
A Monoclonal Antibody to O-Acetyl-GD2 Ganglioside
and Not to GD2 Shows Potent Anti-Tumor Activity
without Peripheral Nervous System Cross-Reactivity
Nidia Alvarez-Rueda1.¤, Ariane Desselle1., Denis Cochonneau1, Tanguy Chaumette1, Béatrice
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Abstract

Background: Monoclonal antibodies (mAb) against GD2 ganglioside have been shown to be effective for the treatment of
neuroblastoma. Beneficial actions are, however, associated with generalized pain due to the binding of anti- GD2 mAbs to
peripheral nerve fibers followed by complement activation. Neuroblastoma cells that express GD2 also express its O-acetyl
derivative, O-acetyl- GD2 ganglioside (OAcGD2). Hence, we investigated the distribution of OAcGD2 in human tissues using
mAb 8B6 to study the cross-reactivity of mAb 8B6 with human tissues.

Methodology/Principal Findings: The distribution of OAcGD2 was performed in normal and malignant tissues using an
immunoperoxydase technique. Anti-tumor properties of mAb 8B6 were studied in vitro and in vivo in a transplanted tumor
model in mice. We found that OAcGD2 is not expressed by peripheral nerve fibers. Furthermore, we demonstrated that mAb
8B6 was very effective in the in vitro and in vivo suppression of the growth of tumor cells. Importantly, mAb 8B6 anti-tumor
efficacy was comparable to that of mAb 14G2a specific to GD2.

Conclusion/Significance: Development of therapeutic antibodies specific to OAcGD2 may offer treatment options with
reduced adverse side effects, thereby allowing dose escalation of antibodies.
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Sciences Pharmaceutiques et Biologiques, France

Introduction

Neuroblastoma is a cancer of the sympathetic nervous system

that is responsible for 12% of deaths associated with cancer in

children under 15 years of age [1]. Despite advances in the

treatment of low- to intermediate-risk neuroblastoma, outcomes

for patients diagnosed with a high-risk phenotype characterized by

widespread dissemination of the cancer remains poor. Patients

undergo relapse and ultimately die from the tumor in spite of the

standard aggressive treatment, which includes surgery, radiation,

and/or myeloablative chemotherapy with stem cell rescue,

followed by 13-cis-retinoic acid [2]. Thus, once remission is

achieved, the major obstacle to a cure is residual chemotherapy-

refractory disease that eludes current methods of detection [3].

One of the most promising approaches for increasing the

efficiency of standard therapy in this case involves anti-ganglioside

GD2 immunotherapy [4]. GD2 ganglioside is an acidic glyco-

sphingolipid that is abundantly expressed on the cell surface of

tumor cells of neuroectodermic origin such as neuroblastoma [5].

In normal tissue, GD2 expression is largely limited to neurons, skin

melanocytes and peripheral nerve fibers [6,7], making it well

suited for targeted antitumor therapy. The rationale for passive

immunotherapy with anti-GD2 mAbs is supported by their anti-

tumor properties. Preclinical studies have shown that anti-GD2

mAbs may inhibit tumor cell growth via direct cell death induction

[8]. In addition, anti-GD2 mAbs can mediate tumor cell

destruction through antibody-dependent cellular cytotoxicity

(ADCC) and complement cell cytotoxicity (CDC) [9,10]. Inter-
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estingly, GD2 has recently been ranked 12th in priority of all

clinical antigens by an NCI workshop [11].

Several anti-GD2 antibodies have been developed for clinical

use over the past 2 decades, two of which are under evaluation in

the clinical setting: ch14.18 [4] and 3F8 [12]. 3F8 is a completely

murine antibody and ch14.18 is a human–mouse chimeric

construct consisting of variable regions derived from the murine

anti-GD2 antibody 14G2a and of constant regions of heavy and

light chains from a human IgG1 molecule. A recent phase III trial

has shown that a combination of anti-GD2 ch14.18 antibody and

cytokines with the standard therapy significantly improved

outcome [4]. Although these results are very encouraging, one

of the major drawbacks of anti-GD2 mAbs is their toxicity. The

infusion is frequently associated with severe pain, changes in

cardiovascular tone, fever and complement depletion [13,14].

Furthermore subsequent to treatment with anti-GD2 monoclonal

antibody some patients have developed sensorimotor polyneurop-

athy [15]. These neurotoxic toxicities are most likely the result of

mAb recognition of GD2 on pituitary gland and peripheral nerves

and complement activation [6]. Hence, they limit the dose of anti-

GD2 mAbs that can be given and therefore its clinical efficacy.

In an effort to increase the therapeutic index of ch14.18, a

humanized antibody was recently designed in which the Fc region

was mutated in the CH2 domain to no longer engage C1q. The

resultant antibody, hu14.18 K322A, retained potent ADCC

activity against GD2-expressing tumor with impaired complement

activation in vitro, and, reduced neurotoxic side effects in rat [16].

However, since it still retains its binding activity to peripheral

nerve fibers, this format would not be suitable for developing

immunotherapeutic agents by conjugation to toxins, radionuclides

or other effector molecules.

In our laboratory, several anti-disialo-gangliosides antibodies

have been generated that recognize GD2, GD3 and acetylated

GD2 and GD3. One of these antibodies, mAb 8B6, was shown to

be specific for the O-acetylated derivative of GD2 (OAcGD2) with

no cross-reaction with GD2 [17] by thin layer chromatography

(TLC) immunostaining. OAcGD2 is concomitantly expressed by

GD2-positive tumor cells [18,19]. This antibody, mAb 8B6, was

not found to cross react with GD3, acetylated GD3 or other

gangliosides [17]. This prompted us to investigate the distribution

of OAcGD2 in human tissues. In contrast to GD2, OAcGD2 is not

expressed by human peripheral nerve fibers, suggesting that anti-

OAcGD2 8B6 antibody has the potential to be less toxic than anti-

GD2 therapeutic antibodies. In addition, mAb 8B6 is able to

inhibit tumor cells growth in vitro and in vivo. Interestingly, the

anti-tumor activity is comparable to anti-GD2 mAb 14G2a. These

results highlight the use of antibodies that target specifically

OAcGD2 to avoid the side effects of mAbs to GD2 in patients.

