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Abstract

The maintenance of movement accuracy uses prior performance errors to correct future motor plans; this motor-learning
process ensures that movements remain quick and accurate. The control of predictive saccades, in which anticipatory
movements are made to future targets before visual stimulus information becomes available, serves as an ideal paradigm to
analyze how the motor system utilizes prior errors to drive movements to a desired goal. Predictive saccades constitute a
stationary process (the mean and to a rough approximation the variability of the data do not vary over time, unlike a typical
motor adaptation paradigm). This enables us to study inter-trial correlations, both on a trial-by-trial basis and across long
blocks of trials. Saccade errors are found to be corrected on a trial-by-trial basis in a direction-specific manner (the next
saccade made in the same direction will reflect a correction for errors made on the current saccade). Additionally, there is
evidence for a second, modulating process that exhibits long memory. That is, performance information, as measured via
inter-trial correlations, is strongly retained across a large number of saccades (about 100 trials). Together, this evidence
indicates that the dynamics of motor learning exhibit complexities that must be carefully considered, as they cannot be fully
described with current state-space (ARMA) modeling efforts.
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Introduction

Motor learning is the mechanism by which neural control

processes are updated – typically via observation of and

compensation for errors – to keep actions quick and accurate.

Motor adaptation handles the latter: as the environment and the

body change over time, the motor controller adapts movement

gains in response to prior error information. This keeps

movements accurate despite short-term effects such as fatigue

and long-term changes such as muscle atrophy resulting from

aging. To address the desire for rapid movements, which are

hindered by feedback delays, the brain can generate predictive

behaviors that anticipate the motor action to be performed. This

reduces the time required to respond to a stimulus, allowing

targeted movements such as swinging a bat to hit an oncoming

baseball to be executed successfully. To keep the gain of such

anticipatory movements accurate, the motor system relies upon

previous prediction errors to modulate future behavior – the same

error detection and processing that drives motor adaptation [1].

Thus, predictive actions that produce consistent responses rely upon

the same motor learning mechanisms that drive adaptation.

One sensorimotor task that utilizes motor learning to maintain

performance is the control of predictive-saccade amplitudes. This

task consists of making periodically-paced saccades (rapid eye

movements) between two alternating targets at fixed locations.

After a few trials, saccades automatically and involuntarily become

anticipatory: they are initiated with latencies of 70 msec or less, as

opposed to typical reactive saccades that begin 250 msec after

target onset [225]. Since it takes nearly 70 msec for visual

information to reach cortex, it is unlikely that these movements are

visually guided; hence, they must be planned in advance of target

onset. In fact, predictive saccades may have latencies as low as

2200 msec, meaning they are completed well before the visual

target appears. These features make predictive saccades distinct

from other saccade types, including express saccades that also have

shorter latencies than reactive saccades but are still visually guided,

or memory-guided saccades that must be intentionally generated

as an active recall of a prompted location [627]. Furthermore,

unlike saccades made repeatedly in the dark to remembered

targets with no visual feedback – which become increasingly

inaccurate with repetition [8] – predictive saccades remain

reasonably accurate for hundreds of trials. This suggests the

presence of an active motor-learning process.

Spatial performance on this task can be considered statistically

to be first-order stationary, in the sense that the goal of the task is

to maintain a constant-sized movement throughout the paradigm.

In other words, the average saccadic amplitude remains constant.

This provides a distinct advantage over typical motor adaptation

tasks, which request a change in movement gain in response to

artificially exaggerated errors. In such cases, while the effect of

learning is quite apparent, it becomes difficult to separate the

nonstationary change in gain – part of which results from a
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cognitive strategy to counteract observed errors [9212] – from the

underlying learning dynamics. While many attempts have been

made to classify the system properties involved in adaptive

processes, they suffer the drawback of being primarily concerned

with the nonstationarity and ignore information contained within

variability about this adaptive trend. Adaptation is often analyzed

with static state-space models (equivalently, Auto-Regressive

Moving-Average, or ARMA, models) fit to the observed gain

change (i.e., the nonstationary trend) [13215]. However, these

time-series analysis methods were developed to describe the

dynamics of stationary behaviors, and typically suggest methods for

removing trends as the first step of model fitting (for example, see

[16]). When state-space (ARMA) models (which assume that

statistics including the mean of the time series do not vary across

time) are applied to nonstationary data (i.e., an adaptive change of

movement gain), model parameters should theoretically be time-

dependent. Problems arising from the use of time-invariant models

to fit adaptation data have been previously suggested in the

literature. Zarahn et al. demonstrated that single state-space

(ARMA) models cannot explain the phenomenon of savings [17],

in which learning is faster during a repeated exposure to the

adaptive stimulus following a washout period between sessions.

Instead, these authors found that the data were better fit with a

model whose parameters varied in each phase of the experiment

(learning, washout, and relearning), which is exactly what would

be expected when fitting nonstationary data with a stationary

model.

Aside from this potential pitfall, state-space (ARMA) models

also imply that inter-trial correlations decay at an exponential rate.

Such rapid decay of information across trials, however, has been

previously demonstrated to be insufficient to describe some classic

features of motor learning. Studies in rhythmic finger tapping

[18219] and in the temporal control of predictive saccade latencies

[5,20] suggest that there may be retention of information across

trials that are greatly separated in time, beyond that which can be

readily described by a simple state-space (ARMA) model. Instead,

such processes may exhibit statistical long memory (long-range

dependence), in which inter-trial correlations decay as a power

law. By examining a first-order stationary process such as the

control of predictive saccades (which, to a rough approximation,

can be considered weakly stationary since the variability about the

mean also appears essentially time-independent; see Figure 1B), it

is possible to properly apply time-series analysis techniques to

examine and describe the dynamics of motor learning.

In this study, we use a careful time-dependent computational

approach to explore the processes that underlie motor learning by

studying the control of predictive-saccade amplitudes. We show

evidence consistent with the hypothesis that future movements

arise as the result of two interacting processes: a conventional trial-

by-trial error-correction mechanism, overlaid with a process that

exhibits long memory. The existence of this long-memory process

suggests that future efforts to describe motor learning should

include models more complex than simple state-space (ARMA)

formulations.

Results

The control of predictive-saccade amplitudes was examined by

asking subjects to perform simple saccade tasks that involved

looking back and forth between two targets at a fixed rate while

their eye movements were recorded (see Methods). Within each

block of trials, primary-saccade amplitudes were measured and

compiled sequentially to form a time series. Corrective saccades

were not considered here, since they may be driven by different

motor-learning mechanisms and may therefore constitute a

separate learning process [1,21222]. Primary-saccade amplitudes

were analyzed for evidence of two major processes. First, using a

short predictive-saccade task involving only 300 trials in a block

(Task 1), we looked for the existence of a simple trial-by-trial

process that compensates for errors on each trial by immediately

updating the response on the next trial. It has previously been

suggested that the motor system can adapt according to the error

experienced in the single preceding trial, and does not require a

consistent error signal across many trials [23]. It seemed likely that

a similar process could modulate learning for predictive saccades.

