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Abstract

Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in
biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and
systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data,
which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and
their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent
objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects
in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both
within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on
computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated
in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within
computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical
information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors)
of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from
declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data.
The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a
downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA).
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Introduction

Cheminformatics, also known as chemoinformatics, is the field

of applied informatics which uses representations of chemical

entities, manipulated by software, for the determination and

prediction of properties of chemical entities.

There are many areas in biology where cheminformatics plays

an important role in computational research. For example, in the

elucidation of whole-organism metabolism and metabolic process-

es: metabolite databases and computational processes for metab-

olite identification require extensive use of cheminformatics

libraries [1–4]. Another prominent application of cheminformatics

in computational biology is in the understanding of protein-ligand

binding patterns, such as are investigated in proteochemometrics

[5] and more classical quantitative structure-activity relationship

(QSAR) studies [6] which may find protein-protein interaction

inhibitors [7]. One critical aspect in the application of cheminfor-

matics in these fields is the accurate exchange of, integration of,

and annotation of data [8,9], for which tasks an ontology such as

that presented in this work is crucial.

Cheminformatics has been one of the earliest success stories for

the development of novel informatics methods to enhance and

supplement the traditional scientific experimental and laboratory-

based methods [10,11]. While the main focus within bioinformatics

is on sequence data, in cheminformatics the focus is at the level of

atoms and bonds. The chemical graph formalism – in which

chemical entities are described in terms of nodes, which correspond

to parts such as atoms, and edges, which correspond to bonds – has

been widely adopted for denoting the atomic composition and

connectivity in chemical entities [10]. Large volumes of data on

chemical entities, represented and exchanged in what have become

a standard family of formats based on the underlying graph

formalism, have been accumulated by commercial databases such

as the American Chemical Society’s CAS database [12] and the in-

house databases of big pharmaceutical companies such as Roche

[13] and Novartis [14]. More recently, chemical data has been

made freely available – originally motivated by the needs of the

bioinformatics research community as it moved towards a whole-

systems research perspective – in freely available and public domain

databases such as PubChem [15], ChEMBL [16], and ChEBI [17].
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The reliable link between chemical structures and chemical

properties facilitates research into algorithms and techniques

which operate on these structural representations and produce

reliable predictions of properties [18–20]. This allows, among

other applications, computational screening, which is the pre-

selection of interesting structures for given purposes from the large

chemical libraries. Surrounding these innovations and applica-

tions, an extensive domain-specific terminology has grown which

names and describes these chemical information formats,

properties, algorithms, and techniques.

However, as is often the case during the development of a new

scientific discipline, this terminology has been developed and

formalised by many different groups in many different publications

and other forms of communication, creating redundancy, ambiguity

and ‘silos’ in the eventual terminological system. While this was not

so much of a problem as long as all chemical data was locked away

behind commercial firewalls, and each individual company

working with chemical data had the task of standardising its

own internal terminology, in recent years the tide has started to

shift towards open data and open algorithms and toolkits in the

chemistry domain. In particular, we are seeing the advent of the

Semantic Web [21], a set of standards for representing, publishing,

sharing, reusing, querying and reasoning about data using web

technologies. Cheminformatics data is being brought onto the

semantic web in larger and larger volumes [22]. Bringing data

onto the semantic web allows it to be used for data-driven research

remotely, without the data having to be downloaded and stored

locally on the researcher’s machine. Semantic web-enabled

software fetches desired data from distributed repositories that

support cross-resource query answering over heterogeneous data

sources.

Motivation and overview
A key challenge which arises from this novel environment, as

compared to traditional in-house data-warehouse approaches, is

managing the heterogeneity of publicly available data with special

considerations for provenance and reproducibility of data

dependent computational experiments [23,24]. Terminological

‘silo’ problems hinder progress in enabling federated data-driven

research on the semantic web in two ways:

N Firstly, different terminologies may refer to the same data with

different labels or identifiers. These different labels obscure the

fact that the data is comparable and should be integrated, thus

‘hiding’ portions of the data from algorithmic processes of

extraction.

N Secondly, multiple implementations of an algorithm may use

the same terms, they can produce different outputs due to

heuristics, optimizations, errors or outright differences in the

interpretation of the terms. This can lead to incorrect

deductions when the results of calculations are made available

under the same terminological label without further prove-

nance as to which implementation was used to generate the

data.

An emergent and rapidly growing solution to terminological

‘silo’ problems on the web is found in the form of logic-based

ontologies, which are formal representations of objects and their

properties within a logic-based ontology language [25]. Many such

ontologies are currently being developed to represent objects in all

the domains of science. Ontologies formalize the meaning of terms

used in a domain, and provide (or at least aim to provide) clear

human-readable definitions that disambiguate term usage, along

with logical axioms that allow automated reasoning. They enable

consistency checking, classification, and query answering over

knowledge of a particular domain, enabling intelligent computer

applications to be built which support the work of scientists within

the domain of interest and across interrelated neighbouring

domains. Ontologies are developed and exchanged in a shared

ontology language such as the Web Ontology Language (OWL)

[26] or the Open Biomedical Ontologies (OBO) format [27].

While ontologies provide formal meaning to terms in a

vocabulary, community-based ontologies aim to address the

diverse requirements of the members of a community, thus

promoting convergence on meaning over a more comprehensive

vocabulary than individual efforts might provide. With this in

mind, several groups who have independently developed termi-

nologies in the domain of chemical information, have formed a

semantic chemistry working group [28]. Through this working

group we are developing a unified, coherent ontology to encode

the terms, definitions, and logical axioms of chemical information

entities, the Chemical Information Ontology (CHEMINF) [29].

Cheminformatics data that is brought onto the semantic web is

derived from a variety of sources, including direct experimental

measurement, algorithmic approximation, and model-based

prediction. Approximations and predictions can serve as a guide

in the absence of experimental verification of property values. In

some cases, such predictions may come close to the experimental

values; in other cases they may be far off due to the weakness of

the correlation between the best algorithm available to perform

the calculation and the actual values. Both measurement and

prediction of property values are ways to derive information about

chemical or biological properties and represent them in such a

fashion that they can be accessible for research which furthers the

understanding of biological phenomena. Properly reproduced on

the semantic web, such values can be used and reused in multiple

scientific analyses and data-driven research projects. Reproduc-

ibility of results is of key importance in the scientific method in use

across many domains. When such research makes use of data

originating from the semantic web, this highlights the importance

of maintaining the provenance of the information – from detailing

the algorithm which was used to generate calculated property

values to the specified running parameters and the version of the

software implementation.

