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Abstract

Flavonoids, which are plant polyphenols, are now widely used in supplements and cosmetics. Here, we report that 49-
methylflavonoids are potent inducers of melanogenesis in B16F10 melanoma cells and in mice. We recently identified salt
inducible kinase 2 (SIK2) as an inhibitor of melanogenesis via the suppression of the cAMP-response element binding
protein (CREB)-specific coactivator 1 (TORC1). Using an in vitro kinase assay targeting SIK2, we identified fisetin as a
candidate inhibitor, possibly being capable of promoting melanogenesis. However, fisetin neither inhibited the CREB-
inhibitory activity of SIK2 nor promoted melanogenesis in B16F10 melanoma cells. Conversely, mono-methyl-flavonoids,
such as diosmetin (49-O-metlylluteolin), efficiently inhibited SIK2 and promoted melanogenesis in this cell line. The cAMP-
CREB system is impaired in Ay/a mice and these mice have yellow hair as a result of pheomelanogenesis, while Sik2+/2; Ay/a
mice also have yellow hair, but activate eumelanogenesis when they are exposed to CREB stimulators. Feeding Sik2+/2; Ay/a
mice with diets supplemented with fisetin resulted in their hair color changing to brown, and metabolite analysis suggested
the presence of mono-methylfisetin in their feces. Thus, we decided to synthesize 49-O-methylfisetin (49MF) and found that
49MF strongly induced melanogenesis in B16F10 melanoma cells, which was accompanied by the nuclear translocation of
TORC1, and the 49-O-methylfisetin-induced melanogenic programs were inhibited by the overexpression of dominant
negative TORC1. In conclusion, compounds that modulate SIK2 cascades are helpful to regulate melanogenesis via TORC1
without affecting cAMP levels, and the combined analysis of Sik2+/2 mice and metabolites from these mice is an effective
strategy to identify beneficial compounds to regulate CREB activity in vivo.
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Introduction

Melanin plays an important role in animals by preventing the

cellular damage induced by ultraviolet (UV) light. When keratino-

cytes in the skin are exposed to UV irradiation, alpha-melanocyte

stimulating hormone (alpha-MSH), a peptide hormone, is processed

from the precursor peptide proopiomelanocortin and is secreted as a

paracrine factor [1,2,3,4]. Secreted alpha-MSH subsequently binds

to its receptor, the melanocortin 1 receptor, on the membrane of

melanocytes and activates adenylyl cyclase, resulting in increased

levels of intracellular cAMP. cAMP then activates protein kinase A

(PKA), which phosphorylates the transcription factor cAMP

response element (CRE)-binding protein (CREB) at Ser133,

initiating the transcriptional cascades of the melanogenic program,

e.g., the induction of microphthalmia-associated transcription factor

(Mitf) expression [5,6]. Finally, MITF induces the expression of

tyrosinase, which initiates the catalysis of melanin from tyrosine by

the sequential hydroxylation [7].

Flavonoids are polyphenolic compounds that are widely

distributed in vegetables and fruits and protect organisms from

damage caused by UV exposure and reactive oxygen species [8,9].

Flavonoids consist of two parts: one is a basic skeleton having three

rings (A, B, and C) with one or two oxygen molecules (e.g., flavan

or flavone, respectively), while the other part consists of modified

side chains, e.g., hydroxy, methoxy, and O-glycosyl groups [10].

Based on the health-promoting effectiveness of flavonoids and

their low levels of toxicity, they are used as supplements to prevent

disease, such as cancer and metabolic syndromes. In addition,

flavonoids, e.g., procyanidins [11] and quercetin [12], are added to

cosmetic products to suppress melanogenesis by inhibiting

tyrosinase. However, other flavonoids have been reported to have

the opposite effect on melanogenesis. For example, nobiletin [13]
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was shown to stimulate melanogenesis by upregulating the

extracellular signal-regulated kinase (ERK) pathway, which

induces the expression of tyrosinase via the activation of CREB.

In addition to this pathway, nobiletin inhibits phosphodiesterase

leading to an elevation of intracellular cAMP levels [14], which

bypasses the alpha-MSH pathways.

We previously found that the CREB-specific coactivator

TORC1 (transducer of CREB activity, also called CRTC1) and

its repressor, salt-inducible-kinase 2 (SIK2) [15,16,17], are

fundamental determinants of the melanogenic program in mice

[18]. Exposure of B16F10 melanoma cells to UV light results in

the immediate nuclear translocation of TORC1, which is inhibited

by SIK2. Overexpression of dominant negative TORC1 also

inhibits UV-induced Mitf gene expression and melanogenesis.

alpha-MSH signaling regulates hair pigmentation, and a decrease

in alpha-MSH activity in hair follicle melanocytes switches the

synthesis of melanin from eumelanin (black) to pheomelanin

(yellow). Mice with the lethal yellow allele of agouti (Ay/a) have

yellow hair due to the impaired activation of the alpha-MSH

receptor. Ay/a mice with Sik22/2 have brown hair, indicating that

SIK2 represses eumelanogenesis in mice.

