 (95% CI 1.07–1.64) in comparison with the a priori risk for

developing MS.

Simulation study
Table 2 provides the 24 replicated SNPs from the recent Nature

paper [9] which have been shown to significantly increase the risk

for MS. These 24 risk SNPs include also the 6 polymorphisms of

our empirical data. Table 3 shows the 29 newly identified

polymorphisms in this Nature paper, leading to a total of 53 risk

SNPs.

First, we calculated that the AUC for the genotyped 6 SNPs

within the empirical data weighted on literature frequency was

0.64. Second, in the simulation study we assessed the AUC

increase by including additional risk alleles. The AUC for the

recently replicated ORs of the 6 SNP’s used in the empirical study

was 0.64. This showed to be the same as the calculated AUC from

the empirical study. Next, including the 24 known polymorphisms

in the model the AUC rised to 0.66, and slightly increased to 0.69

after including all 53 SNPs in the model (Figure 2). Finally, we

explored the possibilities in the future with new risk alleles to be

discovered. Table 4 shows the number of new risk genes with

specific allele frequencies in combination with different ORs that

would be needed in addition to the original 53 risk variants to

obtain AUCs of 0.70, 0.75, 0.80 and 0.85. For example to increase

the AUC just slightly to 0.70 we have to add to our model 20 new

variants, with a realistic OR of 1.1 and an allele frequency of 0.30.

However if we want to increase the AUC to 0.85 we have to add

50 new variants with an OR of 1.4 and an allele frequency of 0.30.

For more realistic ORs this would mean we would have to add

even more polymorphisms to the model.

Discussion

This study investigated the extent of MS prediction by genetic

risk models, using empirical and simulation data on the most

updated genetic information for MS. First, we showed that the

predictive performance of testing multiple genes can be enhanced

by using a combination of individual MS risk alleles. As expected,

Table 3. The 29 novel associated MS risk genes.

Gene Variant Chromosome Risk allele RAF OR OR (95% CI) P-value

VCAM1 rs11581062 1 G 0.29 1.12 (1.10–1.13) 2.50*10210

No gene rs12466022 2 C 0.73 1.11 (1.10–1.13) 6.20*10210

PLEK rs7595037 2 A 0.55 1.11 (1.10–1.12) 5.10*10211

MERTK rs17174870 2 G 0.75 1.11 (1.09–1.13) 1.30*1028

SP140 rs10201872 2 A 0.18 1.14 (1.12–1.16) 1.80*10210

No gene rs669607 3 C 0.48 1.13 (1.12–1.15) 1.90*10215

EOMES rs11129295 3 A 0.36 1.11 (1.09–1.12) 1.20*1029

CD86 rs9282641 3 G 0.91 1.21 (1.18–1.24) 1.00*10211

IL12B rs2546890 5 A 0.52 1.11 (1.10–1.13) 1.20*10211

BACH2 rs12212193 6 G 0.47 1.09 (1.08–1.10) 3.80*1028

THEMIS rs802734 6 A 0.69 1.10 (1.09–1.12) 5.50*1029

MYB rs11154801 6 A 0.36 1.13 (1.11–1.15) 1.00*10213

IL22RA2 rs17066096 6 G 0.24 1.14 (1.12–1.15) 6.00*10213

TAGAP rs1738074 6 G 0.57 1.13 (1.12–1.15) 6.80*10215

ZNF746 rs354033 7 G 0.74 1.11 (1.10–1.13) 4.70*1029

MYC rs4410871 8 G 0.72 1.11 (1.09–1.12) 7.70*1029

PVT1 rs2019960 8 G 0.23 1.12 (1.10–1.13) 5.20*1029

HHEX rs7923837 10 G 0.62 1.10 (1.08–1.11) 4.90*1029

CLECL1 rs10466829 12 A 0.50 1.09 (1.08–1.11) 1.40*1028

ZFP36L1 rs4902647 14 G 0.53 1.11 (1.10–1.13) 9.30*10212

BATF rs2300603 14 A 0.74 1.11 (1.09–1.12) 2.00*1028

GALC rs2119704 14 C 0.92 1.22 (1.19–1.25) 2.20*10210

MALT1 rs7238078 18 A 0.77 1.12 (1.10–1.14) 2.50*1029

TNFSF14 rs1077667 19 G 0.79 1.16 (1.14–1.18) 9.40*10214

MPV17L2 rs874628 19 A 0.72 1.11 (1.09–1.12) 1.30*1028

DKKL1 rs2303759 19 C 0.25 1.11 (1.09–1.13) 5.20*1029

CYP24A1 rs2248359 20 G 0.61 1.12 (1.10–1.13) 2.50*10211

MAPK1 rs2283792 22 C 0.52 1.10 (1.08–1.11) 4.70*1029

ODF3B rs140522 22 A 0.33 1.10 (1.09–1.12) 1.70*1028

RAF: risk allele frequency, OR: odds ratio, 95% CI: 95% confidence interval.
OR and p-value represent the combined discovery and replication study results [9]. Risk allele frequency refers to allele frequency in control population of UK samples.
Reprinted by permission from Macmillan Publishers Ltd: The International Multiple Sclerosis Genetics Consortium and The Wellcome Trust Case Control Consortium.
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. 2011, Nature 476: 214–219.
doi:10.1371/journal.pone.0026493.t003
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HLA-DR influences the ability to predict MS considerably due to

its high OR. However, even without HLA-DR there was an

increased, but small, risk for developing MS in people with 8 to 10

risk alleles. This underlines the current insight that multiple genes

exert a small effect on developing MS on top of the major

influence of HLA-DR [21,22].