Results

Reactivity of mAb 8B6 with peripheral nerves and other
different normal tissues

Peripheral Nerves.. Binding of mAbs specific for GD2 to

peripheral nerves with subsequent activation of the complement

cascade is suspected to induce toxic effects when they are

administrated in patients. This prompted us to study the

reactivity of anti-OAcGD2 mAb 8B6 against peripheral nerves

with an immunoperoxydase technique. Example of results

obtained on peripheral nerves and neuroblastomas are shown

in Fig. 1 B.2. When anti-OAcGD2 mAb 8B6 was tested on all of

the 12 different samples, no labeling was present. Axons were

negative. By contrast, the sections of all the 12 different samples

stained with anti-GD2 mAb 14G2a showed strong positive

staining of the nerve fibers as shown in Fig. 1-B.3. The mouse

isotype control antibody was also negative (Fig. 1 B.1). These

data show that mAb 8B6 do not bind to peripheral nerves and

suggest that antibodies specific to OAcGD2 may offer new

treatment options with reduced adverse side-effect compared to

anti-GD2 mAbs. Five other representative results are depicted in

Fig. S1.

Other Normal Tissues. We next evaluated the reactivity

with other human tissues. Table 1 summarizes the reaction pattern

obtained when mAb 8B6 was tested against the 32 normal tissues

recommended by the FDA. Peripheral blood erythrocytes and

leukocytes, bladder, breast, brain cortex, fallopian tube, eye, heart,

liver, pituitary (Fig. S2), ovary, pancreas, prostatic epithelium, skin,

spleen, testis, thymus, ureter, vascular endothelium and smooth

muscle, nerves, and uterine cervix, endometrium, and myometrium

tissues were all negative. In the adrenal, the zona glomerulosa and

fasciculata were negative while the zona reticularis showed faint

cytoplasmic staining and moderate granular intracellular staining

(Fig. S2). There was also slight reactivity with Purkinje cells and the

Bergmann glia in the cerebellum (Fig. S2). Antibody 8B6 reacted

with lymph node germinal center cells (Fig. S2). In the bone

marrow, antibody 8B6 did not show any binding to the erythroid,

myeloid, and megakaryocyte series. Occasional macrophages

showed moderate granular cytoplasmic staining (Fig. S2). Anti-

body 8B6 also reacted faintly with the dorsal horns in the spinal

cord, and subsets of thyroid follicular epithelial cells (Fig. S2). These

data indicated that mAb 8B6 presents a very interesting safety

reactivity profile for its clinical use.

Tumor tissues. OAcGD2 was originally isolated from

neuroectodermic tumors such as neuroblastoma and melanoma

[18,19]. We, therefore, studied the binding activity of mAb 8B6 to

several human malignant tissues (Table 2). Table 2 summaries

mAb 8B6 immunoreactivity on tumor samples. As mentioned

above, an example of neuroblastoma tumor section stained by

mAb 8B6 is shown in Fig. 1. Other examples of neuroblastomas

are depicted in Fig. S3 and other OAcGD2-expressing tumors are

shown in Fig. S4. By IHC analysis, mAb 8B6 bound to 12/12

neuroblastomas, 3/4 small cell lung carcinoma and 3/4

melanomas. In positive tumors, 100% of tumor cells in

neuroblastomas were stained (Fig. S3), 75% for small cell lung

carcinomas, and 50% for melanomas. Staining was strongly

membranous and also faintly cytoplasmic (Fig. S4). Tumor tissues

from patients with pancreatic carcinomas (n = 5) were negative.

Ganglioside OAcGD2 expression was also evidenced in the human

IMR32 neuroblastoma passaged in nude mice, the mouse EL4 T-

lymphoma grafted in C57Bl/6 mice, and the mouse NXS2

neuroblastoma grafted in A/J mice (data not shown).

Binding of mAb 8B6 to GD2-expressing cell line
Several groups have shown that tumor cells that express GD2

ganglioside also express OAcGD2 [18,19,20]. The extent to which

mAb 8B6 reacted with several types of human and mouse tumor

cell lines was determined by flow cytometry analysis. All cell types

that expressed GD2 ganglioside were found to also express

OAcGD2. These data were confirmed by analysis of the tumor cell

ganglioside content by immuno-thin-layer chromatography using

mAbs 8B6 and 14G2a (data not shown). It should be noted that in

these experiments, mAb 14G2a showed a slight cross reactivity

against OAcGD2 in agreement with a previous report [18]. We

next calculated the number of OAcGD2 molecules and of 14G2a’s

epitopes present at the cell surface by Scatchard analysis using
125I-labeled mAb 8B6 and 125I-labeled mAb 14G2a respectively.

As summarized in Table 3, cell lines revealed different levels in the

number of mAb binding sites. EL4, NXS2 and IMR32 cell lines

Anti-Tumor Antibody Specific for O-Acetyl-GD2
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expressed large amounts of OAcGD2 with mAb 8B6 antibody site

numbers ranging from 0.56106 to 5.56106 sites/cell. The amount

of 14G2a binding sites was found to be comparable with 0.76106

sites/EL4 cell, 5.36106 sites/NXS2 cell and 126106 sites/IMR32

cell. The H82 cell line showed an intermediary binding site

number of 0.16106 sites/cell for OAcGD2 and GD2. The

OVCAR-3 and U87MG cells showed less than 56104 sites/cell,

whereas Neuro2a cells express neither OAcGD2 nor GD2

ganglioside. These data confirm the overexpression at the cell

surface of ganglioside OAcGD2 on numerous GD2-expressing

tumor cell lines. The affinity constants of mAbs 8B6 and 14G2a

were also calculated. The KD value of mAb 8B6 for OAcGD2 was

found to be 32 nM and of mAb 14G2a’s KD value for GD2 was

calculated to be 49 nM.