Here we report that flavonoids with an O-methyl group at their 49

position efficiently inhibit SIK2 action in cultured melanoma cells

and promote the melanogenic program in a TORC1-dependent

manner. Diosmetin (49-O-methylluteolin) and fisetin (after its

conversion into 49-O-methylfisetin in vivo) enhance eumelanogenesis

in Ay/a mice whose CREB-cascades were sensitized by the Sik2

heterozygous (Sik2+/2) background.

Results

SIK2 inhibitory activity of the flavonoids
To identify SIK2 inhibitory substances, we employed an

enzyme-linked immunosorbent assay (ELISA) system and screened

the compounds using a kinase inhibitor library (BioMol). Most

candidates, e.g., staurosporine, hypericin, etc. [19], were nonspe-

cific kinase inhibitors and were considered difficult to utilize in

structure-activity-related studies. However, quercetin, a flavonoid,

has a number of derivatives despite its weak inhibitory activity

(IC50 = 500 nM); therefore, we decided to examine the SIK2-

inhibitory activity of quercetin derivatives.

The structures of flavonoids (Figure 1A) and their SIK2-

inhibitory activity (Figure 1B) are shown. Fisetin was found to

inhibit SIK2 even at a low concentration (50 nM). Some of the O-

methylated derivatives, such as diosmetin, inhibited SIK2 at

medium concentrations (50–500 nM).

To monitor the SIK2-inhibitory activity in cultured cells

(HEK293), we employed the CRE-reporter assay. As shown in

Figure 1. Inhibition of SIK2 by flavonoids. (A) Structure of the flavonoids used in this study. (B) In vitro kinase assay of SIK2. GST-SIK2 expressed
in COS-7 cells was used as the enzyme, while GST-TORC2 peptide [42], expressed in Escherichia coli, was used as the substrate for the ELISA. The
optical density (OD) value in the absence of a flavonoid was set as 100%. n = 2, means and differences are shown. (C) HEK293 cells transformed with
the CRE-Luc firefly luciferase plasmid (200 ng) and pRL-Tk Int- (internal Renilla luciferase: 30 ng) in the presence or absence of pTarget-SIK2 (50 ng)
were treated with forskolin (Fsk: 20 mM) in the presence of the indicated dose of flavonoids. The ratio of firefly luciferase to Renilla luciferase is shown.
n = 2, means and differences are shown.
doi:10.1371/journal.pone.0026148.g001
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Figure 1C, 25 mM fisetin inhibited the SIK2-mediated suppression

of CRE activity that had been upregulated by the cAMP-agonist

forskolin. However, a low dose of fisetin (10 mM) failed to inhibit

SIK2 activity in cultured cells, while diosmetin was able to inhibit

SIK2 even at a low dose (10 mM), suggesting that other

parameters, such as cell permeability, may affect their SIK2-

inhibitory activity in cultured cells. On the other hand, it is also

important that the O-methyl group at the 49-position of the B-ring

more increased their SIK2-inhibitory activity in cultured cells than

the O-methyl group at the 39-position or at the 7- position.

O-methyl-flavonoids promote melanogenesis in B16F10
cells

Because one of the representative phenomena of SIK2

inhibition is the promotion of melanogenesis, we employed a

melanogenesis assay using B16F10 melanoma cells to evaluate

SIK2-inhibitory flavonoids. As shown in Figure 2, non-methylated

flavonoids did not induce melanogenesis. In contrast, the 49-O-

methyl flavonoids diosmetin and tamarixetin efficiently induced

melanogenesis, while the 39-O-methyl flavonoid isorhamnetin had

a modest effect. A small induction of melanogenesis was observed

when the 7-O-methyl flavonoid rhamnetin was added into the

cultured medium.

The requirement of the methyl group at the 49-position of the B-

ring for melanogenesis in B16F10 melanoma cells was similar to

that for the inhibition of the SIK2-mediated suppression of CREB

activity in HEK293 cells, suggesting that 49-O-methyl flavonoids

may induce melanogenesis mainly due to the inhibition of SIK2.

The effect of fisetin on melanogenesis was not affected by other

factors, such as cell-permeability and stability, which are different

between cell types, because fisetin did not affect CREB activity in

B16F10 melanoma cells (shown later).