Second, using predictive-saccade sessions from a longer task that

involved either 500 or 1000 successive trials (Task 2), we looked for

evidence of a long-term process that modulates movements by

monitoring performance during the several previous trials. Such

processes are important because systems that learn solely on a

trial-by-trial basis have the potential to become oscillatory or

Figure 1. Experimental paradigm and sample data. A: Eye movements (blue line) recorded as one subject made saccades (red highlighted
sections of the eye-movement trace) to a periodically moving target (black dashed line). Within a few saccades, subjects automatically began
anticipating the future target location, and saccade latency decreased below 70 msec (arrow, upper panel). The lower trace demonstrates what
occurs when catch trials are interspersed throughout the paradigm. After observing unexpected catch trials, subjects greatly increase their saccade
gain on the next trials in response to the unusually large errors (arrows, lower panel). B: Despite generating a large number of predictive saccades
(1000, in this case), subject performance appears weakly stationary (constant mean and, to a close approximation, constant variance).
doi:10.1371/journal.pone.0025225.g001
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unstable. Aggregating performance information across many past

trials provides a way to compensate for systematic trends of the

stimulus perturbation with less concern for inter-trial variability –

for example, this process might be engaged more heavily when

responding to a constant displacement of the stimulus as would

occur in typical adaptation paradigms. By not restricting the

duration across which inter-trial correlations were examined, we

simultaneously searched for evidence of either simple state-space

(ARMA) processes or more complex long-term dynamics.

Evidence for a trial-by-trial error correction process
Subjects were asked to perform three short blocks of only 300

trials each (Task 1) in which, throughout the block, a stimulus

perturbation was presented on either 0%, 10%, or 20% of the total

number of trials (Figure 1A). This provided a means to introduce

stimulus variability (in the form of catch trials) while encouraging

subjects to generate predictive saccades, as variability in the form

of stimulus noise added to the target position on every trial

hindered this task [24]. Note that since subjects were generating

predictive saccades, they observed a catch trial as a post-saccadic

error that was larger than expected; thus, any effect of catch trials

had to occur in the correction made on the following saccade.

Catch trials did not disrupt prediction: for each block, saccadic

latencies lay in the predictive range (0%: 22.02669.80 msec,

10%: 26.65677.69 msec, 20%: 213.69676.99 msec). Across all

subjects, the latencies of saccades on catch trials did not differ from

the latencies of saccades on all other trials (t-test, p.0.10 for all

subjects), and, with the exception of one subject in the 10% catch-

trial condition, the latencies of the saccades immediately following

the catch trials did not differ from those of the other saccades (t-

test, p.0.16 for all other subjects and catch-trial conditions).

Furthermore, there is no difference between latencies in the 0%

and 10% catch-trial conditions or between the 10% and 20%

catch-trial conditions; saccade latencies are only significantly

different between the 0% and 20% catch-trial condition although

the change in latencies is small (only 11 msec; Kruskal-Wallis one-

way ANOVA based on ranks with pairwise comparisons using

Dunn’s method, p,0.05). Thus, catch trials were a reasonable

method of exaggerating spatial performance errors without

disrupting the predictive process. Since catch trials did not occur

on consecutive trials, these perturbations were used to examine

trial-by-trial learning.

Trial-by-trial corrections were analyzed by plotting the error

made on the current trial (the nth saccade) versus the gain change

on the next primary saccade (amplitude of the next saccade

divided by the amplitude of the current saccade), then fitting a

95% confidence ellipse (CE95) to the data. The parameters of the

CE95, particularly the angles of the major and minor axes,

describe trends in the data. Specifically, the CE95 major-axis angle

(slope of major axis) reflects how well the system compensated for

errors by conveying the quality of the gain correction produced as

a function of the error size. Examples of data fitted with CE95

ellipses for both predictive saccades and reactive saccades are

exhibited in Figure 2.

Depending on how ‘‘next trial’’ is defined, there are two trial-

by-trial corrections of interest that compensate for errors on the nth

trial. First, there is the correction on the return primary saccade,

or the saccade made away from the target where the error

occurred (that is, the (n+1)th saccade). By comparing the angles of

the CE95 major axes in each of the stimulus-variability conditions,

we assessed modulation of the error-correction process as artificial

errors were introduced. In this case, all errors – including errors

induced by catch trials – were well compensated on the (n+1)th

saccade; there were no significant differences between the CE95

axis angles for all variability conditions (paired t-test between the

0% and 10% catch-trial condition, p = 0.88; paired t-test between

the 0% and 20% catch-trial condition, p = 0.54; see Figure 2A and

Table 1). In other words, whether subjects were observing their

own prediction errors or the artificially induced errors resulting

from the catch trials, they corrected all errors in the same manner.

Otherwise, there would have been a change in the CE95 angle as

greater frequencies of catch trials caused changes in the error-

correction process.

As further evidence of this, we compared these findings against

data from two subjects who participated in a separate control

experiment involving the generation of reactive saccades. In the

0% catch trial condition (that is, without stimulus perturbations),

there was a significant difference between the CE95 angles for

predictive and reactive tracking (t-test, p = 0.02). Furthermore,

when catch trials were introduced, the reactive-saccade CE95

angles changed greatly compared to the reactive-saccade 0% catch

trial condition (Figure 2B) because each reactive saccade was

simply made in response to the visual target and was therefore

independent of previously generated reactive saccades. This

resulted in a change in how catch trials affected both the size of

errors and the types of corrections made. Indeed, the reactive-

saccade CE95 angles remained significantly different from those of

predictive saccades (10% catch trials, t-test, p = 0.03; 20% catch

trials, t-test, p = 0.01; Table 1).

Unfortunately, there was a potential confound when examining

corrections made on the (n+1)th trial in response to catch trials.

Since the catch trial was in the form of a displaced saccadic target,

the return saccade must necessarily have been larger to bring the

eyes back to the next non-displaced target. Thus, this ‘‘compen-

sation’’ might not reflect learning at all, but simply the appropriate

response to a larger requested saccade. To clearly demonstrate

that trial-by-trial learning does occur, therefore, it was necessary to

consider an alternative definition of the ‘‘next’’ trial. For that, we

turned to the motor learning literature.