Our goals in the development of the CHEMINF ontology are

thus twofold:

1. Create a reference for the definition and disambiguation of

terminology in use in the cheminformatics domain.

2. Provide a framework for the automatic integration of data on

the semantic web, including annotation of provenance (for

reproducibility), automatic reasoning for classification of data,

and query support through semantic web technologies such as

SPARQL [30].

In this paper, we present the background, theory, structure and

rationale of the CHEMINF ontology. We describe the content of

the ontology, both in terms of the class hierarchy and the

relationships used to axiomatise the complex interrelationship

between algorithms, data types, data formats, procedural param-

eters, and files stored on computers. Finally, we illustrate an

application scenario which makes use of the CHEMINF ontology.

Background
Chemical graph theory, descriptors and QSAR. Mathe-

matical graph theory, which studies the properties of connected

objects, has found many applications in chemistry [10]. Chemical

graphs can be used to represent many chemistry-relevant entities

The Chemical Information Ontology
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including molecules, reactions and clusters. The molecular (or

constitutional) graph describes the atomic connectivity within a

molecule in terms of nodes for the atoms or groups within the

molecule, and edges for the (usually covalent) bonds between the

atoms or groups. Although the graph formalism, strictly speaking,

represents only the constituents and their bonds, it is usually

extended to include other information such as idealised 2D or 3D

coordinates for the atoms, and bond order (single, double, triple)

and quality (e.g. aromatic). When computational efficiency of

molecular graphs must be maximized, non-chiral hydrogen atoms

and the edges linking them to their nearest neighbouring atoms,

are not explicitly included since the presence and location of

hydrogen atoms in the molecule can be inferred from the type,

connectivity and charge of the remaining atoms. Such hydrogen-

suppressed chemical graphs are called skeleton graphs, and these

form the most common format for basic chemical information

storage and exchange. Figure 1 illustrates the chemical graph for a

molecule of cyclohexane. Note that the graph includes only carbon

atoms as nodes, while in reality cyclohexane molecules have two

hydrogen atoms for every carbon atom, with molecular formula

C6H12. The graph is illustrated both in 2D and in 3D with the

accompanying connection table and coordinates.

From these chemical graphs, many molecular properties, such

as mass, charge, and shape, can be determined computationally.

An example of such a property is the logP, which is defined as:

Definition 1 The logP is the logarithm of the octanol-water partition

coefficient, which is determined from ratio of the molecules dissolved in octanol

to those dissolved in pure un-ionized water upon mixture equilibration.

Such properties are strongly linked to the activity of the

molecules within living systems [20,31]. In silico research exploits

these associations to make computational predictions of the

activity of molecules which have not yet been synthesised, in

order to decide which molecules should be synthesised for bench

research, and to allow the computational screening of known

molecules for new targets to reduce the costs of screening by pre-

filtering the molecules which are to be included in the screen. The

more effectively such properties can be predicted computationally,

the more effective in silico research can become.

Quantitative Structure-Activity Relationship (QSAR) descrip-

tors are calculated numeric values, based on structural aspects of a

molecule, which can be mathematically correlated with the activity

of the molecule [32]. A chemical descriptor can be defined as:

Definition 2 A chemical descriptor is the final result of a logical or

mathematical procedure which transforms chemical information from a

symbolic representation of a molecule into an useful number or the result of

some standardized experiment [33].

The field of QSAR descriptors is a very active area of research,

with the goal of discovering better performing QSAR descriptors

in terms of predicting certain kinds of bioactivity, such as toxicity

[34]. Different kinds of QSAR descriptors have been developed

which make use of different aspects of the structural information of

the molecule, such as atomic descriptors which depend on the

atoms in the molecule; connectivity-based or topological descrip-

tors which depend on the connectivity of atoms and bonds within

the molecule; and geometrical descriptors which depend on

aspects of the three-dimensional shape of the molecule, among

others.

OBO Foundry, BFO and IAO. The OBO Foundry [35] is

an organisation which is coordinating the development of a suite

of interoperable reference ontologies for scientific application

domains such as biology and medicine, centered around the

popular Gene Ontology [36]. As part of this coordination effort,

the OBO Foundry requests that prospective member ontologies

strive to follow a set of shared, community-agreed guidelines to

facilitate orthogonality between the ontologies that are developed

and to ensure standard practices of evolution of ontologies are

followed. Ontologies which are submitted to the OBO Foundry

are first admitted to the OBO Library. They then undergo a peer

review process, and if the outcome of this review process is that

they display a substantial level of compliance with these guidelines,

they are then included as OBO Foundry ontologies. The full list of

current OBO Foundry and OBO Library ontologies is available at

http://www.obofoundry.org/.

The Basic Formal Ontology (BFO) [37,38] is an upper level

ontology for the biomedical domain. Upper level ontologies

contain domain-independent, foundational entities. Other upper-

level ontologies include the Descriptive Ontology for Linguistic

and Cognitive Engineering (DOLCE) [39] and the General

Formal Ontology (GFO) [40]. The alignment of multiple

ontologies beneath a shared upper level ontology provides a

common framework which supports ontology development

through the provision of a foundational structure from which

domain-specific entities can be derived [41,42]. We will focus on

the BFO in this paper since that is the upper level ontology

adopted by the OBO Foundry, however, alignment of CHEMINF

with alternative upper level ontologies is in principle possible and

will be the subject of future work. BFO makes foundational

distinctions between continuants (objects which endure through

time, such as humans and trees) and occurrents (objects which exist

in time, such as events and processes); and between dependent and

independent entities (independent entities can exist by themselves,

such as humans, but dependent entities require the existence of

another entity for their own existence, such as colours). (A similar

top level distinction can be found in DOLCE; GFO additionally

distinguishes at the top level between sets and items, and between

categories and individuals.) Together with the Relation Ontology

(RO) which provides fundamental relations between BFO entities

[43], BFO provides a common organising high-level framework

for the development of domain ontologies.

Information entities, such as those which we include in the

chemical information ontology, are a kind of dependent entity.

Dependent entities are those which cannot exist without a bearer.

For example, colour is a dependent entity since there can be no

colour without there being something that it is the colour of.