Flavonoids promote eumelanogenesis in vivo
CREB activity determines the ratio of eumelanogenesis to

pheomelanogenesis in hair follicle melanocytes in vivo, and

inhibition of SIK2 facilitates eumelanogenesis due to the

constitutive activation of CREB. Mice with the lethal yellow allele

of agouti (Ay) have yellow hair due to the impaired activation of the

alpha-MSH receptor followed by the inactivation of the cAMP-

CREB cascade. The Sik22/2 genetic background reactivates the

CREB cascade in Ay/a mice, which restores the yellow hair color

to wild-type mice (brown).

The Sik2 heterozygous (Sik2+/2) background partially re-

stored hair color, but Sik2+/2; Ay/a mice were highly sensitive to

CREB agonists, such as UV irradiation, which appeared as a

hair color change (Figure 3A). Therefore, we decided to use

Sik2+/2; Ay/a mice to evaluate the effect of flavonoids on

melanogenesis in vivo. We assessed the activity of fisetin,

quercetin, and diosmetin because their low cost would facilitate

their use as dietary supplements. As shown in Figure 3B, fisetin

and diosmetin changed the hair color of Sik2+/2; Ay/a mice,

while quercetin had a modest effect. This hair color change was

reversible. The difference between fisetin and quercetin could

be explained by their inhibitory efficiency toward SIK2 in

HEK293 cells (Figure 1C); however, the fact that fisetin

promoted eumelanogenesis at the same level as diosmetin

disagreed with the results observed in B6F10 melanoma cells

(Figure 2). Therefore, we surmised that some of the metabolites,

probably O-methylfisetin, might promote eumelanogenesis in

mice consuming fisetin. To confirm this hypothesis, we analyzed

fisetin metabolites in feces and identified mono-methylfisetin in

the metabolites (Figure 3C).

49-O-methylfisetin strongly promotes melanogenesis in
B16F10 melanoma cells

The LC system is not able to separate 49-O-methyl flavonoids

from their 39-O-methyl isomers, and 49-O-methylfisetin is not

commercially available, while 39-O-methyl fisetin is available as

geraldol. Therefore, we decided to synthesize 49-O-methylfisetin

using CH3I to confirm its potential as a promoter of melanogenesis

(Figure 4A). The 49-OH group of fisetin might more actively

Figure 2. Induction of melanogenesis by flavonoids in B16F10
melanoma cells. (A) B16F10 melanoma cells were treated with 10 mM
flavonoids for 3 d with a medium change at day 2. (B) The cells were
recovered in test tubes. (C) Melanin was extracted with an alkaline
method. After normalization of the melanin content to the protein
amount in each sample, the melanin level was expressed as fold of
control (DMSO-treated cells). n = 3, means and standard deviations
(S.D.) are shown.
doi:10.1371/journal.pone.0026148.g002
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Figure 3. Induction of melanogenesis by flavonoids in vivo. (A) 1.5-week-old Ay/a male mice with different Sik2 backgrounds (Sik2+/+ or Sik2+/2)
exposed to a black lamp (15 W at 20 cm distance) for 30 min twice daily for 10 d. (B) 4-week-old male mice were fed with a diet supplemented with 0.2%
flavonoids. After 1 week, the diet was changed to a normal diet (flavonoid free), and the mice were fed for an additional week until all of their hair was
replaced by newly grown hair. After a photograph was taken under anesthesia, the mice were fed for a further 3 months until the next set of hair grew.
The photographs show a representative mouse from each group (n = 4). (C) Flavonoids in feces derived from fisetin-treated mice were extracted with

A SIK2 Inhibitor Promotes Melanogenesis
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accept the methyl group than the 39-OH group did because the

yield of 49-O-methylfisetin (5.3%, 5.9 mg) was higher than the 39-

O-isomer (,1.0%). The identity of 49-O-methylfisetin was

confirmed by 1H NMR, 13C NMR, and ESI-MS [20] (Figure S1).

When 49-O-methylfisetin was added into the culture medium of

B16F10 melanoma cells, the SIK2-mediated suppression of CREB

activity was weakened (Figure 4B) and melanogenesis was strongly

promoted (Figure 4C), suggesting that eumelanogenesis in fisetin-

treated mice might be induced by 49-O-methylfisetin.

49-O-methylfisetin promotes melanogenesis dependent
on TORC1 and independent of cAMP

To examine the molecular mechanisms underlying 49-O-

methylfisetin-induced melanogenesis, we monitored the mRNA

expression of the melanogenic genes, M-type Mitf, A-type Mitf,

and Tyrosinase. As shown in Figure 5A, 49-O-methylfisetin induced

these mRNAs in B16F10 melanoma cells. The Tyrosinase protein

level (Tyr) was also elevated in 49-O-methylfisetin-treated cells

(Figure 5B), which was observed from 3 mM. Geraldol was also

able to induce Tyrosinase expression, but its efficiency was less

than one-third of 49-O-methylfisetin.