Reduction of tumor cell viability in vitro
Since in vitro cell culture experiments have shown that various

anti-GD2 mAbs inhibit tumor cell growth by directly inducing

apoptosis [8,21,22], we studied whether the mAb 8B6 displayed

the same effects on tumor cell viability. To test for the antitumor

activity of mAb 8B6, we choose the EL4 cell line because it is

tumorigenic in syngeneic immunocompetent C57Bl/6 mice and

because it was used previously in many preclinical studies with

anti-GD2 mAbs [23]. Cells were incubated with either mAb 8B6

or mAb 14G2a over a period of 72 hours. Cell viability was

determined by MTT assay. The control 4F6 antibody and the

Neuro 2a cell line were included to ensure that the observed result

was antigen-specific. The inhibitory effect on EL4 cell viability of

both mAbs 8B6 and 14G2a was dose- and time-dependant (data

not shown) and became statistically significant at 24 hours post

treatment at 20 mg/ml (p,0.01) when compared to mAb 4F6-

treated cells (Fig 2A). As expected, neither mAb 8B6 nor mAb

14G2a suppressed the growth of the antigen-negative Neuro 2a

cell line (data not shown). Overall, these results show the ability of

mAb 8B6 to inhibit tumor cell viability, independently of

immunological mechanisms such as CDC and ADCC.

Figure 1. Expression of OAcGD2 and GD2 ganglioside antigens on peripheral nerves and neuroblastomas. An immunoperoxydase
assay was performed as described in Material and Methods. Strong immunostaining was detected on neuroblastoma cells (A) with either mAb 8B6 (2)
or mAb 14G2a (3). No staining was observed on peripheral nerves (B) with mAb 8B6 specific for OAcGD2 (2). Myelin sheaths in the peripheral nerves
(B) were strongly stained with mAb 14G2a against GD2 (3). The mouse IgG3 mAb negative control from AbD serotec (Oxford, UK) was used as a
negative control (1). Scale bar = 50 mm.
doi:10.1371/journal.pone.0025220.g001
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Antibody induced tumor cells apoptosis
To test the ability of both mAbs to induce programmed cell

death, we stained antigen-expressing tumor cells with Apo2.7

antibody, followed by flow cytometry analyses, and compared

results to control 4F6 antibody-treated cells. Apoptotic cells were

detected by flow cytometric analysis after staining bound mAbs to

either GD2 or OAcGD2 with a FITC-conjugated goat anti-mouse

IgG F(ab’)2 fragment goat anti-mouse IgG. This analysis dif-

ferentiates the antigen expressing cells from the apoptotic one. As

shown in Fig. 2B, addition of either mAb 8B6 or mAb 14G2a to

the EL4 culture medium resulted in an increased percentage of

double-positive cells. Encouragingly, the effects of mAb 8B6 and

mAb 14G2a were comparable with about 75% of antigen-positive

cells undergoing apoptosis. The above finding was confirmed by

fluorescence microscopy of EL4 cells after Hoechst 33342 staining.

Microscopic analysis clearly showed bright nuclear staining and

highly condensed nuclei with condensed and fragmented chro-

matin induced by treatment with either mAb 8B6 or mAb 14G2a

(data not shown). These results show the ability of mAb 8B6 to

induce apoptosis in OAcGD2–expressing cell lines similarly to

mAb 14G2a specific for GD2.

Antibody induced ADCC and CDC
The capacity mAb 8B6 or mAb 14G2a to induce CDC and

ADCC with EL4 cells in the presence of A-LACK cells and

complement from C56BL/6 mice was next evaluated. For CDC

assays, the OAcGD2/GD2-expressing target cells were incubated

with mAb 14G2a in the presence of diluted mouse serum as

complement. Cell death was assessed by the addition of the

Table 1. OAcGD2 expression on normal tissues defined by
immunohistology*.

Tissue
mAb 8B6 binding to frozen tissue
sections

Adrenal Negative{

Bladder Negative

Blood Cells Negative

Bone Marrow NegativeI

Brain, Cerebellum Negative{

Brain, Cortex Negative

Breast Negative

Colon Negative

Endothelium Negative

Eye Negative

Fallopian Tube Negative

Gastroinstestinal Tract Negative1

Heart Negative

Kidney, Cortex and Medulla Negative

Liver Negative

Lung Negative

Lymph Node NegativeII

Ovary Negative

Pancreas Negative

Parathyroid Negative

Pituitary Negative

Placenta Negative

Prostate Negative

Skeletal Muscle Negative

Skin Negative

Spinal Cord Negative**

Spleen Negative

Testis Negative

Thymus Negative

Thyroid Negative{{

Ureter Negative

Uteris, Cervix Negative

Uterus, endometrium

*Determined by immunoperoxydase assay using mAb 8B6 as described in
Material and Methods. The number of each tissue section tested ranged from 2
to 3.
{The zona reticularis showed faint cytoplasmic staining and moderate granular
intracellular staining;

IOccasional macrophages were positive
{the Purkinje Neurons were faintly positive;
1the epithelium apical surface showed staining similar to that of the isotype
control antibody;

II;the germinal centers of lymphoid follicles showed moderate to strong
stainning;

**the gray matter in the dorsal horns showed moderate staining;
{{the follicular epithelium showed faint cytoplasmic staining.
doi:10.1371/journal.pone.0025220.t001

Table 2. Presence of OAcGD2 in human tumors determined
by immunoperoxydase assays*.

Tumor tissue

# of positive tumor
tissues / # of tumor
tissues tested

% of positive cells in
OAcGD2-positive
tumors

Neuroblastoma 12/12 100%

Melanoma 3/4 50%

Small Cell Lung
Carcinoma

3/4 75%

Renal Carcinoma 1/3 33%

Ovarian Carcinoma 0/5 0%

Pancreatic Carcinoma 0/5 0%

*Using mAb 8B6 as described in Material and Methods.
doi:10.1371/journal.pone.0025220.t002

Table 3. Binding properties of mAbs 8B6 and 14G2a on
tumor cell lines*.