With respect to adaptation, subjects are capable of changing the

gains of rightward and leftward saccadic movements in different

ways: subjects can adapt in a gain-increase manner in one

direction and a gain-decrease manner in the opposite direction, or

only adapt saccades moving in one direction while maintaining a

fixed gain in the other direction [25–29]. It is possible that error

corrections occur in a direction-specific manner for predictive

saccades as well; that is, subjects might have learned that a catch

trial (which produced a large, unexpected error) occurred when

making a rightward saccade, so they would then anticipate the

need to make a much larger saccade the next time they looked to

the right (see Figure 1A, lower panel). Therefore, we considered as

an alternative definition of ‘‘next trial’’ the (n+2)th saccade, or the

next saccade made in the same direction as the current saccade.

This eliminated the problem inherent with catch trials since these

corrections took place during saccades that were made between

two non-displaced targets, so the only reason for compensation

was learning from the previous saccade. Such a corrective

mechanism was also of interest because it would indicate that

direction-specific learning may be a common feature of motor

learning.

Akin to the data observed for the (n+1)th correction, error-

correction performance on the (n+2)th saccade was consistent

across all catch-trial conditions as demonstrated by the presence of

similar CE95 axis angles (paired t-tests between the 0% and 10%

catch-trial condition, p = 0.65; 0% and 20% catch-trial condition,

p = 0.45; see Figure 2C and Table 1). As before, these CE95 axis

angles were also significantly different from those of reactive

saccades in the 0% catch trial condition (Figure 2D; t-test,

Multiple Time Courses of Motor-Learning Dynamics
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p = 0.01). This implies that subjects actively corrected performance

errors – including artificially induced errors due to catch trials.

Despite the differences between predictive and reactive

saccades, it might be argued that trial-by-trial error corrections

could have arisen by chance. That is, if predictive-saccade

amplitudes were randomly chosen as independent trials, a saccade

with a particularly large or small error would tend to be followed

by a saccade with a more moderately-sized error just by chance;

this could have resulted in a process that only appeared to be

governed by an active error-correction mechanism. To investigate

this, we analyzed surrogate data sets. Each surrogate time series

was produced by randomly shuffling the order of predictive-

saccade amplitudes in the original data, which removed all

temporal correlations without changing the distribution of saccade

amplitudes in the series. The error-correction analysis was then

performed on these data sets (that is, current errors and next-trial

error corrections were assessed for each surrogate). Surrogate

CE95 values were observed to lie along the ideal compensation

angle, which would arise either by assuming that trials were

independently drawn from a Gaussian distribution or that there

was complete compensation for errors on every trial (see Methods).

In this case, the ideal angle of the CE95 major axis was

approximately -3.01 radians. This analysis was restricted to only

the 0% catch trial condition for the (n+2)th correction. Each

Figure 2. Trial-by-trial error corrections in the stimulus variability task. A: Predictive-saccade data from one representative subject during
Task 1, reflecting corrections to errors made on the very next primary saccade (the (n+1)th saccade, or, in the case of catch trials, the return saccade
from the displaced target). B: Reactive-saccade data from one subject in the control for Task 1, for the (n+1)th correction. In C and D, the same time
series are used to plot the corresponding predictive-saccade and reactive-saccade error corrections made on the (n+2)th saccade, or the next saccade
made in the same direction as the current saccade. In all cases, the top three panels show data from the three stimulus-variability conditions (from
top to bottom, the 0% catch-trial, 10% catch-trial, and 20% catch-trial conditions); the bottom panel shows the superimposed CE95 ellipses from the
top three plots for comparison purposes.
doi:10.1371/journal.pone.0025225.g002
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subject’s data were compared against 1000 surrogate time series.

CE95 values were examined in terms of the five characteristics that

fully describe an ellipse (single-subject data in Figure 3; group data

summarized in Figure 4): the ellipse area, the lengths of the major

and minor axes (which roughly describe the range of saccade

errors made across trials and the scatter about the trend in the

data, respectively), and the orientations (angles) of the major and

minor axes (which reflect the quality of the compensation

mechanism). Since ellipse axes must be orthogonal, we only

reported findings for the CE95 major axis angles below.

As expected, all the surrogate data were found to yield CE95

values whose orientations were not significantly different from the

ideal compensation angle (average surrogate CE95 angle was

-3.0160.01; t-test, p = 0.71). Furthermore, reactive-saccade data,

with an average CE95 angle of -3.0160.02, were not significantly

different from either the corresponding surrogate data (t-test,

p = 0.35; Figure 3B) or the ideal angle (t-test, p = 0.83). Predictive

saccade data, on the other hand, bore little resemblance to either

one. The average CE95 angle was -3.0460.02, which was

significantly different from the ideal angle (t-test, p = 0.01;

Figure 4B). On an individual basis, the CE95 values for each

subject’s predictive saccades were found to be significantly

different from those for their respective surrogate data (paired t-

test, p,0.01; data from one subject is displayed in Figure 3A).

Interestingly, the predictive-saccade ellipses were also significantly

narrower than were the surrogates (that is, the ellipse minor-axis

lengths were shorter) (paired t-test, p = 0.01; Figure 4A). As the

CE95 minor axis describes the scatter or variability about the main

trend in the data, finding shorter minor axes for the predictive-

saccade time series implies that the error-correction was actively

controlled, not random. In contrast, major-axis lengths were not

significantly different (paired t-test, p = 0.29), reflecting the fact

that the range of errors was the same in both the actual and the

surrogate data.

Although errors were actively corrected, it was somewhat

surprising to observe that these corrections were less than complete

(that is, the CE95 axes were tilted less steeply than the ideal tilt

angle, or directed more toward the abscissa, which implied that

errors were not fully corrected to the mean saccade amplitude on

each trial). In fact, such a situation actually is preferred:

compensating solely and completely for errors experienced in

the single previous trial could lead to oscillations and potential

instability. While the controlling process might have achieved this

incomplete compensation by decreasing the amount of learning

that took place in response to each individual error (for example,

by decreasing the learning rate in a single-state, state-space

(ARMA) model), an alternative approach to yield this same under-

correction could be to utilize performance information from more

than one previous trial. To examine this possibility, it was

necessary to search for evidence of a process operating across a

longer timescale.

Evidence for a long-term process
Inter-trial correlations extending beyond one trial were explored

with simple time-series analysis techniques – in particular the

power spectra, which describe how similarities between trials vary

at different time scales. The power spectrum – along with its

Fourier-transform pair, the autocorrelation function [18,30] –

conveys how information is retained between saccades separated

by one or more trials. Using these analyses, it was possible to assess

the number of past trials over which the system utilized

performance information. Proper application of such techniques

requires lengthy, continuous sequences of saccades; therefore, we

had subjects in Task 2 make predictive saccades to either 500 or

1000 targets, and explored the inter-trial correlations in these

longer data sets.