Next, after validating the genetic risk models with simulated

genotype and MS status in a population of 100,000 individuals, we

estimated that the predictive value as reflected in AUCs would be

0.66 when all 24 well replicated GWA derived polymorphisms

were considered. Moreover, we showed that including the 29

novel risk genes increased the AUC only slightly to 0.69,

illustrating that even more than doubling the number of risk

SNPs does not increase the AUC sufficiently to make it useful in

clinical practice. The AUC of 0.69 is comparable to other risk

prediction models in MS [23,24,25]. In 2009, De Jager and

colleagues investigated the prediction of 16 MS susceptibility loci

using weighted genetic risk scores in three cohorts [23]. They

demonstrated a consistent discriminatory ability in three indepen-

dent samples (AUC varying 0.64–0.70). Gourraud and colleagues

also investigated the aggregation of genetic MS risk markers in

individuals by comparing multiple and single case families [24].

They showed that a greater genetic burden in siblings of MS

patients was associated with an increased MS risk (OR 2.1,

p = 0.001). However, the AUC for genetic burden differences

between probands and siblings was only 0.57, indicating that the

available genetic data is not sufficient to achieve case-control

prediction of MS. They also used 16 MS susceptibility loci, partly

matching with those of De Jager et al.

Before interpreting the clinical relevance of our findings, a

methodological issue needs to be disclosed. We assumed that

genetic variants inherited independently and that the combined

effect of the genetic variants on disease risk followed a

multiplicative risk model of independent effects (i.e., no statistical

interaction terms were included in the model). Although so far no

studies have demonstrated gene-gene interactions with MS risk, it

is still possible that these will be discovered in future studies in

larger populations. However, gene-gene interactions only improve

the MS risk predictions if their effect sizes are substantially high

(e.g., OR.5). When interaction effects are smaller, their effects on

the predictive accuracy will be comparable with that of single gene

effects, because by definition their frequencies are lower.

With the current model including 53 variants, we are still not

able to differentiate with reasonable accuracy between individuals

who will develop MS and those who will not (AUC 0.69). This

makes our model not clinically useful. So the question is raised

how to improve MS prediction.

We demonstrated in the simulation study that in order to obtain

higher AUCs, a considerable number of additional common

genetic variants or stronger associated variants with high ORs

(table 4) need to be identified. The per-allele OR of the

polymorphisms identified in GWA studies ranges from 1.08 to

2.1. When future GWA studies will identify polymorphisms with

per-allele ORs around 1.1, the predictive ability of the genetic risk

model can theoretically be improved beyond that of the existing

models. Yet, even small improvements to 0.70 still require the

discovery of 20 new statistically significant variants. Despite the

increase it is still not clinically applicable. Because even in a disease

that is readily treatable and even preventable like coronary heart

disease (as presented in the Framingham Risk score) an AUC of

about 0.80 is used [26]. For MS there is still no cure or preventive

treatment available, and so a higher predictive accuracy is

desirable to prevent false positives. We have shown that to pursue

an AUC of 0.85, we have to include 50 new variants with ORs of

1.4 or a few common variants (minor allele frequency .30%) with

high ORs (table 4). This may prove to be difficult, because the

common genetic variants with high ORs may already have been

identified, which would imply that even higher numbers of

common genetic variants with relatively smaller ORs or many

exceedingly rare variants (minor allele frequency ,1%) with high

ORs, will be needed. This seems not feasible. To note, unlike

HLA-DR most of the genetic risk factors identified so far have only

a slight effect on susceptibility to MS (with ORs that range from

1.1 to 1.2) [23]. However, more high risk genetic MS risk variants

can be expected in near future [27]. With novel techniques such as

next generation sequencing we can expect new rare variants with

high ORs to be discovered [28]. This approach has already been

proven successful in rare Mendelian disorders and can potentially

Figure 1. Weighted Risk scores for the 6 genotyped SNPs. The
odds ratios for MS are shown according to the number of risk alleles
carried. The reference value is based on the a priori probability of
someone in the general population to carry MS risk alleles. A) Weighted
risk scores for the 6 genotyped SNPs including HLA-DRB. B) Weighted
risk scores for the 5 genotyped SNPs.
doi:10.1371/journal.pone.0026493.g001
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Table 4. Odds ratios and related allele frequencies needed to obtain AUCs of 0.70–0.85 in addition to the 53 statistically significant
genetic susceptibility variants (AUC = 0.69).