Origin Cell line

OAcGD2
expression
(6106 /cell)

GD2
expression
(6106 /cell)

Human

Neuroblastoma IMR32 5.5 12.6

Small cell lung carcinoma NCI-H69 0.16 0.19

Ovarina carcinoma OVCAR-3 0.02 0.04

Mouse

T lymphoma EL4 0.53 0.74

Neuroblastoma NXS2 0.52 1.3

Neuro 2a 0 0

*Determined by Scatchard analyses using 125I-labelled mAb 8B6 or 125I-labelled
mAb 14G2a.
doi:10.1371/journal.pone.0025220.t003
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viability probe propidium iodide. As shown in Fig. 3A, neither

mAb 8B6 nor mAb 14G2a mediated CDC on EL4 cells in the

presence of C57BL/6 mouse complement (Fig. 3A). This result

was not surprising because EL4 cell express the rodent inhibitor of

complement activation Crry that protects EL4 cells from

complement deposition [10]. Therefore, mAb 8B6 CDC testing

was performed with the NXS2 cells. By contrast to EL4 cells, an

efficient CDC was observed when NXS2 cells were used (Fig. 3B).

Specific lysis achieved maximum values of 36.861.4% when mAb

14G2a was used but only 18.861.9% with mAb 8B6. Cytotoxicity

correlated directly with the concentration of antibody. Specificity

was demonstrated by comparing the CDC results of mAb 8B6 and

mAb 14G2a with non-specific controls using anti-GD3 mAb,

which showed only background lysis. Specificity was also

demonstrated with the OAcGD2/GD2 negative Neuro 2A cells

where both mAb 8B6 and 14G2a were ineffective in activating

complement dependant cytotoxicity (Fig. 3C).

For ADCC reactions, the A-LAK cells generated from C57BL/

6 mice were composed by ,80% of CD3-negative, NK1.1-

positive NK cells and ,20% of CD3-positive, NK1.1-positive

NKT cells and the two populations expressed the Fcgamma RIII

receptor (data not shown). The target cells were labeled with a

membrane dye, PKH-26, to allow discrimination when incubated

with effector cells and antibody. Post-incubation, cell death within

the PKH-26 + target cell population was detected by the addition

of the viability probe TP3.

ADCC was observed with both mAb 8B6 and mAb 14G2a

against OAcGD2/GD2-expressing target cells when C57BL/6

mice A-LACK cells were used (Fig. 4A). However, mAb 14G2a

induced a more effective ADCC than mAb 8B6 with specific lysis

achieved maximum values of 29.561.4% with mAb 14G2a, but

only 11.562% with mAb 8B6 (Fig. 4A). This result was also

unsurprising since earlier works reported that mouse IgG3 mAbs

against ganglioside antigens are poorly effective in vitro in inducing

CDC and ADCC with mouse complement and mouse effector

cells [24,25]. On the other hand, EL4 cells were efficiently killed

when human NK effector cells were used with a maximum value

of specific lysis of 30% (Fig. S5). Cytotoxicity correlated directly

with the E/T ratio (Fig. 4A) and the antibody concentration

(Fig. 4D). The A-LAK killer efficiency was demonstrated with the

sensitive YAK-1 cells where specific lysis reached maximum value

of 51.461% (Fig. 4B). Specificity was demonstrated by comparing

the ADCC results of mAb 8B6 and mAb 14G2a with non-specific

controls using anti-GD3 mAb, which showed only background

lysis (Fig. 4A). Specificity was also demonstrated with the

OAcGD2/GD2 negative Neuro 2A cells where both mAb 8B6

and 14G2a were ineffective in activating complement dependant

cytotoxicity (Fig. 4C).

Analysis of in vivo antibody antitumor activity
We next evaluated whether mAb 8B6 could be used to treat

transplanted tumor. To determine if the OAcGD2 mAb 8B6 can

suppress tumor formation, we injected the EL4 syngeneic T-

lymphoma to C57BL/6 mice. Twenty four hours after tumor

inoculation, groups of 10 mice received 70 mg per dose of mAb

8B6, mAb 14G2a, irrelevant mAb, or PBS twice a week for 3

weeks. After tumor injection, we monitored the tumor volume and

the health of the mice. We measured the tumors biweekly and

euthanized the mice when their tumor size exceeded 2,000 mm3.

The survival curves were plotted according to the Kaplan-Meier

method and compared using the log-rank test. The results are

summarized in Fig. 5. In the vehicle-treated group and in the

irrelevant antibody-treated group all animals developed large

tumors that were detected within 2 weeks after the initial

inoculation, and had died by day 42. In contrast, 60% of the

mice that had received mAb 8B6 were still tumor free after 90 days

and were considered cured. In comparison, 70% of the mice were

still tumor free in the mAb 14G2a treated group. The effect of

mAb 8B6 treatment was not statistically different from that

obtained upon treatment with mAb 14G2a (p,0.05). The

Figure 2. Antibody 8B6 and mAb 14G2a each induce viability inhibition and apoptosis of EL4 cells. (A), EL4 cell line was treated for 24
hours with various concentrations of mAb 8B6 (N), mAb 14G2a (&) and a control 4F6 antibody (m). Viability was assessed as described in « Materials
and Methods » by adding the methylthiazole tetrazolium salt during 4 hours (MTT assay). Optical density was recorded at 570 nm. The data are
presented as the mean 6 SD for three independent experiments, each in triplicate. (B), On the treated right column, EL4 cells were exposed to either
50 mg/mL of mAb 8B6 or mAb 14G2a for 24 hours and then double stained with fluorescein-isothiocyanate-conjugated F(ab’)2 fragments of goat anti-
mouse IgG (H+L). After permeabilization, cells were stained with Apo2.7-PE antibody as described in "Materials and Methods". The percentage of
double-positive cell in the untreated EL4 tumor cells is indicated in the left column. Numbers in quadrants represent the percentage of cells in each
section of the quadrant.
doi:10.1371/journal.pone.0025220.g002
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specificity of mAb 8B6 therapy was demonstrated, since treatment

with an equivalent amount of non-specific IgG3 antibody was

completely ineffective. Notably, this control antibody binds to

GD3 ganglioside that is not express by EL4 cells (data not shown).