When we examined CREB phosphorylation levels (Figure 5B),

we noticed that 49-O-methylfisetin induced melanogenesis without

elevating the phosphorylation of CREB at Ser133. This was

confirmed by an assay indicating that these flavonoids had little

effect on intracellular cAMP levels in B16F10 melanoma cells

(Figure 5C). In addition to cAMP/PKA cascade, 49-O-methylfi-

setin did not alter the phosphorylation levels of Erk and GSK-

3beta, while fisetin and geraldol enhanced pGSK-3 beta signals

(Figure S2).

Since the loss of SIK2 induces melanogenesis by activating

TORC1, we monitored the activation of TORC1 by its

intracellular distribution. As shown in Figure 5D, 49-O-methylfi-

setin induced the nuclear accumulation of TORC1, but other

flavonoids did not. We then examined whether 49-O-methylfisetin

was able to activate CREB, and if so, whether this activation was

ethyl acetate and detected by LC-MS with a scan range of ms 285–299, as described in the Materials and Methods. The positions of authentic flavonoids
are also shown in left panels.
doi:10.1371/journal.pone.0026148.g003

Figure 4. 49-O-methylfisetin (49MF) inhibits SIK2-mediated CRE suppression and induces melanogenesis in B16F10 melanoma cells.
(A) Synthesis of 49MF. (B) B16F10 melanoma cells transformed with CRE-Luc firefly luciferase plasmid (200 ng) with pRL-Tk Int- (internal Renilla
luciferase: 30 ng) in the presence or absence of pTarget-SIK2 (50 ng) were treated with forskolin (Fsk: 20 mM) in the presence of the indicated dose of
flavonoids. The relative units of firefly luciferase were normalized to Renilla luciferase, and expressed as % of control (without flavonoid or SIK2). n = 3,
means and S.D. are shown. **, p,0.01. (C) B16F10 melanoma cells were treated with 10 mM flavonoids for 3 d, with a medium change at day 2, and
melanin was measured. n = 3, means and S.D. are shown. *, p,0.05.
doi:10.1371/journal.pone.0026148.g004
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Figure 5. 49MF induces melanogenesis by activating TORC1 without enhancing the cAMP level in B16F10 melanoma cells. (A)
Quantitative PCR analyses were performed with total RNA prepared from flavonoid-treated B16F10 melanoma cells (10 mM for 3 d, with a medium
change at day 2). The mRNA levels are shown as fold of control. n = 3, means and S.D. are shown. 49MF: 49-O-methylfisetin. * and **, p,0.05 and
,0.01, respectively. (B) Tyrosinase (Tyr) protein was detected by western blot analysis. 49MF was added at the indicated concentration. pCREB
(pSer133) and total CREB were also examined using the same cell lysate. The panels represent the findings from one of the duplicated experiments.
(C) B16F10 cells transformed with the cAMP-indicator plasmid pGloSensor-22F were treated with 10 mM flavonoid or forskolin (Fsk: 20 mM) in the
presence of luciferin. The relative light units are shown as relative cAMP levels. (D) B16F10 cells were treated with 10 mM flavonoids for 72 h and then
fixed with 4% paraformaldehyde. TORC1 was detected with the anti-TORC1/3 antibody. Nuclei were stained with DAPI. (E) B16F10 melanoma cells
transfected with the dominant negative TORC1 (DN-TORC1) adenovirus or empty adenovirus (Vector) were transformed with the CRE-Luc firefly

A SIK2 Inhibitor Promotes Melanogenesis

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e26148



dependent on TORC1. Expectedly, 49-O-methylfisetin upregu-

lated CRE-reporter activity, which was inhibited by the overex-

pression of DN-TORC1.

Finally, we tested whether DN-TORC1 was able to inhibit 49-

O-methylfisetin-induced melanogenesis. As shown in Figure 5E,

DN-TORC1 inhibited melanin synthesis (Figure 5F), which was

accompanied by the suppression of Tyrosinase expression

(Figure 5G). These results suggest that 49-O-flavonoids, especially

49-O-methylfisetin, are potent inhibitors of SIK2 and capable of

activating TORC1 followed by the induction of the melanogenic

program in mice.

Discussion

We have shown that 49-O-methyl flavones can inhibit SIK2

activity and promote melanogenesis via the activation of TORC1

in B16F10 melanoma cells [18]. However, first, we have to discuss

about the discrepancy found between the in vitro and cultured cell

assays for structure activity correlation. The in vitro kinase assay

using the TORC peptide suggested that non-methylated flavones

more potently inhibited SIK2 than their methylated derivatives.