The power spectrum for predictive saccades appeared roughly

linear on a log-log plot (data from one subject, Figure 5A); that is,

for frequency f, Sxx fð Þ~f {a (power-law decay). The exponent a is

the frequency scaling exponent. This power-law decay of the

power spectrum is often associated with power-law decay of inter-

trial correlations as assessed by the autocorrelation function [31].

Since inter-trial correlations decayed in this manner, this meant

that more information was retained from one trial to the next than

there would be in the case of a typical state-space (ARMA) process,

for which inter-trial correlations decay exponentially. In addition,

power-law decay indicated that control of the current saccade was

modulated by performance errors far in the past (fluctuations were

observed across all time scales). This suggested that the control of

predictive-saccade amplitudes might be governed by a long-

memory process [32].

From the power spectra, the frequency scaling exponent, a, was

measured for each time series (see Methods). This a value can be

used to characterize the nature of the long-range dependence

present in the data. The average measured a value for all subjects

was 0.3760.14, which was significantly different from either zero

or one (t-test, p,0.01). A slope of zero of the power spectrum on a

log-log plot is suggestive of a random white-noise process, in which

there are no inter-trial correlations. Reactive saccades exhibited

this feature (Figure 5B; average a= -0.0560.04), which makes

sense given the trial-by-trial analysis also suggested that reactive

saccades resemble a random process. Values of a greater than zero

but less than one imply that the process is persistent, in which large

values tend to follow large values and small values follow small

values. Such persistence is consistent with the trial-by-trial analysis

that suggested that errors on each trial were under-compensated.

In such a circumstance, it would take several trials to fully correct

for a given error, meaning that groups of successive saccades

would tend to all be consistently larger or smaller than the mean

saccade amplitude. In contrast, if a was less than zero the process

would be considered anti-persistent, in which large values tend to

follow small values and vice versa.

Although the power spectra appeared linear on a log-log plot,

these spectra were quite noisy. Thus, we tested the hypothesis that

the data could instead have been generated by a state-space

(ARMA) process by asking if the power spectrum contained an

inflection point. An inflection point might be expected if inter-trial

Table 1. CE95 major axis angles for all catch trial (CT)
conditions.

(n+1)th correction (n+2)th correction

Subject 0% CT 10% CT 20% CT 0% CT 10% CT 20% CT

A 23.02 23.00 23.00 23.02 22.98 23.03

B 23.04 23.05 23.03 23.05 23.06 23.04

C 23.04 23.06 23.07 23.03 23.06 23.09

D 23.02 23.03 23.02 23.08 23.07 23.07

G 23.04 23.04 23.03 23.06 23.06 23.06

J 23.04 22.99 22.99 23.04 22.97 22.99

React 23.05* 23.06* 23.07* 23.01* 23.05 23.07

For the predictive-saccade data, the 10% catch trial and 20% catch trial
conditions were not significantly different from the 0% catch trial condition,
paired t-test, p.0.45.
*Significant difference between predictive and reactive CE95 with p,0.05.
doi:10.1371/journal.pone.0025225.t001
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correlations decayed exponentially such as might be observed for a

state-space (ARMA) process that forms a low-pass filter, which is

characterized by a flat power spectrum in the low-frequency range

[33]. We approximated this using a piecewise-linear regression

and allowed the model to pick the best inflection point as well as

the slopes of the piecewise regressions (sample piecewise fits are

exhibited in Figure 6; see Methods). Such an approach is

conservative since it is also possible that a long-memory process

with two different scaling regions would be misclassified as a state-

space (ARMA) process according to this method, particularly since

Figure 3. Surrogate data analysis of trial-by-trial error corrections. Data show one representative time series from predictive-saccade
tracking during Task 1 (A, blue), reactive-saccade tracking in the corresponding control task (B, red), and simulation data from an ARFIMA(0,d,0)
process (C, green). In all cases, the top panel shows the CE95 for the actual data (thick colored line) and the generated set of surrogates (multiple
overlapping gray ellipses). The lower three panels show comparisons between the data and surrogates across the five characteristic CE95 parameters
(from top to bottom): the ellipse area, major and minor axis lengths, and major and minor axis angles. The gray bars on the histogram plots are the
data from the surrogate time series; the single colored bar on each histogram is the actual time series data, which has been rescaled vertically for
clarity. Significant differences at greater than the p = 0.05 level are indicated by (*).
doi:10.1371/journal.pone.0025225.g003
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the slope of the low-frequency region was not restricted to zero.

Nevertheless, in all cases a single regression line was found to fit

the data better according to the Bayesian Information Criterion

(see Methods; difference in the Bayesian Information Criterion

fitting values was strongly in favor of a single linear regression over

a piecewise linear regression; t-test, p,0.01). This indicated

power-law decay of the power spectra.

One question that immediately arose upon finding evidence of a

long-memory process was exactly how far into the past trials were

correlated. Power-law scaling suggests that trials were related

infinitely far into the past; however, this seemed biologically

implausible because it implied that the brain was keeping track of

performance errors across thousands of previous saccades. To

assess the extent of the long-range dependence, we used a

modification of the bootstrap technique developed by Wang et al.

in which the data were divided into blocks of size DN and

subsequently shuffled [34]. This eliminated correlations between

trials on timescales greater than DN. For very small values of DN,

the computed value of a tended toward zero since shuffling

reduced the time series to a random process. Thus, by finding the

smallest value of DN for which a was not different from that value

measured for the original time series, it was possible to estimate the

extent of inter-trial correlations (Figure 5). For our predictive-

saccade data, this value of DN was, on average, 73 trials

(significantly different from zero, t-test, p = 0.01); in contrast, for

reactive saccades the average DN was 7.7 (not significantly

different from zero, t-test, p = 0.28). Therefore, for these data, long

Figure 4. Group data summary of the surrogate data analysis.
For all subjects, the five average CE95 parameters are displayed (A, B)
along with error bars (S.D.). We present the absolute value of the CE95

major axis angles (first set of bars in B) for graphing purposes; these
angles are reported as negative in the text. Significance between pairs
of parameters at greater than the p = 0.05 level is indicated by (*). The
predictive-saccade data (blue) are, in general, significantly different
from the surrogate data (cyan) and the reactive-saccade data (red)
across many of the CE95 parameters. Reactive saccades, however, are
not very different from their surrogates (magenta).
doi:10.1371/journal.pone.0025225.g004

Figure 5. Analysis of long-memory processes. Predictive-saccade data from one representative subject in Task 2 (A) is compared against a short
sequence of reactive-saccade data (B). The same analyses were also applied to simulation data from an ARFIMA(0,d,0) process (C). In all cases, the top
panel is the power spectrum of the data plotted on a log-log scale, with the measured a value reported. The middle panel is the bootstrap analysis,
demonstrating the change in the value of a from random (near zero) to its measured value (reported in the top panel) as the shuffling-block size, DN,
is varied. The first point at which the value of a is no longer significantly different from the value measured in the top panel is indicated by (*). The
bottom panel displays the result of the Hurst rescaled-range analysis, the slope of which is used to estimate the H parameter. Whereas the predictive-
saccade data and the simulation data exhibit long memory, the reactive-saccade data do not.
doi:10.1371/journal.pone.0025225.g005
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memory truly implied a long time – on the order of 100 saccades –

across which the motor system stored performance errors and used

that information to drive future predictive movements.