Figure 1. The chemical graph representation of cyclohexane.
The chemical graph illustrates the atoms and bonds within a chemical
entity, with the exception of hydrogen atoms and their accompanying
bonds, which are commonly left implicit since their presence can be
deduced from the remainder of the skeleton of the molecule. The graph
is illustrated both in 2D and in 3D with the accompanying connection
table and coordinates.
doi:10.1371/journal.pone.0025513.g001
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Similarly, information entities are dependent entities – there can

be no information without it being stored somewhere, such as on

my computer – but this dependence functions in a slightly different

fashion to that of hair colour, since information can be copied. BFO

distinguishes specifically dependent entities, which cannot be

copied, from generically dependent entities, which can. Information

entities are thus kinds of generically dependent continuant in BFO.

The domain of information entities in general is being addressed

by the Information Artifact Ontology (IAO) [44], another project under

development within the OBO Foundry community. While the

IAO is concerned with the domain of information entities in

general across all domains, and without delving into the specific

terminologies of any one scientific domain, our work is focused on

only those information entities of relevance in the domain of

cheminformatics. As such, the CHEMINF ontology falls hierar-

chically beneath the IAO, as we will illustrate in the next section

on the structure of the ontology.

Crucial to the IAO definition of information entities is that they

are about something, which is encoded in the IAO as:

Information content entity v A is_about.Entity

For example, a name is an information entity, and a name

is_about the thing that it is a name of.

This ‘aboutness’ relationship is problematic in some cases, for

example, in chemistry, information content entities may be created

for chemical entities which do not yet exist during the course of in

silico research [45]. We recognise that this problem is a contentious

one in the bio-ontology community at the moment (see, for

example, the discussion on the OBO Foundry email mailing list,

entitled ‘Ontological Realism and OBO Foundry Criteria’, dated

July 14, 2010), but as this relation is defined in the IAO with

regard to all information entities, rather than just chemical

information entities, we do not attempt to take up this debate

further here, but the interested reader can see [46].

Classes and individuals. Ontologies consist of, on the one

hand, general entities called classes and the relationships between

them (properties), and on the other hand specific entities called

individuals, that belong to classes. For example, a particular person

called Mary is an individual, and she belongs to many classes

including the class of all humans. Classes are predominantly the

subject matter of ontologies, as the ontologies are being developed

to support multiple annotations of scientific data [35], and the

same individual, say Mary, is not often the subject of multiple

scientific experiments, but rather it is classes such as Human which

are the subject of multiple scientific experiments, and the actual

individuals who participate in the experiments are exchangeable as

long as they are of the right type. (Although, exceptions do exist.

For example, standard units may be best represented as individuals

in ontologies.)

However, with respect to information entities, it is not as

straightforward to decide what to model as classes and what as

relevant individuals. This is because information may be copied

and transferred between bearers, in a way that material individuals

cannot. A single computer file can be copied between multiple

computers. Should we model it as an individual? Or should we

rather model a class of files containing the same information

content? The Blue Obelisk Descriptor Ontology BODO [47], for

example, models chemical graphs as individuals. However, this

prohibits the expression of hierarchical relationships between

graphs, even if one of the graphs expresses a more general

information content than the other [48]. For this reason, we adopt

an approach which does allow for the expression of hierarchical

relationships between chemical graphs, and model chemical

graphs and other information entities as classes in the CHEMINF

ontology.

In the next section we describe the structure of the ontology.

Results

The chemical information ontology (CHEMINF) is implement-

ed with the Web Ontology Language (OWL2) [49]. Classes in the

ontology have identifiers of the form http://semanticscience.org/

resource/CHEMINF_XXXXXX, and include labels (rdfs:label)

and definitions (dc:description). The ontology is versioned using

owl:VersionInfo. All CHEMINF resources are Linked Data nodes,

and their URIs are dereferencable.

The expressivity of the ontology is SHIN (D), thus contains

atomic concepts and roles, transitive roles, conjunction, disjunc-

tion, existential and value restriction, role hierarchies, inverse

roles, number restrictions and datatypes [50]. CHEMINF extends

the Ontology for Biomedical Investigations (OBI) [51], the

Information Artifact Ontology (IAO) [44], the Relationship

Ontology (RO) [43] and the Basic Formal Ontology (BFO).

Scope
The ChEMINF ontology includes entities such as:

N Chemical graphs, and various formats for encoding them.

N Chemical descriptors, with definitions and axioms describing

what they are specifically about.

N Specifications for certain descriptors.

N Algorithms and their software implementations and axioms

describing their inputs and outputs.

N Chemical data representation formalisms and formats.

Additionally, we have identified a hierarchy of chemical

qualities, which are needed to specify exactly which quality a

chemical descriptor is describing. However, in keeping with the

OBO Foundry’s principle of orthogonality of ontology application

domains, we have submitted these chemical quality terms to the

Phenotype Quality ontology (PATO) [52].

We explicitly exclude from the scope of CHEMINF:

N Actual chemical entities, parts, ions, groups, etc which are

included in the ChEBI ontology [17].

N Any aspects of protein or nucleotide sequence information

which are included in the Sequence Ontology [53].

N We include named algorithms, but do not give the algorithmic

steps. The relevant paper describing the algorithm is linked to

from the definition where possible.

N Similarly, for format specifications (such as Chemical Markup

Language (CML) [54]), we provide a citation rather than

reproducing the detail of the specification.

The ontology is licensed as Creative Commons Share-Alike By

Attribution and is freely available from the Google Code project

site http://semanticchemistry.googlecode.com. To preserve mod-

ularity and ease of maintenance, the ontology consists of multiple

files, with one such separate file, for example, providing mappings

to the Blue Obelisk Descriptor Ontology. These separate files are

referenced from the primary ontology file cheminf.owl using the

OWL import mechanism.

Ontology content and organisation
Figure 2 provides a schematic overview of the content of the

CHEMINF ontology. The basic content of the domain terminol-

ogy can be divided into named descriptors, named algorithms

which calculate descriptors, and software libraries which contain

software modules that implement algorithms.

The Chemical Information Ontology
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Not illustrated in this diagram are the processual executions of

the software implementations, as these fall within the hierarchy of

processes rather than information entities. The link between

processes which are software executions, and the software

implementation that is executed, is that the process has the

software as agent.