However, in HEK293 cells and B16F10 melanoma cells, 49-O-

methylflavone inhibited SIK2 more efficiently, suggesting several

mechanisms exist by which flavones can inhibit SIK2 in cultured

cells. This hypothesis is also supported by the observation that 39-

O-methylflavones, such as isorhamnetin and geraldol, do not

inhibit SIK2 in vitro, while they weakly induce melanogenesis in

B16F10 melanoma cells. These results suggested that methylated

flavonoids induce the melanogenic program by several mecha-

nisms, such as enhanced cell permeability and SIK2-independent

signaling pathways.

Meanwhile, it was also true that the efficiency of SIK2

inhibition and the potency of melanogenic promotion by 49-O-

methylflavones in cultured cells (49-O-methylfisetin . diosmetin .

tamarixetin) correlated well with the efficiency of SIK2-kinase

inhibition in vitro by their non-methylated cognates (fisetin .

luteolin . quercetin). Moreover, fisetin promoted eumelanogen-

esis in Ay/a; Sik2+/2 mice more potently than quercetin, suggesting

that a synergistic effect between the direct inhibition of SIK2 by a

structural dependence of flavones and an indirect effect via a

mechanism depending on their 49-O-methoxy groups may

efficiently promote melanogenesis in mice.

A number of factors and related compounds have been

reported to intricately modulate the melanogenic program. For

example, tyrosine kinases and glycogen synthase kinase 3 beta

(GSK-3 beta) play opposing roles in the regulation of melano-

genesis in melanocytes [21]. The transcriptional activity of the

MITF protein is modulated by protein kinase cascades that are

induced by the stem cell factor and its receptor kinase c-KIT.

The activation of c-KIT invokes two opposing pathways: the

RAS-RAF-MEK and PI3K-AKT pathways. The RAS-RAF-

MEK pathway activates ERK-p90RSK, which phosphorylates

CREB at Ser133 and MITF at Ser73 and Ser409 [22] and

promotes melanogenesis, whereas AKT inhibits the MITF-

activating kinase GSK-3 beta and downregulates melanogenesis

[23]. The plant steroid diosgenin also inhibits melanogenesis by

activating PI3K signaling [24].

However, the action of GSK-3 beta in the regulation of

melanogenesis is complicated and paradoxical. The promoter

activity of the Mitf gene is upregulated by the beta-catenin-TCF/

LEF complex [25], and the phosphorylation of beta-catenin by

GSK-3 beta [26] destabilizes beta-catenin and leads to the

suppression of MITF-induced melanogenesis [27]. The observa-

tion that indirubin derivatives, potent inhibitors of GSK-3 beta

[27,28], stabilize the beta-catenin-TCF/LEF complex and

promote melanogenesis in B16F10 melanoma cells suggests that

Mitf expression, rather than the phosphorylation-dependent

activation of MITF, is the rate-limiting step of the melanogenic

program [29].

The GSK-3 beta-mediated regulation of melanogenesis is often

accompanied by the activation of the cAMP-PKA-CREB

pathway. The plant steroid glycyrrhizin inhibits GSK-3 beta

activity, while stimulating CREB-mediated transcription by

activating PKA, which results in the promotion of melanogenesis

[30]. Meanwhile, we reported that the GSK-3 beta inhibitor

indirubin induces the degradation of SIK1 and SIK2 proteins in

COS-7 cells [31] and in differentiating C2C12 myocytes [32].

GSK-3 beta is capable of phosphorylating (activating) sites in the

activation loop of SIK1/2, and the activated SIK1/2 proteins are

stable [31], suggesting that B16F10 melanoma cells that have been

treated with GSK-3 beta inhibitors have low levels of SIK2, which

would promote melanogenesis. Meanwhile, 49-O-methylfisetin did

not modulate the AKT-GSK-3 beta and MEK cascades,

suggesting that the melanogenic programs induced by 49-O-

methylflavones may be different from those induced by plants

compounds modulating the AKT-GSK-3 beta and MEK

cascades.

Some methylated flavonoids, such as nobiletin [14] and ayanin

[33], inhibit phosphodiesterase, which increases the intracellular

cAMP levels [34]. In contrast to these polymethylated flavonoids,

49-O-methylfisetin elevates neither CREB phosphorylation levels

nor cAMP-indicator luciferase activity, irrespective of the length of

treatment, suggesting that 49-O-methylfisetin upregulates CREB

activity independently of cAMP. The mechanism of 49-O-

methylfisetin-induced CREB activity may depend on the activity

of TORC1 induced by SIK2 inhibition.