The anti-neuroblastoma efficacy of mAb 8B6 was also

determined in the NXS2 mouse neuroblastoma experimental

liver metastasis model developped by lode et al.[26] (Fig. S6). The

treatment of mice (n = 9) at the dose of 100 mg mAb 8B6/day for 5

days was dramatically effective in reducing neuroblastoma liver

metastasis, as indicated by a decrease of the liver weight from 2.8

g60.8 g (PBS) to 1.2 g60.8 g (mAb 8B6 treated mice) and

1.1 g60.2 g mAb 14G2a (p,0.001) (Fig. S5.A). The latter two

values were not statistically different from those found in healthy

control animals (p.0.1). The effect of mAb 8B6 treatment was not

statistically different from that obtained upon treatment with mAb

14G2a (p.0.5). The specificity of mAb 8B6 therapy was again

demonstrated, since treatment with an equivalent amount of non-

specific antibody was completely ineffective. Taken together, our

results show the potential therapeutic efficacy of mAb 8B6 for the

treatment of GD2/OAcGD2-expressing tumors.

Discussion

The most striking result of this study is that mAb 8B6, a mouse

monoclonal antibody specific for OAcGD2 that does not bind

GD2, did not show any reactivity at all with peripheral nerves. By

contrast, the anti-GD2 antibody 14G2a that was used as a positive

control stained peripheral nerve fibers, which are known to express

GD2 [6]. In these study, we selected an immunoperoxydase assay

performed on frozen tissue sections according to the FDA

guidelines [27]. In the absence of characterization of the O-

acetyl-transferase, the enzyme responsible for the biosynthesis of

O-acetylated ganglioside (for review see [28]), the results suggest

that GD2 is differentially acetylated in normal and tumor tissue

and that normal tissues expressing GD2 may not express

OAcGD2, as is known for GD3 (for a review see [29]). Antibody

8B6 did not stain or stain very weakly the normal tissues that must

be tested before clinical tested, as required by the FDA, with the

exception of lymph node germinal centers. This exception may be

considered as a positive control for the ICH study since GD2 has

been shown to be expressed in lymph node germinal centers [7].

As mentioned earlier, the therapeutic use of anti-GD2 mAbs is

associated with important neurotoxic effects in patients. The

proposed cause of this dose-limiting toxicity is the binding of anti-

GD2 antibodies to GD2 expressed on normal nerve cells followed

by complement deposition on the nerve cell surface [6]. Hence,

our data suggest that mAbs specific for OAcGD2 should be less

toxic because they do not bind to peripheral nerves, thereby

allowing dose escalation of antibodies. Some other side effects

observed in patients after anti-GD2 mAb infusions included

hematopoietic suppression [30] and a syndrome of inappropriate

antidiuretic hormone [6]. The immune recognition of GD2 on

mesenchymal stromal cells in the marrow microenvironment was

suggested to underlie the hematopoietic suppression and anti-GD2

mAb cross-reactivity with the posterior lobe of the pituitary gland

is believed to modulate the secretion of antidiuretic hormone

resulting in the induction of the syndrome of inappropriate

antidiuretic hormone secretion[6]. Interestingly, mAb 8B6 did not

show any binding to mesenchymal stromal cells in the bone

narrow nor to the posterior lobe of the pituitary gland. We also

examined the immunohistochemical OAcGD2 localization in a

number of malignant tissues and found that mAb 8B6 showed

strong reactivity with neuroectodermic tumor biopsy tissues, such

as melanoma and neuroblastoma similar to previous investigations

[18,19].

We further demonstrated the high expression of OAcGD2 at the

tumor cell surface by Scatchard analysis in vitro. In the 7 tested cell

lines, the average of sites/cell ranged from 50,000 sites/cell up to

56106 sites/cell. The expression level of OAcGD2 in cell lines was

first described based on extraction and thin layer chromatography

(TLC) or immune TLC [18,19]. These methods cannot

discriminate the membrane from intracellular OAcGD2 cell

content. Importantly, our data shows that the amount of OAcGD2

Figure 3. Activation of complement by mAb 8B6 and mAb
14G2a. Complement-dependent specific lysis was determined for the
EL4 cell line (A), the NXS2 cell line (B), and the OAcGD2/GD2-negative
Neuro 2A cells (C) as described in Material and Methods. Empty
columns, irrelevant antibody; black columns, mAb 8B6; grey columns,
mAb 14G2a.
doi:10.1371/journal.pone.0025220.g003
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molecules present at the cell surface is comparable, though lower,

to that of mAb 14G2a epitope. However, the number of GD2

molecules calculated here may be overestimated as previous

reports suggested that mAb 14G2a cross-reacts with OAcGD2

[18]. In agreement with this earlier study, we did see a slight cross-

reactivity of mAb 14G2a against OAcGD2 in immuno-TLC

experiments (data not shown). Scatchard analysis further showed

that mAb 8B6 and mAb 14G2a displayed equivalent binding

affinities for their respective epitopes that were within the range

anti-GD2 antibodies [21,24,31,32]. OAcGD2 expression was

confirmed on all of the 12 neuroblastoma tumor sections tested.

This is consistent with a previous study reported by Ye and

Cheung [19] that OAcGD2 is a naturally occurring GD2

derivative in neuroblastoma tumors.

We also showed that OAcGD2 is a pro-apoptotic constituent

activated on binding with hostile antibodies. Despite its high

expression at the tumor cell surface, the biological role of OAcGD2

has yet not been studied so far. The results presented here

demonstrate that OAcGD2 behaves very similarly to GD2 in

mediating apoptosis in the GD2/OAcGD2-expressing tumor cells

Figure 4. ADCC of mAb 8B6 and mAb 14G2a. (A) The A-LAK killer activity with mAb 8B6 and mAb 14G2a with EL4 target cells at the E/T ratio 12
to 1 (empty columns), 25 to 1 (grey columns), and at the E/T ratio 50 to 1 (black columns) as described in Material and Methods. (B) The A-LAK killer
efficiency in the ADCC assays was tested using the sensitive YAC-1 target cells. (C) ADCC activity with mAb 8B6 and mAb 14G2a against the OAcGD2/
GD2-negative Neuro 2A cells used as a negative control, at the E/T ratio 12 to 1 (empty columns), 25 to 1 (grey columns), and at the E/T ratio 50 to 1
(black columns). (D) ADCC mediated by mAb 8B6 (grey column) and mAb 14G2a (black column) with EL4 target cells at varying antibody
concentrations. The results were compared to the effect of equal amount of irrelevant antibody used as a negative control (n = 3).
doi:10.1371/journal.pone.0025220.g004
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and contrast with previous work on OAcGD3 functions in tumor