The key entities in our ontology, situated beneath their

appropriate superclasses in the referenced ontologies, and

including their number of subclasses, are given in Table 1. The

most well-developed branch of the ontology is the chemical

descriptor branch, as we have already included 180 different

descriptors in the ontology, including a broad range from simple

descriptors such as atom count to more complex descriptors such as

topological polar surface area. Descriptors give information about

qualities of chemical entities, and to formalise this association, we

have added 50 chemical entity qualities to the quality branch of

the ontology, including polarizability and relative permittivity. Format

specifications, such as MDL molfile [55] and the Chemical Markup

Language CML [54], are the next largest branch of the ontology,

and finally the algorithm and software implementation branches of

the ontology are not yet well developed, although there is an

ongoing effort to include all algorithms and implementation details

for the Chemistry Development Kit (CDK) [56] in the ontology,

and this will be forthcoming in a future release.

The key relations in our ontology are:

N An information content entity is about some entity; an entity is

described by some information content entity. (We note that the

inverse of the is about relation is considered problematic from

an ontological perspective since information is not a property

of the thing it is information about. However, we introduce this

inverse relation is described by here as a convenient shorthand

for referring back from an entity to information, where the

aboutness is already captured in the ontology.) The IAO is

about relationship is further specialized into different subrela-

tions, of which one example is the is quality measurement of

relationship, which relates a measured datum to the particular

quality that it is a measurement of. While this relation is close

to what we need in order to relate chemical information

entities to properties of the chemicals that they are about, we

allow chemical information that is both measured and calculated,

and we therefore introduce a distinct relation is descriptor of.

N A chemical descriptor is descriptor of some specifically dependent

continuant (quality or other property); a specifically dependent

continuant has descriptor some chemical descriptor.

N An information content entity conforms to some directive

information entity (i.e. specification); the directive content

entity specifies an information entity.

N An entity has attribute some data item; the data item is attribute of

some entity.

Other relations which we make use of in the ontology including

the bearer of relation which links independent entities to the

dependent entities (such as qualities) which inhere in them, and the

has part and part of mereological relations, which are inherited from

the Relation Ontology, and the has value data relation which links a

data item to its value.

We now discuss the ontology model in more detail for the

specific topic areas of format specifications, chemical descriptors,

and algorithms and implementations.

Modelling specifications
In cheminformatics, many information objects are created in

order to standardise or specify formats for data exchange or the

operational requirements of a particular procedure. These

information objects have a kind of normative content, creating –

in their information content – a requirement on the information

objects that conform to them. We model this type of information

object as directive information entity.

Definition 3 A directive information entity is an information content

entity that explicitly states essential attributes/requirements for a product or

procedure, and may also be used to determine that the product/procedure meets

its requirements/attributes.

One special kind of directive information entity is that which

specifies the format for the encoding of information such that it

can be encoded and decoded in a standard way. This is a data

format specification.

Definition 4 A data format specification provide directives regarding the

syntax of information such that it can be encoded and decoded in a standard

fashion.

Figure 2. An overview of the content of the CHEMINF ontology. The diagram gives a schematic illustration of the ontology content, which
can be divided into named descriptors, named algorithms which calculate descriptors, and software libraries which contain software modules that
implement algorithms.
doi:10.1371/journal.pone.0025513.g002

The Chemical Information Ontology
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Some examples of data format specifications are the MOL and

SD file format specifications commonly used for chemical graph

storage and exchange [55], the Simplified Molecular Input Line

Entry Specification (SMILES) format specification [57], and the

basic data format specifications such as integer or numeric which

are associated with the input parameters of algorithms, as

illustrated in Figure 3.

These data formats are then used in the definition of different

types of chemical descriptors.

Chemical descriptors
The most general type of chemical information entity is that

which captures some sort of data about some chemical entity. We

use the term chemical descriptor.

Definition 5 A chemical descriptor is a data item (a quantity or value)

whose syntax and semantics conforms to some data format specification and

provides information about chemical entities including, but not limited to

reactions, substances, molecular entities, and their parts (rings, atoms, bonds,

etc).

Note that the term ‘descriptor’ has a narrower meaning in some

cheminformatics communities, i.e. restricted in use to only those

descriptors which have numeric values and which can be used in

quantitative structure-activity-relationship models. For these types

of descriptor, we propose the subtypes ‘numerical chemical

descriptor’ which is defined in terms of the data type of the

descriptor, and ‘QSAR chemical descriptor’ which is described in

terms of the applicable usage of the descriptor.

Chemical descriptors may enumerate material or processual

parts, quantify qualities or realizables including dispositional

probabilities. For example, a SMILES descriptor, which conforms

to the SMILES specification for unambiguously describing

molecular structure using short ASCII strings, can be created for

aspirin (acetylsalicylic acid, CHEBI:15365) with value

CC( = O)Oc1ccccc1C(O) = O.

The following example shows, in Manchester OWL syntax [58],

some descriptors (SMILES, InChI and InChIKey) associated with

aspirin (acetylsalicylic acid) using CHEMINF:

Class: ‘acetylsalicylic acid’

SubClassOf:

has_attribute ‘acetylsalicylic acid InChI’,

has_attribute ‘acetylsalicylic acid InChIKey’,

has_attribute ‘acetylsalicylic acid SMILES’

Individual: ‘acetylsalicylic acid InChI’

Types:

‘InChI Descriptor’,

Facts:

‘has value’

‘‘InChI = 1/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/

h2-5H,1H3,(H,11,12)/f/h11H’’

Individual: ‘acetylsalicylic acid InChIKey’

Types:

‘InChIKey Descriptor’,

Facts:

‘has value’ ‘‘InChIKey = BSYNRYMUTXBXSQ-WXRB

YKJCCW’’

Individual: ‘acetylsalicylic acid SMILES’

Types:

‘SMILES Descriptor’,

Facts:

‘has value’ ‘‘CC( = O)Oc1ccccc1C(O) = O’’

Descriptors for chemical entities often describe aspects of the

structure of chemical entities. Structural descriptors have the

additional property that, while remaining within the rules of the

structural representation formalism, cannot change value without

representing a different entity. To put this differently: chemists

cannot have a meeting and decide to give a different structural

descriptor to a particular chemical entity, as they can for a name.