TORC1, or its other isoforms, plays important roles in neuronal

activity, such as memory in the hippocampus [35,36], behavior

(food intake) in the arcuate and ventromedial nuclei [37], and

corticotrophin-releasing hormone synthesis in the hypothalamus

[38]. In addition to these roles, we also found that TORC1 is

essential for neuronal survival after brain ischemia [19], which is

evident in Sik22/2 mice. Interestingly, fisetin was found to

enhance memory function in the brain and long term potentiation

in cultured PC12 cells via MEK-ERK-mediated CREB activation

[39]. Because 49-O-methylfisetin did not activate ERK in B16F10

melanoma cells, the upregulation of TORC activity by SIK2

inhibition has been suggested be a beneficial strategy for the

treatment of neuronal diseases, and fisetin or 49-O-methylfisetin

may be helpful to perform this strategy.

On the other hand, the present study also revealed that

heterozygous insufficiency of the Sik2 allele increases the sensitivity

of CREB-mediated gene expression in vivo, such as switching to

eumelanogenesis in hair melanocytes. This phenomenon may be

luciferase plasmid (200 ng) and pRL-Tk Int- (internal Renilla luciferase: 30 ng). After 24 h, the cells were treated with 10 mM 49MF for an additional
24 h. CRE activity was expressed as fold of control (the cells were transfected with the empty adenovirus and not treated with 49MF). n = 3, means and
S.D. are shown. Bars indicate 10 mm. (F) B16F10 melanoma cells transfected with the adenoviruses as in (E) were treated with 10 mM 49MF for 3 d with
a medium change at day 2, and the melanin content was measured. n = 3, means and S.D. are shown. (G) Tyrosinase protein levels in B16F10
melanoma cells (the same sample as in F) were examined by western blot analyses. SIK2 was detected as a loading control.
doi:10.1371/journal.pone.0026148.g005
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helpful to screen CREB activators in vivo. Given that the daily food

intake of Ay/a mice is ,4 g on average, the present dose of fisetin,

400 mg/kg, is not extremely high. Unfortunately, fisetin intake

elevates the blood glucose levels of Ay/a mice, while diosmetin did

slightly (data not shown). As there was no significant difference in

blood glucose levels between wild-type and Sik22/2 mice [18,40],

fisetin may affect blood glucose homeostasis in a SIK2-indepen-

dent manner.

In conclusion, by modulating SIK2 signaling, we were able to

identify a biologically active substance, 49-O-methylfisetin, which

initiated CREB-mediated transcription via TORC1 activation. In

this study, we also found that the hair color of Sik2+/2 mice and

the analysis of metabolites in their feces and blood may act as

beneficial indicators to develop compounds that modulate CREB

activity.

Materials and Methods

Flavonoids
Luteolin, diosmetin, quercetin, tamarixetin, isorhamnetin,

rhamnetin, and geraldol were obtained from Extrasynthese

(Genay Cedex, France). Fisetin and forskolin were purchased

from Wako Pure Chemicals Co. Ltd., (Osaka, Japan) and Sigma-

Aldrich (St. Louis, MO, USA), respectively. These compounds

were dissolved in dimethyl sulfoxide (DMSO) as 61000 stock

solutions.

Cell culture, flavonoid treatment, and melanin
measurement

B16F10 murine melanoma cells and HEK293 cells were

obtained from the American Type Culture Collection (Manassas,

VA, USA). B16F10 cells were growth at 37uC under 5% CO2 in

Dulbecco’s modified Eagle’s medium (DMEM; high glucose)

(Wako) supplemented with 10% fetal bovine serum (FBS),

penicillin (100 U/mL), and streptomycin (50 mg/mL). HEK293

cells were growth at 37uC under 5% CO2 in DMEM (low glucose)

(Wako) supplemented with 10% FBS and penicillin/streptomycin.

B16F10 were seeded in 6-well plates at a density of 3.46105

cells/well. After 24 h, the culture medium was replaced with fresh

medium supplemented with flavonoids, and, after 48 h, the

medium was changed again with fresh medium containing the

same flavonoids. After an additional 24 h, the cells were harvested

for the melanin or mRNA/protein assays.

To measure melanin, the cells were washed twice with

phosphate-buffered saline (PBS), suspended in PBS, and recovered

by centrifugation at 8,000 rpm for 1.5 min. The cell pellet was

suspended in 300 mL of 1 N NaOH and incubated at 45uC for

2 h, and, then, melanin was extracted with a chloroform-methanol

mixture (2:1). Melanin was detected with a spectrophotometer

(BIO-RAD Model 680 MICRO PLATE READER; Bio-Rad,

Hercules, CA, USA) at 405 nm. The standard curve was obtained

by using purified melanin (0–1000 mg/mL). The protein concen-

tration of the cell pellets was determined using the Bradford

reagent (Bio-Rad) and used for normalization of the melanin

content.