Risk allele
Frequency

Number of
extra genetic variants AUC 0.70 AUC 0.75 AUC 0.80 AUC 0.85

0.05 1 1.2 2.3 5.1 9.0

5 1.2 1.7 2.6 3.6

20 1.1 1.4 1.7 2.1

50 1.1 1.2 1.4 1.6

100 1.1 1.2 1.3 1.4

0.30 1 1.2 1.9 3.0 4.9

5 1.2 1.4 1.8 2.2

20 1.1 1.3 1.4 1.6

50 1.1 1.2 1.3 1.4

100 1.1 1.2 1.3 1.4

0.50 1 1.2 1.8 3.2 5.3

5 1.2 1.4 1.8 2.1

20 1.1 1.3 1.4 1.5

50 1.1 1.2 1.3 1.4

100 1.1 1.2 1.3 1.4

NOTE: Odds ratios are presented as mean of 20 simulations each.
AUC: area under the receiver operating characteristic curve.
doi:10.1371/journal.pone.0026493.t004

Figure 2. ROC curves for simulation models predicting MS. Four situations are depicted. Solid line (____) represents ROC curve for
simulation model based on 6 genotyped SNPs (AUC 0.64). Dashed line (----) ROC curve for simulation model based on 24 well replicated SNPs (AUC
0.66). Dotted line (……..) ROC curve for simulation model based on a total of 53 replicated and novel SNPs (AUC 0.69). Dash-dotted line (_ . _ .) ROC
curve for simulation model based on 20 extra variants with an arbitrarily set allele frequency of 0.30 and OR 1.1 (AUC 0.70). Long- dashed line (__ - __)
ROC curve for simulation model based on 50 extra variants with an arbitrarily set allele frequency of 0.30 and OR 1.4 (AUC 0.85).
doi:10.1371/journal.pone.0026493.g002
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also identify rare variants explaining the high recurrence rate of

MS within families [29]. Also, this technique potentially allows us

to find the causal variants for MS which will most likely have

higher ORs than those found in GWA studies.

Another approach to improve MS prediction could be

combining genetic with nongenetic risk factors such as infection

with Epstein-Barr virus (EBV), smoking, and serum vitamin D

concentrations [30]. It is likely that risk prediction models

combined with nongenetic factors will perform better as ORs for

SNPs tend to be smaller than ORs based on nongenetic factors

(e.g. infectious mononucleosis [31]). De Jager and colleagues

showed an enhanced discriminatory ability of 16 susceptibility

genes by the inclusion of sex (AUC increasing from 0.70 to 0.74)

and smoking and immune response to EBV (AUC increasing from

0.64 to 0.68). Others have performed studies combining the effects

of HLA-DR and non-genetic factors like smoking and anti EBV

serum levels [32,33]. Also, integration of transcriptional, proteo-

mics, and clinical factors will probably improve the prediction

model and with that our understanding of MS genetics [34].

However, the added value of the SNPs might then be questioned.

For other diseases it has been shown that the AUC does not

improve a lot when adding SNPs to clinical risk factors. It should

be noted though, that in these studies only small numbers of SNPs

were added to the clinical risk factors.

Even if we can improve the prediction of MS in the future the

question remains what the clinical implications of such predictive

risk models would be. The discriminative accuracy that is required

in preventive or clinical care depends on the goal of testing, the

availability of (preventive) treatment, and the adverse effects of

false-positive and false-negative test results.

Although the early results from GWA studies have not yet been

used clinically, at least a partial goal of understanding the genetic

basis of MS is to investigate the use of these variants to predict

disease risk, so that environmental changes or therapeutic

interventions can be initiated before the inflammatory demyelin-

ating process progresses or even starts. Also, by better mapping the

genetic of MS, we hope to improve our understanding of the

pathofysiology of MS. This could help us finding better and new

therapeutic drugs. By combining family history with a quantitative

measure of genetic risk, a screening method might eventually be

implemented that could identify clinically silent evidence of disease

among first-degree relatives of MS patients, who have 20–50 times

higher risk of developing MS [35]. However, the absolute risk is

only 2–5% and therefore the models could be more useful in high

risk populations with individuals who have had clinically isolated

syndrome suggesting MS. These patients present with a neuro-

logical disability during their productive years of life and face the

possibility of a chronic disease. Thus, they yearn for more clarity

about their future. But also improving the risk prediction would

enable us to distinguish individuals at risk to start early treatment

for reducing the accumulation of neurological disability [36].

Given the possible clinical consequences of false-positivity

within these patients, the required prediction AUCs for the pre-

symptomatic diagnosis is considerably higher than an AUC

intended for clinically isolated syndrome. It has been suggested

that identified genetic variants have stronger effects in multiplex

families [37]. It is of note that the ORs assessed up to now in GWA

studies and validation studies are generally derived from datasets

on sporadic cases. In a multiplex family setting, with potential

stronger effects for individual risk variants, our estimates may

prove to be conservative.

In conclusion, our analyses show that prediction of MS risk

based on low susceptibility variants theoretically can improve

prediction of disease when more variants are being discovered.

However, the discriminatory ability in a clinical setting will be

limited.
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