Evidence of long memory was confirmed by two other

independent analyses. The first involved computing the Hurst

exponent (H), also known as the temporal scaling exponent.

Mathematically, the temporal (H) and frequency (a) scaling

exponents obey the relationship H = (1+a)/2, although both were

computed by completely different techniques (see Methods). Thus,

the computation of both H and a provided a means to verify that

predictive-saccade amplitudes were indeed controlled by a long-

memory process. For predictive saccades, the average H value was

0.7360.07 (representative data from one subject are shown in

Figure 5A). This again was indicative of a persistent process, since

0.5,H,1 (H was significantly greater than 0.5; t-test, p,0.01).

Furthermore, measured H values from the predictive-saccade data

did not significantly differ from those computed using the measured

a values, which verified the findings of each method (t-test,

p = 0.07). Reactive-saccade data (Figure 5B), on the other hand,

were likely to reflect a random process, as the measured H value of

0.5760.18 was not significantly different from 0.5 (t-test, p = 0.53).

The second analysis technique used to verify the finding of long

memory was to compare a short-memory and a long-memory model.

The two model classes were ARMA (state-space) models and the

related long-memory ARFIMA models (see Methods and Methods

S1). In comparing fits across all non-catch trial data sets collected in

both tasks, it was found that an ARFIMA model fit the data best in 11

out of 16 cases according to the Bayesian Information Criterion

(Table 2). For those 11 cases, the average computed d value – the

ARFIMA model parameter that described the long-memory process

– was 0.2260.06. The value of d is related to the Hurst exponent, H,

by the relationship d = H – 0.5; thus, this value of d was consistent with

the measured H and a values found above (measured and computed d

values were not significantly different; t-test, p = 0.58). Furthermore,

this measured value of d was significantly different from zero, which

indicated that these data did not come from either a random process

or an ARMA (state-space) process (t-test, p,0.01). Thus, the model-

fitting analysis also confirmed the piecewise-linear power-spectrum

fits. Together, these analyses strongly supported the notion that motor

learning exhibits long memory.

Comparison of data to a simulation of a long-memory
process

We also used the ARFIMA model to produce simulated time

series. Since we were interested in investigating primarily the long-

memory process in isolation, we chose to simulate an ARFI-

MA(0,d,0) process – that is, a process that did not contain any

additional short-memory ARMA (state-space) processes. Using the

measured d value of 0.22 from the data, we produced 100

simulated data sets; every time series contained 1000 trials. For

each simulated time series, we measured the temporal and

frequency scaling exponents (data for one simulation is displayed

in Figure 5C). On average, the simulations yielded a= 0.4060.06

and H = 0.7560.02, which corresponded well to the values in the

predictive-saccade data: simulated and measured exponents were

not significantly different (a: t-test, p = 0.19; H: t-test, p = 0.27).

Conducting the bootstrap analysis above, we estimated the

length of time over which inter-trial correlations were present by

measuring DN for each simulated series. The simulation data

yielded an average DN value of 93 trials, which is not significantly

different from the measured DN values for the predictive-saccade

time series (t-test, p = 0.47). This bootstrap analysis confirmed that

inter-trial correlations extended to somewhere on the order of 100

trials into the past; in other words, an error made 100 saccades ago

(about 40-50 seconds in the past) still affected the planning of the

current predictive saccade.

Finally, we examined trial-by-trial corrections in these simula-

tion data by looking at how errors were corrected on the (n+2)th

trial. For each time series, we compared the CE95 measured for

the simulated data against a corresponding set of surrogate data;

the analysis from one sample simulated time series was presented

in Figure 3C. In all cases, the simulated data behaved similarly to

the predictive-saccade data. We found that errors appeared to be

well corrected in the simulations. There was a significant

difference between the CE95 axis angles and those of the

corresponding surrogate data (for all simulated time series

compared to their respective surrogates, p,0.01), which mani-

fested as a less steeply oriented CE95; this again suggested that

errors were under-corrected. Such a finding was reasonable

because the simulated data were all persistent time series, so that

trials were more similar to recent trials in the past than chance (less

Figure 6. Piecewise versus single linear regression analysis of
the power spectrum. A, B: Two representative power spectra
showing the comparison between the piecewise-linear fit and the
single-linear fit. In both cases, the single-linear fit is found to better fit
the data according to the Bayesian Information Criterion, suggesting
that the power spectra exhibit power-law decay.
doi:10.1371/journal.pone.0025225.g006

Table 2. ARMA and ARFIMA model fits.

Subject Paradigm Best Model Fit (BIC)
Estimated d
value

A Task 1 ARFIMA(0,d,0) 0.2

B Task 1 ARFIMA(0,d,0) 0.24

Task 2 (1000) ARMA(2,0) 2

C Task 1 ARFIMA(0,d,0) 0.24

Task 2 (500) ARFIMA(0,d,0) 0.23

D Task 1 ARFIMA(1,d,1) 0.32

Task 2 (500) ARMA(2,3) 2

Task 2 (1000) ARFIMA(2,d,1) 0.24

E Task 2 (1000) ARMA(2,1) 2

F Task 2 (1000) ARFIMA(1,d,1) 0.24

G Task 1 ARFIMA(0,d,0) 0.25

Task 2 (500) ARFIMA(0,d,0) 0.13

Task 2 (1000) ARFIMA(0,d,0) 0.21

H Task 2 (500) ARMA(1,0) 2

I Task 2 (500) ARFIMA(1,d,1) 0.08

J Task 1 ARMA(0,0) 2

Average 0.2260.06

doi:10.1371/journal.pone.0025225.t002
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‘‘corrected’’). In fact, this under-correction was so robust in the

ARFIMA model data that we found the simulated data CE95 axes

to be oriented even less steeply (i.e., errors were more under-

corrected) than for the actual predictive data (t-test, p,0.01).