The structural descriptor is constrained by the format specification

and the structure being described. Chemists could, of course,

decide to change the format specification, and many new

structural descriptors are born through the invention and

specification of new formats. Note that in many cases, the

structure of a chemical entity may not be known at the time that

the chemical is named. In other cases, a structure is presented but

Table 1. Key entities in CHEMINF ontology and their
immediate superclasses.

entity name (ID)

directive information entity (IAO_0000033)

– data format specification (IAO_0000098)

– – molecular entity information format specification (CHEMINF_000014) – 21
descendent classes

plan specification (IAO_0000104)

– algorithm (IAO_0000064)

– – algorithm to calculate a chemical descriptor (CHEMINF_000144)

software (IAO_0000010)

– software module (CHEMINF_000340)

– – software module to calculate a chemical descriptor (CHEMINF_000103)

data item (IAO_0000027)

– chemical descriptor (CHEMINF_000123) – 180 descendent classes, including:

– – chemical graph (CHEMINF_000400)

quality (in BFO)

– molecular entity quality (CHEMINF_000031) – 42 descendent classes

– – chemical substance quality (CHEMINF_000101) – 5 descendent classes

planned process (OBI_0000011)

– software execution (CHEMINF_000138)

– – parameterized software execution (CHEMINF_000147)

The key CHEMINF entities are chemical domain specialisations of more general
terms in IAO and OBI. They are: chemically relevant format specification,
algorithm, software module, chemical graph, and software execution.
doi:10.1371/journal.pone.0025513.t001

Figure 3. Textual and numeric data format specifications. An
example of format specifications are those which constrain the format
of a data item to be textual or numeric. In the case of a numeric format
specification, only numeric digits are allowed in the data item. Format
specifications are essential when designing robust software for complex
research pipelines.
doi:10.1371/journal.pone.0025513.g003
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is later found to be incorrect, and needs to be revised throughout

public databases. Chemical entities are therefore not identical with

their structural representations (such as chemical graphs). Indeed,

structural representations give a static view of the nature of

chemical structures, which is an approximation to the actual

dynamic reality.

Our model allows the explicit linking not only of a descriptor to

the kind of entity it is about (such as a molecule), but also to the

particular property of that entity that the descriptor is represent-

ing. For example, a charge descriptor is descriptor of the electrical

charge quality of a molecule. In this way, descriptors can be

grouped together based on the nature of the properties that they

describe. However, there are some descriptors for which the exact

molecular property that the descriptor is describing is unclear; in

these cases we remain agnostic and make no assertion above the

claim that the descriptor is about the molecule, with the possibility

to pick out those specific attributes which formed the input to the

descriptor calculation.

Figure 4 shows an illustration of the CHEMINF ontology model

for chemical descriptors. Chemical descriptors are data items

which are about chemical entities. They conform to a chemical

data format specification, and they are descriptors of a property

(quality or realizable) which inheres in a chemical entity.

Chemical descriptors can be obtained from physical experi-

ments, in which something is quantitatively measured. We say that

an experiment involves some chemical substance as input and

produces some chemical data as output. For instance, the structure

of a chemical substance can be investigated using nuclear

magnetic resonance (NMR); this requires as input some chemical

substance in buffered solvent within some concentration range and

produces as output resonance frequencies.

On the other hand, descriptor values can be generated in silico

from the analysis of computational representations of chemical

entities by software applications.

Algorithms and software implementations
When using software to predict chemical attributes, software

applications consume some kind of data and produce some kind of

data. Software, modules and methods are expressed as source code

using programming languages that are subsequently compiled into

a machine interpretable format. These software methods are

specified by one or more algorithms, or sequences of steps. Like

format specifications, algorithms are directive information entities.

Definition 6 An algorithm is a directive information entity that consist of

a finite sequence of instructions to accomplish a task, which may be expressed in

pseudocode, textual description, or a process flow diagram.

Chemical descriptors are distinguished from the algorithms

which generate them, although in many cases they share a

common name, since algorithms specify procedural information,

while descriptors are declarative information. In some cases, the

same descriptor can be calculated by several different algorithms.

Named algorithms may have different versions. For example, the

Kabsch algorithm for calculating the optimal rotation matrix for

alignment of two chemical structures was first presented in [59], and

a later correction was presented in [60]. In this case it can be said

that there are two versions of the Kabsch algorithm, and it is useful

to distinguish these in implementations. To model this scenario in

CHEMINF, we create a superclass for the named algorithm and

create subclasses for each of the versions. In cases where it is known

which version is implemented in a particular library, this can be

annotated to the versioned subclass, and in cases where it is not

known, the annotation to the parent class can be used instead.

Algorithms are also distinguished from the software which

implements the algorithms. This is because it is possible for an

implementation to contain errors, or to be more or less faithful to

the designed algorithm which it implements. Programming

languages have different constructs and performance profiles

which lead to subtle differences in different implementations of the

same algorithm. For this reason, to correctly associate provenance

with calculated descriptor values, we suggest at minimum the

annotation of calculated values to the software implementation

rather than directly to the algorithm, and preferably with detail

about the fully specified process execution, as discussed below in

the context of data transformation operations.

Software implementations can be stand alone single software

methods, or they can be packaged into software libraries. For

example, the Chemistry Development Kit (CDK) [56] is a

software library containing a wide collection of modules for

manipulating chemical information. Software implementations are

associated with a programming language, we say that the

implementation has agent the programming language.

Definition 7 A software implementation is a machine-executable set of

instructions in some programming language. Software implementations

generally belong to some named library, which is a collection of related

software modules. Individually executable methods or components of a software

implementation take input parameters, execute some operations using such input

values, and produce some output parameters.

Considering the software maintenance lifecycle, most software

implementations are continuously evolving. Different versions of

software arise from this maintenance cycle, each being a different

manifestation of the relevant source code, in that they are variants of

each other.

Figure 5 shows the CHEMINF object model for algorithms and

software implementations. Algorithms have specified output a

particular chemical descriptor. A software module, which consists

of one or more software methods, conforms to an algorithm. Each

software method has zero or more input parameters and zero or

more output data items (which may themselves become param-

eters as input to another software method). In addition to having

data items as output, a software method may also raise software

messages as output – for example, error or warning messages.

When software is actually executed within some pipeline or

towards some objective, its execution is a process. The outcome of

Figure 4. Chemical descriptors. A chemical descriptor conforms to a
data format specification. It is about a chemical entity (an example of
which might be ‘caffeine’), and is a descriptor of a property of that
chemical entity (such as its charge). The descriptor value is linked to the
chemical entity in the ontology with the has attribute relation.
doi:10.1371/journal.pone.0025513.g004
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this process depends on many factors in the execution environ-

ment, including the hardware platform on which the process is

executed and the operating system and other supporting libraries

which are installed on that platform. For example, a data

transformation operation is the execution of a software module with

specific parameters as inputs.