Animal experiments and liquid chromatography-mass
spectrometry (LC-MS) analysis of flavonoids

The experimental protocols for mice were approved by the

committee at the National Institute of Biomedical Innovation

(approval ID: DS20-55). Sik2+/2; Ay mice (4-week-old male mice;

the mice were gifts from ProteinExpress Co. Ltd., Chiba, Japan)

were housed under standard light (08:00–20:00) and temperature

(23uC/60% humidity) conditions.

Mice feces (3.0 g dry weight) were soaked in water : ethyl

acetate (1:1), and the flavonoids were recovered from the organic

phase. Ethyl acetate was evaporated under N2 gas, and the dried

residues were dissolved in 25% acetonitrile/water and subjected to

LC-MS analysis (API 3000 mass spectrometer; Applied Biosys-

tems, Foster City, CA, USA). To separate the flavonoids, a C18

column (2.0650 mm i.d., particle size 5 mm) (Nacalai tesque,

Kyoto, Japan) was used. A linear gradient was prepared with 0.1%

formic acid in water (solvent A) and acetonitrile (solvent B): from

20% solvent B to 100% solvent B in 25 min at 30uC. The

flavonoids were monitored by a UV detector at 255 nm.

Synthesis of 49-O-methylfisetin
The methods for the synthesis of methylflavonids were described

in [41]. To a solution of fisetin (122.4 mg, 4.361024 mol) in

N,N-dimethylformamide (10 ml) was added CH3I (26.4 mL,

4.361024 mol), and K2CO3 (71.7 mg, 5.161024 mol). After being

stirred for 14 h at room temperature, the reaction mixture was

concentrated in vacuo, dissolved in ethyl acetate, washed with sat

NaCl, dried over Na2SO4 and evaporated. The resulting residue

was separated with preparative SiO2 thin layer chromatography

(eluent: chloroform/methanol (9/1)) followed by HPLC using a gel

filtration colum, JAIGEL GS-320 (Japan Analytical Industry Co.,

Ltd, Tokyo, Japan) with an eluent methanol, and finally 49-O-

methylfisetin was recovered as yellow crystals (5.9 mg, 5.3% yield).

The identity and structure of 49-O-methylfisetin was confirmed with

electrospray ionization mass spectroscopy (ESI-MS) and 1H and
13C nuclear magnetic resonance (NMR) [20], respectively. 49-O-

methylfisetin (C16H13O6): 1H NMR (399.65 MHz, CD3OD) d:

3.94 (1 H, d, J = 3.6 Hz), 6.91 (2 H, m), 7.06 (1 H, d, J = 8.4 Hz),

7.77 (1 H, m), 7.98 (1 H, d, J = 9.6 Hz). 13C NMR (399.65 MHz,

CD3OD): 56.35 (OCH3) 102.98, 112.24, 115.45, 115.65, 116.08,

121.45, 127.55, 147.42, 150.61, 158.57. The spectral data of 49-O-

methylfisetin and its derivatives is shown in Figure S1.

ESI-MS spectra were measured on AB SCIEX API-3000 mass

spectrometer. NMR siganl was recorded on a JEOL JNM-JSX400

spectrometer using CD3OD as a solvent and tetramethylsilane

(TMS) as the internal standard.

Quantitative real-time PCR
Total RNA was isolated from B16F10 cells by using the EZ1

RNA Universal Tissue Kit (Qiagen, Venlo Park, the Netherlands),

according to the manufacturer’s protocol. cDNA was synthesized

using the Transcriptor cDNA First Strand Synthesis Kit (Roche

Diagnostics Corp., Indianapolis, IN, USA). PCR amplification was

performed using Platinum Quantitative PCR SuperMix (Invitro-

gen). The resulting cDNA was amplified using the specific primers:

GAPDH-F, 59-ACTCACGGCAAATTCAACGG and GAPDH-

R, 59-GACTCCACGACATACTGAGC; Tyrosinase-F, 59-TGG-

GGATGAGAACTTCACTG and Tyrosinase-R, 59-ACGTAA-

TAGTGGTCCCTCAGGT; A-Mitf-F, 59-GGAAATGCTAGAA-

TACAGTCACTA and Pan-Mitf-R, 59-GTCGCCAGGCTG-

GTTTGGACA; and M-Mitf-F 59-GGAAATGCTAGAATA-

CAGTCACTA and Pan-Mitf-R. The reactions were performed

for 42 cycles at 95uC for 20 s, 58uC for 20 s, 72uC for 20 s, and 31

cycles at 75uC for 10 s.