cell biology. O-Acetylation of GD3 prevents apoptosis in lymphoid

cells induced by various agents—including GD3 itself—and

therefore sustains tumor progression [33,34]. While OAcGD2

can transmit signals resulting in apoptosis, the precise mechanisms

induced by the binding of OAcGD2 antibody to OAcGD2-

expressing tumor cells leading to apoptosis requires further

investigation. In the case of GD2, initial indications suggest that

anti-GD2 mAbs induce apoptosis of SCLC cells by interfering

with the association of GD2 ganglioside to ß1-integrin and focal

adhesion kinase [35]. The OAcGD2-triggered apoptosis may

follow the same pathway, for the ß1-integrin binding site to GD2

might exclude the outer sialic acid that becomes O-acetylated in

OAcGD2. However, since the addition of an O-acetyl ester to sialic

acid changes its structural properties and affects its binding

specificity, the association between OAcGD2 and integrin remains

open.

Finally, we reported for the first time that passive immunother-

apy with mAb 8B6 to OAcGD2 is effective in suppressing the

growth of OAcGD2-expressing tumor in two animal models. We

used the EL4 murine lymphoma that is syngeneic in C57BL/6

mice and the murine NXS2 neuroblastoma that is syngeneic in A/

J mice. These two cell lines express GD2 and as demonstrated here

OAcGD2. These two cell lines were retained because they were

previously used in the anti-GD2 antibodies preclinical setting

[9,23]. Our results further demonstrate that the anti-tumor

efficacy of mAb 8B6 is comparable to that of anti-GD2 mAb

14G2a, which has undergone clinical evaluation with positive

results [14,15,36]. Antibody 14G2a is also the parental mouse

antibody of human-mouse chimeric ch14.18 that has recently

shown clinical efficacy in a phase III trial [4]. ADCC has been

proposed as the most critical effector function in vivo for mAbs

against GD2 gangliosides [9,10]. In our experiments we used mAb

8B6 which is a mouse IgG3. Despite past controversy about the

presence or the absence of a mouse IgG3 Fc-receptor, this isotype

is now well known for its inability to promote ADCC with mouse

effector cells both in vitro and as in vivo, as it barely binds to mouse

FcgammaRs [37,38]. Then, as expected, mAb 8B6 failed to show

any ADCC activity in the presence of mouse spleen cells, but was

effective in directing ADCC against EL4 cell line with human NK

cells. Moreover, our data indicate here that the EL4 cells used in

our experiments were resistant to mouse complement. This finding

is in agreement with Imai et al. [10], who have reported that EL4

cells express the rodent inhibitor of complement activation Crry

that inhibits complement activation at the C3 activation step,

protecting EL4 cells from complement deposition and lysis [10].

Interestingly, the absence of sensitivity to complement does not

appear to affect the anti-tumor effect of anti-GD2 mouse IgG

mAbs except at low antibody concentration in vivo [10]. The

absence of Fc-directed CDC/ADCC functions requirement for

anti-GD2 mAb anti-tumor efficacy in vivo was also suggested by

Mujoo et al. [24] who studied the anti-tumor properties of mouse

IgG3 mAb 14.18 and its isotype switch variants. In their study,

mAb 14.18 was demonstrated to be as effective as mAb 14G2a in

suppressing neuroblastoma growth in mice and no correlation

could be drawn between the in vivo anti-tumor effects of these

antibodies and their in vitro functions such as directing ADCC

and CDC [24].

In as much as mAb 8B6 directs neither ADCC nor CDC with

EL4 cells when mouse immune effectors are used, the mechanism

whereby it mediates in vivo suppression of tumor growth in this

model is also most likely to involve its pro-apoptotic properties.

Although the mechanism remains to be elucidated in vivo, from a

clinical standpoint, the apoptosis inducing activity of mAb 8B6

specific for OAcGD2 evidenced here seems very promising when

applied to cancer therapy. Additional biological processes after

antibody binding to tumor cells such as CDC and ADCC have

been demonstrated in vivo. However, pro-apoptotic properties

without immune effector mechanisms may be important in the

treatment of tumors that have evolved complex mechanisms to

protect themselves from ADCC and CDC. We are currently

generating a human-mouse chimeric anti-OAcGD2 IgG1 form

mAb 8B6 in order to better define the role of immune effector

mechanisms involved in the anti-tumor properties of anti-

OAcGD2 antibodies. Whatever the effector mechanism(s) in-

volved, our results strongly support the clinical use of anti-

OAcGD2 mAbs. In contrast to anti-GD2 therapeutic antibodies,

they may offer an effective treatment option with reduced adverse

side effects, thereby allowing dose escalation of antibodies, and the

development of more potent immunoconjugates such as immu-

notoxines or radio-conjugates and immunocytokines. In addition

to neuroblastoma, melanoma, OAcGD2 is also expressed on

osteosarcomas, ovarian carcinomas [18,19,20] and, as reported

here, on small cell lung carcinomas, suggesting that anti-OAcGD2

immunotherapy is applicable to all these types of cancers. In all,

OAcGD2-expressing diseases account for ,7% of all death in the

US [39].

Materials and Methods

Cell culture
Cell lines were obtained from the American Type Culture

Collection (ATCC), except for the mouse neuroblastoma NXS2

cell line which was a courtesy of Dr. H. N. Lode (Universitätsklinikum

Greifswald, Greifswald, Germany) and the YAC-1 cells (courtesy of

B. Clemenceau, Inserm U. 892, Nantes, France). Murine T-

lymphoma EL4 cells were grown at 37uC in 5% CO2 in DMEM

with 10% heat-inactivated FCS, 100 units/mL penicillin, and

100 mg/mL streptomycin. Human neuroblastoma IMR32, human

glioma U87MG, human small cell lung cancer H82, human

ovarian adenocarcinoma OVCAR-3, murine lymphomaYAC-1,

and mouse neuroblastoma Neuro 2a cell lines were grown at 37uC
in 5% CO2 in RPMI 1640 with 10% heat-inactivated FCS,