Definition 8 A data transformation is a planned process that realizes

some agent-specified objective. It requires the software which is being executed

and the hardware on which it is executed as participants, and may require data

items as input, and may produce data items as output.

Figure 6 shows the CHEMINF ontology model for data

transformation operations. Since the behaviour of a data

transformation operation is often dependent on the value of the

input parameters, for full metadata about calculated values it is

important to associate them with the fully specified process

execution.

Classification of entities within the ontology
In the CHEMINF ontology, we create different axes of

classification, such as the axis of classification based on the type

of entity that a descriptor is about, through the use of defined classes,

i.e. classes which are fully logically defined through the

specification of necessary and sufficient conditions. These logical

definitions allow the use of a reasoner to compute subsumption

(classification) beneath differently defined parent classes. This

avoids the need to maintain separate classification hierarchies by

hand in order for the result to include classification along multiple

possibly orthogonal axes.

Examples of classes which we have defined using necessary and

sufficient conditions in this fashion are chemical substance descriptor

and molecular entity descriptor, which are defined as those descriptors

which are about chemical substances or molecular entities

respectively. Note that a chemical substance is a bulk collection

of molecular entities, such as a portion of water compared to an

individual water molecule.

Figure 7 shows an extract from our ontology before and after

the reasoner has performed a classification task, illustrating the

calculated subsumption relationships. The class ‘chemical sub-

stance descriptor’ has no asserted children, but after reasoning, the

children are inferred based on the information encoded for each

descriptor in the ontology.

Discussion

We have presented an ontology for the domain of chemical

information entities, with primary application to the disambigu-

ation of data types in data integration tasks and the assocation of

provenance with data especially in the context of the semantic

web.

Related work
Early ground work in the area of the ontology of chemical

information was laid by Gordon in his 1988 series entitled Chemical

Inference [61]. Here, a logical treatment of chemical entities,

properties and relations (such as tautomerism) is laid out, and our

work derives much from that treatment. We also rely on standard

elements of chemical graph theory as presented in [10].

The CHEMINF ontology describes chemical descriptors,

software and algorithms. As such, we investigated in which other

formalisms such objects are described. Chemical entities are often

described and exchanged in the MDL SDF file format [55], which

allows content providers to append descriptor values as free text

under free text headers, and the CML file format [54], which is as

per SDF but further enables such values to be explicitly annotated

Figure 5. Algorithms and software implementations. Algorithms are differentiated in the ontology from the software which implements them.
The same algorithm may, for example, be implemented in several different programming languages. The smallest unit of software which we identify
is the software method. Methods have parameter data items as input and generate resulting data items as output. Software methods also may
generate warning or error messages. Multiple software methods are grouped together into a software module. A software module may conform to
an algorithm which has specified output a particular descriptor.
doi:10.1371/journal.pone.0025513.g005

Figure 6. Data transformation. A data transformation is an example
of a parameterized software execution. A software execution is
differentiated from a software method or module in that the software
execution is a single process which has concrete parameter values as
input. On the other hand, a software method or module may be
executed over and over with many different parameters.
doi:10.1371/journal.pone.0025513.g006
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using XML dictionaries. While these formats allow for exchange of

descriptor values according to a set dictionary, they offer no

information as to the descriptor definitions, generating software,

and ontological classification.

Closely related to our work on the ontology of chemical

information is work on the chemical semantic web, in which data

is being brought online on the Internet in the form of Resource

Description Framework (RDF) ‘triples’. The RDF vocabulary

CombeChem [23,24] was used to capture some aspects of

chemical structure and identity with an emphasis on provenance

as well as state-dependent (those that depend on pH, temperature,

pressure) and state-independent properties (identifiers, molecular

weight). CHEMINF does not explicitly distinguish between state-

independent and state-dependent properties in this fashion, rather,

we have several different categories of descriptor which have

different dependence conditions, including ‘identifying descriptor’,

‘physical descriptor’ and ‘electronic descriptor’. Furthermore, the

CombeChem RDF schema (i.e. their ontology) only defines a

vocabulary with basic types such as Molecule and Property, and the

different types of property are associated with different predicates

such as has-name and has-SMILES for name and SMILES

respectively. Going this route would require adding a predicate (in

OWL, an object property) for every different descriptor, and is

thus much more difficult to maintain and develop related

applications around than the approach of allowing an extensible

hierarchy of descriptors such as we adopt in CHEMINF.

To demonstrate the potential of semantic web technologies for

semantic data integration, Konyk et al. focused on representing

chemical structure and being able to associate simple computed

attributes [62]. This work featured queries that involved

automated reasoning of OWL ontologies for chemical functional

groups across RDFized versions of PubChem, DrugBank [63] and

Wikipedia. More recent work in providing chemical structure and

properties in RDF has been conducted by Willighagen et al. [64],

in which an RDF schema is provided not only for molecules and

properties, but also for descriptor values and implementations,

with a model provided that links implementations to vendors and

parameters. The descriptor types which are supported by this

implementation are those described in the Blue Obelisk Descriptor

Ontology (BODO) [47,65]. BODO is available in OWL format,

and indeed some terms are shared between the two projects (and

mapped accordingly), however, BODO does not provide a formal

axiomatization of descriptor types, relying rather on a hierarchy

listing descriptor names, and listing the specific descriptors

provided by specific vendors as instances of these general types.

Our work is thus an extension of these earlier RDF offerings in

providing an ontology for the classification and axiomatisation of

such properties, while keeping to the more valuable elements of

the model such as allowing explicitly for different vendors

providing different implementations and explicitly stating the

parameter values used in calculations.

Applications and evaluation
The semantic web makes it possible to publish, share and

integrate data online. However, making data available on the

semantic web is only the first step towards the vision of seamlessly

distributed and integrated data being available for application

consumption. In a data warehousing approach without the

semantic web, each application downloads and consumes the

source data it requires in whichever proprietary format that data is

made available in. Extensive in-house processing is required to

transform all the disparate sources of data into a common format

which allows for comparison and integration, and custom rules are

required for performing such integration. This leads to a huge

maintenance overhead, since in order to keep the data up-to-date,

the process must be regularly repeated, and application changes

are required every time something changes in the representation

format used in any of the source databases.

The semantic web approach is to replace custom in-house data

warehousing with distributed data sources which are integrated on

the fly by applications as they perform their required functions.

The data is thus consumed when it is needed, and local copies are

not maintained, avoiding the large maintenance and redundant

storage overheads associated with the data warehousing approach.