Western blot analysis
B16F10 melanoma cells were washed with PBS and lysed with

lysis buffer (150 mM Tris (pH 6.8), 60% sodium dodecyl sulfate

(SDS), 30% glycerol, and 10% mercaptoethanol). Cell lysates were

boiled for 15 min at 95uC and subjected to 10% SDS-

polyacrylamide gel electrophoresis and transferred onto polyviny-

lidene fluoride membranes (Millipore, Bedford, MA, USA). The
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membranes were blocked with Blocking-One (Nacalai tesque,

Kyoto, Japan) and then incubated with the following primary

antibodies: anti-Tyrosinase goat polyclonal antibody (Santa Cruz

Biotechnology, Santa Cruz, CA, USA), anti-SIK2 rabbit poly-

clonal antibody [15], and anti-CREB and anti-phospho CREB

rabbit polyclonal antibodies (Cell Signaling Technology, MA,

USA) at 4uC overnight. After washing, the membranes were

incubated with peroxidase-conjugated secondary antibody at room

temperature for 4 h. Detection was performed using the KONICA

MINOLTA immunostaining HRP-1000 Kit (KONICA MIN-

OLTA, Tokyo, Japan).

Immunocytochemistry
To perform immunocytochemistry, B16F10 cells were seeded

on glass cover-slips. The medium was changed with fresh medium

supplemented with 10 mM flavonoid for 72 h. The cells were fixed

with 4% formaldehyde and stained with the anti-TORC1/3 rabbit

polyclonal antibody. To detect the TORC1-antibody complex,

anti-rabbit IgG conjugated with Alexa Fluor-594 (Eugene, OR,

USA) was used. Nuclei were stained with 49, 6-diamino-2-

phenylindole (DAPI).

Expression vector, adenoviruses, transfection, and
luciferase/cAMP assay

The reporter plasmids and adenoviruses were previously

described [42,43]. Briefly, B16F10 cells in a 24-well plate were

co-transfected with the pTAL-CRE vector (200 ng/well) with the

internal reporter pRL-TK (30 ng) in the presence or absence of

the SIK2 expression vector (pTarget-SIK2 50 ng) using Lipofec-

tamine2000 (Invitrogen, Carlsbad, CA, USA). After 24 h, the cells

were treated with forskolin (20 mM) and cultured for an additional

6 h. Reporter activity was monitored using the Dual Luciferase

Reporter Assay Kit (Promega, Madison, WI, USA).

The dominant negative TORC1 (DN-TORC1) adenovirus was

previously described [19]. B16F10 cells plated in 6-well dishes

were infected with adenoviruses (DN-TORC1 or lacZ at a

multiplicity of infection of 10). After a 3 h incubation, the medium

was changed with new medium that did not contain adenoviruses,

and the cells were cultured for 72 h with a medium change after

48 h.

Fluctuation of the intracellular cAMP level was monitored by

the PKA regulatory subunit-liked luciferase reporter system, the

GloSensorTM cAMP Assay kit (Promega). Briefly, B16F10 cells

were seeded in 96-well plate at a density of 56103 cells/well and

incubated for 24 h and transfected with the pGloSensorTM-22F

cAMP-reporter plasmid (1 ng/well) using LipofectAMIN2000.

After 18 h, cells were incubated with GloSensorTM cAMP reagent

for 2 h, and, then, forskolin (20 mM) or flavonoids (10 mM) was

added into the culture medium.

Statistical analysis
Student’s t-test was used to assess all experimental data in

Microsoft Excel. The mean and standard deviation (S.D.) are

shown.

Supporting Information

Figure S1 NMR analysis of 49-O-methylfisetin and its
derivatives (authentic). The structure of 49-O-methylfisetin

was confirmed by comparison of its 13C-NMR chemical shifts in

B-ring positions with those of other similar flavonoids owing 49-

OH or 49-OMe with 39-OMe or 39-OH groups. 13C-NMR

chemical shifts of 49-O-methylfisetin for the B-ring positions, from

C-19 to 69, are similar to those of (49-OMe, 39-OH)-type

tamarixetin [20] and different from those of (49-OH, 39-OMe)-

type isorhamnetin and geraldor.

(TIF)

Figure S2 49-O-methylfisetin (49MF) does not affect the
MEK or GSK-3 beta pathways. B16F10 cells cultured in FCS-

free medium overnight were treated with fisetin, 49MF, or geraldol

(10 mM) for 30 min. MEK/pMEK and GSK-3 beta/pGSK-3

beta were examined. The photographs indicate a representative

set from the duplicate experiments.

(TIF)
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