Since these simulations did not explicitly contain any short-

memory processes (that is, the ARMA coefficients of the model

were zero), the simulated data exhibited only persistent behavior

and little trial-by-trial corrections. Therefore, these findings

indicated that there was likely to be an active trial-by-trial error-

correction mechanism working alongside the long-memory process

in the control of predictive saccades. Together, these counter-

balancing processes produce behavior that maintained a reason-

able level of accuracy by learning from errors on a trial-by-trial

basis, without the loss of performance stability that comes from

failing to examine average performance across many trials in the

past. Thus, we consider the control of predictive saccades to arise

from some combination of performance information between a

short-term mechanism that corrects errors and a long-term,

persistent process that provides performance stability.

Discussion

The control of predictive-saccade amplitudes is regulated as a

motor learning process, in that prior performance errors modulate

future behavior. This process, unlike a typical adaptation

paradigm, has the advantage of being statistically stationary, such

that the movement gain (and to a rough approximation, the

variability of that gain) does not change throughout a session. Such

features allow for the application of standard analysis techniques to

quantify inter-trial correlations and identify underlying dynamics.

We hypothesize that the predictive-saccade task utilizes an error

signal derived as the difference between predicted and observed

movement outcomes. Such an error signal has previously been

demonstrated to drive motor adaptation [1], suggesting that this

predictive error signal may be common to the phenomenon of

motor learning. Therefore, it may be possible to extrapolate the

findings regarding this simple predictive-saccade task to other,

more complex motor learning processes that are nonstationary,

such as motor adaptation in response to an artificially-induced

stimulus perturbation.

Note that in conducting our analyses, we assume that

movement error is the critical quantity being retained to inform

future movements. Evidence from the trial-by-trial analysis

supports this idea, since subjects appear to respond principally to

movement errors; such errors are actively and appropriately

corrected (partially) on the next trial. As noted above, there is also

some evidence from the motor adaptation literature that the

information utilized to drive learning is composed of motor errors

[1,35-36]. Indeed, many current modeling efforts assume that

movement error – often represented as the difference between

ideal and actual movement outcomes – drives learning. Thus,

although the exact nature of the information being retained by the

motor system to plan and generate predictive saccades is yet to be

investigated, it seems reasonable to assume that the motor system

retains at least some performance error information when

generating future movements.

This error information appears to drive predictive saccades

through two coexisting processes: a trial-by-trial error-correction

mechanism that acts to maintain accuracy, and a persistent long-

memory process that reduces fluctuations by aggregating perfor-

mance errors across many previous trials. While we found clear

evidence suggesting that the trial-by-trial error correction process

is direction-specific, we cannot rule out the possibility of a second

trial-by-trial mechanism that is not direction specific. Nonetheless,

the presence of a direction-specific learning process is intriguing

since motor adaptation is also known to take place on a direction-

specific basis [25-27,29].

In contrast to the predictive-saccade findings, a simple reactive-

saccade task exhibits quite different features. Since each reactive

saccade is generated independently in response to a novel visual

target, it is not necessary to retain information from one trial to the

next. The result is a random, white-noise process, as indicated

both by the lack of difference between the data and surrogates in

the trial-by-trial CE95 analyses as well as by the measured

temporal and frequency scaling exponents in the long-term

correlation analyses. The errors made during a predictive-saccade

task, on the other hand, are directly relevant to the production of

the next predictive saccade because each saccade is made to an

estimated target position in anticipation of the stimulus appear-

ance. Thus, it is necessary to learn from prior performance errors,

resulting in significant differences between the inter-trial correla-

tions of reactive and predictive saccade data as assessed by several

distinct analysis techniques. By utilizing information about past

performance, the motor system is able to produce consistent,

automatic, anticipatory behavior that takes little effort or conscious

input.

Evidence for the presence of a long-memory process is quite

striking; three independent analyses confirm this finding. This has

significant implications for motor learning in general. In

particular, it calls into question some current efforts to model

the motor learning process. Such models, applied to explain gross

changes in behavior such as the adaptation of a movement gain

state in response to an artificially induced stimulus perturbation,

expend much effort to fit the nonstationary trend and ignore

information about underlying dynamics that may reside in the

‘‘variability’’ about the trend. This results in state-space (ARMA)

models that require time-dependent parameters [17] – a problem

inherent to fitting a nonstationary process with a stationary model.

Our results – based on the analysis of a relatively stationary

process – confirm that it is inappropriate to model at least one

aspect of motor learning with a state-space (ARMA) model. We

find power-law decay of inter-trial correlations, which cannot be

captured in the exponential decay of information between trials

inherent in a state-space (ARMA) model. Additionally, state-space

(ARMA) models require explicitly defining the number of time

scales on which learning takes place, whereas long-memory

processes imply learning on all time scales, as demonstrated by

the presence of significant fluctuations at all frequencies of the

power spectrum (power-law decay of the power spectrum). These

findings suggest that we must turn to alternative models to describe

the complexities of motor learning – models that must be carefully

applied to nonstationary phenomena such as motor-adaptation

tasks.

Unfortunately, the existence of long memory is objectionable for

exactly that property that characterizes it – the existence of many

time scales. This implies that the brain must maintain information

about performance errors over extremely long intervals of time;

the bootstrap analysis we performed suggests that the brain might

use information from as many as 100 prior trials when planning

the next movement. Are such processes feasible for the brain to

implement? In fact, power-law processes have been demonstrated

at numerous levels throughout the nervous system. At the neural

level, these processes result from ion channel kinetics, whose effects

may be strong enough to potentially explain measureable

behavioral responses such as the tilt aftereffect, a prominent visual

illusion [37-39]. Long memory has been described for many other

biological phenomena as well; for example, it has been suggested

that the finding of long memory is evidence of a healthy heart rate,
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and that a loss of such complex dynamics is a sign of an impending

arrhythmia or heart failure [40-41]. Therefore, it is certainly

feasible that the control of motor learning is influenced by a

process with long memory.

The features of long memory can be produced or mimicked by

the existence of multiple, interacting short-memory (state-space,

ARMA) processes. For example, if one process drives changes in

the parameters that govern the second process, it is possible to

produce a set of data that appear to exhibit long-range

dependence [42-45]. Thus, while a single state-space (ARMA)

model is not sufficient to describe motor learning dynamics, it may

be possible to do so using coupled ARMA processes. Such a model

design is also in line with the notion of two dominant time courses

of learning [14,46-49]; two ARMA processes, operating at

different timescales, might be sufficient to mimic this behavior

while producing fluctuations that appear to exhibit long memory.

Such a solution may be more biologically plausible than a single

long-memory process.