One of the requirements for such an endeavour to work is that all

the data is made available in a standard format that can be

processed in a uniform fashion - which is RDF in the context of the

semantic web. Data provision in RDF addresses the syntactic

aspects of the challenge of on-the-fly data integration. However,

this goes only a part of the way to resolve the underlying issue,

since there is also a semantic challenge in data integration, since

data items may be named and identified differently by different

data providers (or even by the same data provider in different

contexts, although we hope that internal standardisation efforts

will go some way to alleviate this). For example, one database may

provide IUPAC names for chemical entities in a field entitled

Figure 7. Automatic classification based on logical definitions. The diagram illustrates the use of logical definitions in terms of necessary and
sufficient conditions (equivalent classes), which are then used by a reasoner (in this case Fact++) to derive the subsumption hierarchy for member
classes based on their properties.
doi:10.1371/journal.pone.0025513.g007
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‘iupacName’, while another may provide the IUPAC name in a

field entitled ‘systematic name’. Without human intervention, it is

impossible for computers to integrate these two data items - i.e. to

unify them in the resulting application view which has consumed

the data from both sources.

At the very least, community standards for the different

identifiers that are to be used for different types of data are

required so that the data from different data providers can be

automatically unified where applicable. A ‘flat’ list of standardised

identifiers for different types, such as a dictionary or controlled

vocabulary can provide, would be sufficient for this purpose. Since

data that is brought onto the semantic web is linked by

relationships, e.g. the name is associated with the chemical that

it is the name of, a similar need for standardisation applies to the

relationships used and to the types of entity that can be related by

those relationships. This type of specification goes beyond that

which can be provided by a flat dictionary, thus a schema

definition language such as RDFS is required. However, logic-

based ontologies such as CHEMINF which are represented in

OWL provide both of these functions and have an additional

benefit besides: they allow for complex reasoning which serves the

diverse purposes of consistency checking (i.e. automated checks for

modelling and data errors), classification (automated computation

of complex hierarchies based on the specified logical definitions),

and sophisticated question answering.

The use of OWL ontologies for the annotation of data brought

onto the semantic web thus supports and facilitates the semantic

web vision in several different ways - through standardisation of

identifiers, through standardisation of modelling schemas, and

through the ability to perform logic-based reasoning for classifi-

cation, consistency checking and question answering. We have

already described the classification of entities in the ontology

through use of the logical definitions, and consistency checking is

regularly used as part of the ontology development process to

ensure that released versions of the ontology are error-free. Here,

we further describe our efforts to annotate publicly available

semantic web data with CHEMINF, and detail an example of

question answering on annotated data using reasoning over the

ontology.

i) Annotation of publicly available semantic web

data. CHEMINF has been used to standardize the annotation

of SMILES and InChI strings in the recently introduced RDF

version [66,67] of the ChEMBL database [16], labeled ChEMBL-

RDF. This allows software such as Bioclipse [68] to automatically

discover molecular structure information available via SPARQL

end points. For example, the following SPARQL query retrieves

the number of molecules in a remote end-point.

PREFIX cheminf: ,http://semanticscience.org/resource/.

SELECT count(?molecule) as ?moleculeCount WHERE {

?molecule cheminf:CHEMINF_000200 [

a cheminf:CHEMINF_000113;

cheminf:SIO_000300 ?inchi

]

}

Previously, we have demonstrated the use of Bioclipse and

SPARQL to extract QSAR datasets from the ChEMBL database

[66]. We have now further standardized this workflow by using the

fact that ChEMBL-RDF now expresses molecular SMILES

representations using CHEMINF. This way, we can query, for

example, all molecules for a particular assay with GI50 values

(concentration that results in 50 We have additionally used

CHEMINF to annotate descriptors in an RDF version of the

ChEBI database [17]. The RDF is available at http://s3.

semanticscience.org/ and a faceted browsing interface is available

at http://bio2rdf.semanticscience.org:8035/fct/. The SPARQL

endpoint is at http://bio2rdf.semanticscience.org:8035/sparql/.

All of the descriptors which are included in ChEBI have been

annotated with their respective CHEMINF values, thus unambig-

uously identifying their type.

Integration of data from disparate data sources and several

domains, as well as subsequent querying, as enabled by

CHEMINF, has recently been demonstrated with the Chemical

Entity Semantic Specification formalism (CHESS) [69]. In the

coming decades, we expect Semantic Web technologies to play an

increasingly important role in the representation of chemical

information, leading to the appearance of a large array of

representational formalisms similar to CHESS. However, so long

as these formalisms adhere to the common CHEMINF ontology

just as CHESS did, we expect that this new chemical data

representation formalism divergence shall not translate into

fragmentation of chemical databases and difficulties in the

automated federation of chemical information. On the contrary,

adoption of CHEMINF will allow disparate disciplines of

chemistry (and beyond) to interlink and become amenable to

interdisciplinary querying.

ii) Question answering. In order to illustrate question

answering over an annotated knowledge base, we transformed a

set of 90 antidepressant drug molecules from PubChem [15] into a

knowledge base together with calculated descriptors from three

different software libraries, as described in the Methods section of

this paper. Provenance was captured in terms of the software (and

version) plus parameters used to generate the descriptors. The full

knowledge base is available for download from: http://www.ebi.

ac.uk/hastings/downloads/cheminfpopulated.zip.

We queried our sample knowledge base using the DL Query tab

of Protégé. A query to evaluate drug-likeness according to the

Lipinski Rule of Five (described in [70]) is shown below

(Manchester syntax again).

‘chemical entity’ and ‘has attribute’ some

(‘molecular mass’ and ‘has value’ some double[, = 500.0 ])

and ‘has attribute’ some

(‘XLogP descriptor’ and ‘has value’ some double[,5.0])

and ‘has attribute’ some

(‘hydrogen bond acceptor count’ and ‘has value’ some

int[, = 10])

and ‘has attribute’ some

(‘hydrogen bond donor count’ and ‘has value’ some

int[, = 5])

This query retrieves from the knowledge base all those chemical

entities that are compliant with the Rule of Five, that is, they have

molecular mass no more than 500; they have an XLogP of less

than 5; they have a hydrogen bond acceptor count of not more

than 10 and a hydrogen bond donor count of not more than five.

In our knowledge base of 90 antidepressants, we would expect

that many of them, being known drugs, would be compliant with

the Rule of Five, and indeed this is the case: 88 molecules match

the query. The result of applying the query in the DL query tab

are shown in Figure 8.