100 units/mL penicillin, and 100 mg/mL streptomycin. The

mouse neuroblastoma NXS2 cell line was grown at 37uC in 5%

Figure 5. Survival of C57BL/6 mice inoculated with EL4 cells
treated with either 8B6 or 14G2a mAb. Mice (n = 10) were
inoculated with 104 EL4 cells subcutaneously and then treated with
either PBS or 70 mg of each antibody, twice weekly for 3 weeks. PBS (N),
mAb 8B6 (#), mAb 14G2a (,), control 4F6 antibody (%).
doi:10.1371/journal.pone.0025220.g005
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CO2 in DMEN with 10% heat-inactivated FCS, 100 units/mL

penicillin, and 100 mg/mL

Antibodies and serum
Anti-OAcGD2 mAb 8B6 (mouse IgG3, kappa) was obtained

previously in our laboratory [17]. An IgG3 antibody specific to

GD3 ganglioside (clone 4F6) was used as a negative control

(generously provided by Dr. Jacques Portoukalian, Department of

Dermatology, Edouard Herriot Hospital, University of Lyon,

France) [17]. Monoclonal antibodies 8B6 and 4F6 were purified

from hybridoma supernatants using Protein A affinity chroma-

tography. The purity of mAb preparations was verified by SDS-

PAGE analysis. Anti-disialoganglioside GD2 mAb 14G2a was

purchased from BD Biosciences (Franklin Lakes, NJ). The mouse

IgG3 mAb negative control from AbD serotec (Oxford, UK) was

used as a negative control in some experiments.

Human tissues reactivity of mAb 8B6
Portions of fresh peripheral nerves and malignant tissues were

provided by the Pathology department at the Centre Hospitalier

Universitaire, Nantes, France. Eight fragments of neuroblastoma

samples were provided by the Children’s Hospital Oakland

Research Institute Tissue Bank (Oakland, CA, USA). Fresh tissue

specimens were embedded in Tissue Tek-II O.C.T. (Miles,

Naperville, IL), snap frozen in isopentane in liquid nitrogen, and

stored at 270u C. Ten micrometer-sections were cut, fixed in

acetone, and stained with mAb 8B6 and mAb 14G2a respectively

for 1 hour. After rinsing, the APAAP complex (Dako) was applied.

Then, the bound mAb was detected with ImmPACT DAB

chromogen substrate solution (Vector Laboratories, Bulingore,

CA), which was used to produce a brown deposit. The mouse

IgG3 negative control reagent (AbD serotec) was used as a

negative control, and neuroblastomas were used as positive

control. The concentration of 2.5 mg/mL was selected for the

study. Slides were counter-stained with hematoxylin before

immunocytological evaluation. Staining was graded as positive

or negative according to the presence or absence of immunore-

activity, respectively.

The potential cross-reactivity of mAb 8B6 was also evaluated by

using an indirect immunoperoxydase assay on a panel of 32 tissues

from unrelated donors according to the FDA guidelines [27] and

on a panel of melanomas, small cell lung carcinomas, renal

carcinomas, ovarian carcinomas and pancreatic carcinomas. This

study was performed independently by Lifespan Biosciences

(Seattle, WA, USA). Tissues were stained with positive control

antibodies specific for CD31 and for vimentin to ensure that the

tissue antigens were preserved and accessible for immunohisto-

chemical analysis. Only tissues that were positive for CD31 and

vimentin staining were selected for mAb 8B6 immunoreactivity.

Anti-OAcGD2 8B6 mAb was used as the primary antibody, and

the principal detection system consisted of a Vector anti-mouse

secondary (Vector Laboratories), and a Vector ABC-AP kit

(Vector Laboratories) with a Vector Red substrate kit (Vector

laboratories), which was used to produce a fuchsia-colored deposit.

The mouse IgG3 negative control reagent (AbD serotec) was used

as a negative control. Slides were imaged with a DVC 1310C

digital camera coupled to a Nikon microscope. Images were stored

as TIFF files with Adobe Photoshop.

Flow-cytometric analysis
Cell surface OAcGD2- and GD2-expression on tumor cell lines

was assessed by indirect immunofluorescence. Tumor cells (56105

cells) were incubated with either mAb 8B6, mAb 14G2a or mAb

4F6 (control antibody), at 10 mg/mL for 30 minutes at 4uC in

0.1% BSA-PBS. After reaction with the fluorescein-isothiocyanate-

conjugated F(ab’)2 fragment of goat anti-mouse IgG (H+L) as a

second antibody (Jackson, Immunoresearch, Soham, UK) for

30 min at 4uC, cell fluorescence was analyzed using a FACScan

flow cytometer (BD Biosciences, San Jose, CA) and CellQuest

software (BD Biosciences).

Scatchard analysis
Monoclonal antibodies were labeled with iodine-125 (Perkin

Elmer, Billerica, MA) using the iodogen method and were purified

on a Sephadex PD10 column (Pharmacia Biotech, Uppsala,

Sweden). Binding assays were performed as previously described

[40]. Serial dilutions of labeled antibody were incubated for

1 hour at 4uC with 16106 cells. Cell-bound radioactivity was

separated from free antibody by centrifugation through a dibutyl

phthalate oil cushion in microfuge tubes. Cell Pellets and

supernatant activities were then separately measured using a

gamma counter (Wallac, Finland). Nonspecific binding, defined as

the cell-bound 125I-labeled antibody in the presence of a 100-fold

excess of unlabelled antibody, was subtracted at each concentra-

tion of labeled antibody. The binding data were analyzed using the

Prism software (GraphPad Prism Software, La Jolla, CA)

according to a one-site equilibrium binding equation.

Cell growth inhibition
Cell viability was measured using the MTT assay [41]. Briefly,

16105 cells suspended in 200 mL were incubated for 24 hours at

37uC, 5% CO2. Monoclonal antibodies were diluted in 100 mL of

specific medium and added to each well of 96-well microtiter

plates to give the final concentrations of 80, 60, 40, 20 and

10 mg/mL. After incubation for 24 hours at 37uC, 5% CO2,

10 mL of methylthiazole tetrazolium salt stock solution (5 mg/

mL, Sigma Aldrich, Saint Louis, MO) were added to each well

and the plates incubated at 37uC for 4 hours. Then, 100 mL of

10% Triton X-100 were added and the plates incubated for 10

minutes at 37uC for color development. Optical density was

recorded at 570 nm on a Multiskan reader (Thermo Electron,

Walthman, MA).