Interacting state-space (ARMA) processes could occur as a

result of converging information from multiple brain regions, each

performing separate calculations at different temporal rates. Some

portions of this widespread motor learning network have already

been identified. Certainly, the cerebellum plays a major role in

both adaptation and prediction; patients with cerebellar deficits

exhibit difficulties in saccade adaptation and prediction tasks [50-

54]. The cerebellum is thought to contain a forward model which

generates predictions [55-56], which could serve a crucial function

in all motor learning processes. However, the involvement of other

brain regions such as the frontal and parietal lobes in prediction

tasks [57], along with the superior colliculus [58] and especially the

cerebellar thalamus [59] in adaptation tasks, suggests the presence

of a dispersed network. Working together, these regions may

monitor numerous factors influencing the control of movements

such as changes in the environment and changes within the body,

helping the motor system determine how best to address

movement errors. Integration of the outputs from these multiple

brain regions could be sufficient to produce behavioral data that

appear to exhibit long memory. A more thorough investigation is

required to explore the feasibility of this proposal. Nevertheless, it

is important to recognize and actively examine data for the

presence of such complex dynamics as long memory, which

cannot be represented using the simple state-space (ARMA)

models that are currently employed to describe motor learning. In

doing so, we may find that the influence of such a long-memory

process is the net result of trying to balance the need for immediate

compensation for errors with the stability necessary to maintain

accurate long-term performance. In that sense, it would not be

surprising to find hints of long memory in all sensorimotor tasks.

Materials and Methods

Participants and ethics statement
Eye movements were recorded from ten subjects who

participated in one or more of three experimental tasks. Written

informed consent was obtained from each participant. Experiment

protocols were approved by the Western Institutional Review

Board under contract with the Johns Hopkins Medical Institutions,

where all studies were conducted. Subjects A-D and G performed

the stimulus variability task (Task 1). Subjects D and J participated

in a control version of this task. Subjects B-I performed either one

or both versions of the extended tracking task (Task 2). Subjects

who participated in more than one task experienced each task at

least a month apart. Only subjects D and E were not naı̈ve to the

purposes of this study.

General Methods
Data were acquired on a PC-compatible Pentium 166-MHz

computer running real-time experiment control software devel-

oped in-house. Eye movements were recorded using a directional

scleral search coil (Skalar Medical BV, Delft, The Netherlands) to

record horizontal and vertical eye movements at 1000 Hz from

either the right or left eye [60]. Scleral coil data were digitized with

a 12-bit analog-to-digital converter, setting the system resolution to

about 0.03u. Subjects sat in a dark room in a stationary chair, and

a bite-bar was used to minimize head movements. Targets were

displayed using two methods. In Task 1 and the short version of

Task 2, targets were generated by rear-projecting a mirror-

controlled laser dot onto a screen 1 m in front of subjects,

producing a target that was 2 mm in diameter. For subjects

performing the long version of Task 2, targets were LEDs placed

at fixed locations prior to the start of the experiment.

Analyses of eye-tracking data were done off-line with an

interactive computer program that selected primary saccade start-

and end-points using a velocity threshold of 15u/sec (typical

threshold values in the literature range from 10u/sec to 40u/sec;

see also [61]), which were then visually confirmed prior to analysis.

Sample trajectories of saccades demarcated using this threshold

are illustrated in Figure 1A. When subjects blinked during a

saccade, the resulting saccade was discarded from analysis.

Primary saccade amplitudes were measured, then arranged to

form a time series.

Tracking Tasks
Task 1 was a short tracking task to examine trial-by-trial error

corrections. Subjects performed three blocks of trials, each

consisting of 300 target presentations paced at 0.9 Hz (inter-target

interval: 556 msec). Each block contained a different level of target

variability, which was introduced to exaggerate spatial trial-to-trial

errors. Since variability in the form of spatial noise added to every

trial decreases the ability to make predictive saccades [24],

controlled variability was introduced in the form of pseudo-

randomly interspersed catch trials in the otherwise predictable task

(Figure 1A, lower trace). In normal trials, targets consistently

appeared 65u on either side of the vertical midline; during a catch

trial, the target was displaced 2u farther from the midline. Catch

trials were restricted such that they could not occur on successive

trials; this enabled the examination of the effect of a single catch

trial on the next trial. By changing the proportion of catch trials in

each block, target variability was modulated; subjects experienced

one of each block containing 0%, 10%, or 20% catch trials.

Subjects experienced blocks in order of increasing variability to

reduce the chance that expectations of experiencing catch trials

would influence error corrections in future blocks; subjects were

not informed of the catch-trial perturbations. The control task for

this paradigm repeated the same stimulus-variability conditions

but for 100 trials paced with longer, random inter-stimulus

intervals (mean 1500 msec) to promote reactive tracking. The 0%

catch trial condition was also used as a control to obtain a set of

reactive saccades to compare against Task 2.

Task 2 was an extended tracking task, in the sense that subjects

were asked to generate predictive saccades for greater numbers of

successive trials. Subjects made saccades to alternating targets

appearing at 65u on either side of the vertical midline, paced at

0.9 Hz for 500 trials. We also ran an even longer version of this

task in which subjects were asked to track alternating targets paced

at 1 Hz for 1000 trials (the slightly increased frequency was used to

keep the total duration of the block reasonable even though the

number of trials doubled; targets during these trials appeared

610u on either side of the vertical midline). This longer version
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enabled us to verify the findings from the shorter versions; that is,

to ensure that there was no high-end cutoff in the extent of inter-

trial correlations beyond 500 trials. In either version, target timing

and position were completely predictable.

In all tasks, subjects were given no explicit instructions as to the

timing or accuracy of their movements; they were simply asked to

‘‘look at the targets.’’

Analysis Techniques
Trial-by-trial error corrections were assessed by plotting the

saccade correction on the next trial (ratio of the next primary-

saccade amplitude to the current primary-saccade amplitude)

against the saccade error on the current trial (absolute value of

target endpoint minus the absolute value of saccade endpoint; all

hypometric errors are expressed as positive values regardless of the

direction of the primary saccade). Intervening corrective saccades,

which bring the eyes to the target following a primary saccade, are

not considered. Trends were measured by fitting the data with

95% confidence ellipses (CE95). The ellipse major axis describes

the relationship between the error on the current trial and the

correction on the next trial, and the minor axis describes scatter

about that trend. The angle of the major axis describes how well

errors are compensated on the next trial; angles closer to the ideal

value of -3.01 radians (-172u) imply more complete compensation

for errors (a 1u hypometric error for a 10u saccade should produce

a gain correction of 1.11; since errors are small we approximate

this hyperbolic relationship as a linear trend). The ideal tilt angle

of -3.01 radians is also the angle that would result if each trial was

independently drawn from a Gaussian distribution, centered at a

gain of 1, prior to the error-correction analysis. This random

process would yield the ideal compensation angle because it

reflects the tendency for trials to be ‘‘corrected,’’ on average,

toward the mean of the distribution (that is, to be more similar to

the mean on a successive trial), which happens with high

probability in a Gaussian distribution. Thus, the ideal error

correction to bring the saccade gain back to the average saccade

amplitude or the tendency of a Gaussian distribution to cluster

about its mean yield the same effect in this analysis.