Another query example is to retrieve all the descriptors

calculated by a particular software library. We can use the

following query to retrieve this:

‘data item’ and ‘is output of’ some

(‘software execution’ and ‘has agent’ some ‘Chemistry Devel-

opment Kit’ )

In our annotated knowledge base, this query returns 361

instances, which include the CDK-generated XLogP and HBond

descriptors.
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The above queries have been executed using the DL query tab

in Protégé, which allows the construction of queries which are

evaluated using instance checking (for individuals) and classification for

subsumed classes. This type of querying is very useful against

knowledge encoded in OWL ontologies, but has limits when

compared to the expressivity of querying in the Semantic Web

context, in which SPARQL is usually used as the query interface.

However, SPARQL is not OWL-semantics aware, so it is not

possible to query OWL constructs using SPARQL. A query

mechanism based on SPARQL but which does interpret OWL-

DL semantics is SPARQL-DL [30], provided as a query interface

within the Pellet reasoner [71].

SPARQL-DL is useful for, like SPARQL, allowing the

tabulation of results based on querying the knowledge base – that

is, not only finding which entities match a given class description,

but retrieving ordered lists of attributes of entities, like a database

query. For example, the following SPARQL-DL query retrieves

the names (within the knowledge base) and associated descriptors

and values which were calculated using OpenEye. The key

difference to a straightforward SPARQL query in the below is that

SPARQL-DL is able to interpret the semantics of the rdfs:sub-

ClassOf operator and check this against the OWL hierarchy.

select ?compname ?desctype ?descname ?descvalue

WHERE {

?compound ci:CHEMINF_000200 ?X ;

rdfs:label ?compname.

?X rdf:type ?Y ;

ci:CHEMINF_000012 ?descvalue ;

rdfs:label ?descname ;

ci:CHEMINF_000606 ?Z.

?Y rdfs:subClassOf ci:CHEMINF_000186 ;

rdfs:label ?desctype.

?Z ro:has_agent ci:CHEMINF_000267.

}

In this query, the prefix ‘ci’ refers to an entity in the CHEMINF

ontology and ‘ro’ the relationship ontology. The query retrieves a

compound (?compound) which has a label (?compname) and has an

attribute (CHEMINF_000200 ?X) which is a subclass of XLogP

descriptor (CHEMINF_000186) and was calculated using Open-

Eye (has_agent CHEMINF_000267). The query returns the name

of the compound (?compname), the type of the descriptor (?desctype),

the name of the descriptor, which is unique for each descriptor in

the knowledge base (?descname), and the numeric descriptor value

(?descvalue).

Conclusions
We have introduced the Chemical Information Ontology, a

formal ontology pertaining to chemical information entities that is

being developed collaboratively within the context of the OBO

Foundry. Our ontology allows the annotation of provenance and

disambiguation of type to chemical property data being brought in

ever increasing quantities onto the biological semantic web in

support of whole-systems integrative research [22]. We intend the

ontology to be adopted as a community standard for the

widespread annotation of cheminformatics data on the semantic

web, and we therefore emphasise community feedback through

Figure 8. Lipinski query results. The diagram illustrates the Protégé query tab and the results of executing a Lipinski drug-likeness query on the
generated CHEMINF knowledge base.
doi:10.1371/journal.pone.0025513.g008
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the provision of a mailing list and tracker and through

participation in the OBO Foundry, and we welcome new use

cases and requirements for ontology extension.

The domain of chemical information is a rich domain for

information content entities such as descriptors and algorithms,

with each software vendor providing potentially subtly different

definitions and implementations of the objects of the domain. Our

ontology provides multiple axes of classification through the use of

OWL necessary and sufficient conditions and a DL-reasoner,

allowing each of the possible axes of classification to be captured in

a single ontology while avoiding a tangled asserted hierarchy. We

explicitly interrelate algorithms, software implementations, de-

scriptors and parameter values, as well as relating each descriptor

to that chemical attribute that it best describes. In so doing we

provide a unified and interoperable domain ontology beneath a

common upper level, where previous efforts in chemical

information ontology had focused on one of descriptors,

algorithms, or implementations without providing a formalisation

of how these entities interrelate.

Future work will involve extending the ontology to achieve

closer to full coverage of known descriptors, algorithms and

software vendors. With greater coverage, the CHEMINF ontology

may become an asset in chemical software interoperability towards

having a standard representation for chemical data. In this respect,

we anticipate that the CHEMINF ontology will have a major role

to play in the semantic annotation and provenance of chemical

data in both the ChEBI [17] and Bio2RDF [72] projects. We

further anticipate that this ontology will play a pivotal role in the

establishment of chemical semantic web services towards auto-

mated chemical knowledge discovery.

Methods

Collaborative ontology development
Key to the development of community convergence ontologies,

such as those promoted by the OBO Foundry effort, is the use of

tools which allow and manage the contributions of multiple

ontology editors into a single ontology. For this purpose, we have

used Protégé ontology editor, version 4.0.2 [73] together with

version control provided by the Google Code project [28]. Such

version control provides a record of the edits which are made to

the ontology file and prevents the accidental overwriting of an

edited file with an earlier version being edited by a different

person.

We investigated the use of Collaborative Protégé [74] for this

purpose, however, Collaborative Protégé does not yet support

OWL 2, and therefore we were unable to use it, although

migration to this environment would be a goal for future work

when the technical infrastructure renders it feasible.

Generation of a chemical knowledge base
We programmatically transformed a set of 90 antidepressant

drug molecules taken from PubChem [15] into a knowledge base

together with descriptors calculated using CDK [56], Open Babel

[75] and OEChem [76] software.

Molecules in PubChem are converted into instance data in the

knowledge base. Each molecule is of type ‘chemical entity’, and is

annotated with a label giving the PubChem identifier for that

molecule. The calculated descriptors and their values are linked as

attributes to their respective chemical entities. Each toolkit

generates its own descriptor types and these are formally mapped

to CHEMINF descriptors using the RDFS:subClassOf relation.

For example, the CDK LogP descriptor is a sub-type of

CHEMINF’s LogP descriptor (CHEMINF_000251).

Provenance was captured in terms of the software (and version)

plus parameters used to generate the descriptors.

The full knowledge base is available for download from: http://

www.ebi.ac.uk/hastings/downloads/cheminfpopulated.zip.
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