Surrogate data were used to test the possibility that observed

trends simply arose by chance, as could happen if successive

saccade amplitudes were simply random trials drawn from a given

distribution. Each surrogate data set was generated by randomly

shuffling the order of saccade amplitudes to destroy temporal

correlations, then repeating the analysis of measuring endpoint

errors and change in saccade gain between pairs of trials. Since

this ‘‘whitens’’ the data or makes it random while still preserving

the underlying amplitude distribution, it tends to produce

confidence ellipses that are aligned closely with the ideal

compensation angle of -3.01 radians.

Long-term correlations were quantified using two methods. The

first analyzes the statistical correlation structure using the power

spectrum. The power spectrum, Sxx, is computed by taking the

squared magnitude of the Fourier transform of the time series.

Systems exhibiting long-term correlations (i.e., gradual decay)

have power spectra that decay as a power-law; that is, for

frequency f, Sxx fð Þ~f {a. Thus, the negative slope of a linear

regression of the power spectrum on a log-log plot provides an

estimate of the scaling exponent a. Mathematically, such long-

memory processes exhibit system dynamics on all time scales (no

characteristic time scale), as suggested by the presence of

significant fluctuations across all frequencies. On the other hand,

state-space (ARMA) models exhibit faster (exponential) decay of

inter-trial correlations and a more complex form of power

spectrum. Evidence of power-law scaling, therefore, is particularly

interesting because it suggests that the underlying time series is,

statistically speaking, a process with long memory – longer than

that exhibited by a state-space (ARMA) process [32].

To determine if a power-law is the best description for the

power spectrum, these fits were compared against the alternative

hypothesis that the power spectrum resulted from a simple state-

space (ARMA) model of the form typically used to model motor

learning [14]. State-space (ARMA) models exhibit exponential

decay of inter-trial correlations, which can manifest as power

spectra that resemble low-pass filters – in particular, they are flat in

the low frequency range [33]. By approximating this as a

piecewise-linear function with an inflection point, it was possible

to test whether simple linear regressions or piecewise regressions

best described the power spectra of the data. We allowed the

fitting algorithm to select not only the slopes of the two halves of

the piecewise regression, but also the inflection point. Goodness-

of-fits were compared using the Bayesian Information Criterion

(BIC), which accounts for not only the model residuals (via the

computed log-likelihood of the model fit), but also the number of

free parameters and the sample size. Smaller BIC values indicate

better fits.

A modified bootstrap analysis was used to quantify how far into

the past these ‘‘long-term’’ correlations extended [34]. To assess

the minimum number of trials necessary to produce the observed

long-memory, the time series was divided into sections of length

DN and these sections were randomly shuffled, then recombined to

form a new time series. By doing this, only fluctuations on time

scales smaller than length DN are preserved. For example, for

DN = 1, the shuffled time series approximates a white-noise process

where each trial is independent, so this yields a value of a that is

nearly zero. For each shuffled time series, a was computed. This

process was repeated many times for each DN to yield an average

estimate of the shuffled a value, which was then compared to the a
value measured for the original data. The smallest DN for which a
no longer differs statistically from that of the original data can be

interpreted as the largest number of trials across which significant

correlations exist in the data; that is, DN quantifies the extent of

‘‘long memory.’’

The second technique for quantifying inter-trial correlations

examines temporal scaling. The Hurst exponent (H) measures the

extent to which the magnitude of a time series must be amplified to

remain statistically identical as the time scale changes. H can be

obtained using the ‘‘rescaled range’’ method [62]. The rescaled

range is found by dividing the range, R, of an integrated time series

by its standard deviation, S, for some duration T of the time series

(i.e., the data are divided into segments of length T). Then, H is the

slope on a log-log graph of the linear regression of the rescaled

range versus T. The rescaled range is related to the length of a

time series in a power law fashion, R/S ! TH, for certain time

series. H falls between zero and one; 0,H,0.5 indicates an anti-

persistent process where large values tend to follow small values

and vice versa, whereas 0.5,H,1 indicates a persistent process

where large values tend to follow large values and small values

follow small values. If H = 0.5, the process is completely random

(white noise). Certain processes may have either anti-persistent or

persistent trends present across multiple time scales, leading to the

presence of long-term correlations [63]. The scaling exponents H

and a are related by H = (1+a)/2 for a,1 (in the range of

fractional Gaussian noise; see [64]). Thus, the computation of both

exponents provides a means to check that the data are actually

scale-invariant processes that exhibit long-range dependence. It

has previously been demonstrated that certain types of dynamical

processes can result in improper computation of either the H or a
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scaling exponent, so computing both independently allows us to

verify these assessments of long-range dependence [31].

The ARFIMA model, for fitting and simulation of time
series with long memory

Modeling of time series that exhibit long-range dependence has

been greatly advanced by the development of the Autoregressive

Fractionally-Integrated Moving-Average (ARFIMA) process as an

extension of the standard ARMA model [65] (for additional

information, see Methods S1). An ARFIMA(p,d,q) process extends

the ARMA(p,q) model by introducing a parameter d that describes

how the time series is differenced prior to applying a conventional

ARMA model; it accounts for long-term correlations. In other

words, d reflects the order of any trend present in the data; for

example, d = 1 represents a linear trend. Allowing d to take on

fractional values – that is, by fractionally differencing the data

prior to modeling [66] – the ARFIMA process can model long-

range dependence. The value of d is related to the Hurst exponent

by the relation d = H – 0.5; appropriate d values fall in the range (-

0.5, 0.5). As with H, the value of d can indicate whether an

ARFIMA model is persistent or anti-persistent. By comparing this

value of d to values of H and a previously computed by

independent methods, it is possible to verify that the measured

scaling exponent is correct.

Data from an ARFIMA process were simulated using the Ox

ARFIMA package [67–69]. ARFIMA and ARMA models were

also fit to existing data using the same package. Model fits were

compared using the Bayesian Information Criterion (BIC) [45,70].

The BIC was used to assess whether ARMA models can capture

the statistical characteristics and system dynamics present, or if a

more complex ARFIMA model is better suited to describe the

data.

Supporting Information

Methods S1 ARFIMA models.
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