Apoptosis induction
Cells (16105 cells) were plated in 96-well microplates during

24 hours at 37uC 5% CO2 and then treated for 24 hours at 37uC
with 50 mg/mL of mAb 8B6, mAb 14G2a and control mAb,

respectively. After reaction, cells were incubated with fluorescein-

isothiocyanate-conjugated F(ab’)2 fragments of goat anti-mouse

IgG (Jackson) as described above. They were then permeabilized

with 100 mg/mL digitonin and stained for 30 min with Apo2.7-PE

conjugated antibody and analyzed by flow cytometry using a

FACScan flow cytometer and Flowjo6 software (BD Biosciences).

Apoptotic cells were analyzed on Apo2.7 (FL2) histograms and

compared to OAcGD2 positive and negative cell populations

determined by FITC staining (FL1).

Complement dependent cytotoxicity (CDC)
Aliquots of tumor cells (104 cells) were incubated with 80 mL of

antibody at various concentration in the presence of 20 mL of

mouse-serum as complement source for 1 hour at 37uC.

Cytotoxicity was determined within the tumor cell population

after addition of the viability probe propidium iodide (PI) using a

FACScan flow cytometer (BD Biosciences, San Jose, CA) and the

CellQuest software (BD Biosciences). The percentage of specific

lysis was calculated as: 1006(nonviable PI+ tumor cells)/(non

viable PI+ tumor cells + viable tumor cells).
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Antibody-dependent cell-mediated cytotoxicity (ADCC)
An ADCC assay was performed as reported previously [42].

Briefly, tumor cells were labeled with membrane dye PKH-26

(Sigma Aldrich) according to the manufacturer’s instructions.

Aliquots of the labeled cells were distributed into a 96-well

microtiter plate (16104 cells /100 mL) were incubated with 25 mL

of antibodies in 96-well microtiter plates. Adherent lymphokine-

activated killer (A-LACK) cells isolated from spleen cells of C57BL/

6 mice were used as effector cells [43]. Fifty mL of effector cell

suspension at the indicated effector-to-target (E/T ratio) were added

to the tumor cells and incubated for 4 hours at 37uC. Cell death

within the PKH-26+ target cell population was then assessed by the

addition of TO-PRO-3 iodide (TP3) (Invitrogen) [44]. The double-

positive dead target cell population was detected by flow cytometry

analysis using a FACScan flow cytometer (BD Biosciences) and the

CellQuest software (BD Biosciences). The percentage of specific

lysis was calculated as: 1006(nonviable TP3+, PKH26+ double-

positive target cells)/(non viable double-positive target cells + viable

PKH26+ target cells). The lysis of the NK-sensitive mouse T cell

lymphoma YAC-1 was used as an indicator of A-LAK activity [45].

Murine tumor model
C57BL/6 mice, aged between 8 and 12 weeks, were purchased

from Charles River (L’Arbresle, France). Mice were housed at the

animal facility of Inserm U892 (Nantes, France). This facility is

approved by the French Association for Accreditation of Animal

Care Laboratories and is maintained in accordance with the

regulations and standards of Inserm Institute and the French

Department of Agriculture. The EL4 cell line is a syngeneic

murine lymphoma in C57BL/6 mice that was previously used by

Imai et al. as a target for anti-GD2 antibodies [10]. Mice were

injected subcutaneously with EL4 cells (16104 cells) in the right

flank. Twenty four hours after tumor inoculation, groups of 10

mice received 70 mg per dose of 8B6 mAb, 14G2a mAb, control

IgG3 mAb, or PBS twice a week for 3 weeks. Tumor volume and

the health of the mice were monitored. After grafts became visible,

the sizes of tumors were determined three times a week by

externally measuring the tumors in two dimensions. Tumor

volume was calculated according to the equation: V = (L6W2)

60.5, where L is the length and W the width of a tumor [46]. For

ethical considerations, mice had to be euthanized once tumor

volume had reached 2,000 mm3, which was considered the end

point for each individual mouse.

Statistical analysis
Statistical analysis was performed using Prism software

(GraphPad Prism Software). Data are shown as mean 6 standard

error. Differences between un-treated and treated groups in the in

vitro experiences were analyzed by Student’ t test with significance

at p,0.05.

Supporting Information

Figure S1 In Fig. S1, five other representative examples
of peripheral nerve stained by either anti-GD2 mAb
14G2a (1) or anti-OAcGD2 mAb 8B6 (2) are shown. While

positive staining of the myelin sheaths—evidenced by brown

coloration—is found in all sample stained with anti-GD2 mAb

14G2a, no binding of anti-OAcGD2 mAb 8B6 is detected. Scale

bar = 50 mm.

(TIF)

Figure S2 The synopsis of mAb 8B6 cross-reactivity
with human normal tissues is provided in Table 1. In Fig.

S2, representative results of mAb 8B6 (1) human tissue cross-

reactivity with the zona reticularis of the adrenal (A), the germinal

center in the lymph node (B), the Purkinje cells in the brain

cerebellum (C), the epithelium apical surface of the small intestine

(D), the follicular epithelium in the thyroid (E), and the gray matter

in the dorsal horns (F) are shown. The tissue cross reactivity study

was performed using an immunoperoxydase assay as indicated in

the ‘‘Material and Methods’’ section. The mouse IgG3 mAb

negative control from AbD serotec (Oxford, UK) was used as a

negative control (2). Representative positive staining of mAb 8B6

on melanoma (1) representative negative staining of control IgG3

(2) on melanoma cells (G). Photos are reproduced with the

permission of Lifespan Biosciences. Magnification 4006.

(TIF)

Figure S3 While Table 2 summarize the expression of
OAcGD2 on human neuroblastoma tumors, Fig. S4
shows 8 representative examples of OAcGD2 expression
on neuroblastomas detected by an immunoperoxydase
assay performed with mAb 8B6 as described in the
Material and Methods Section. 1, representative positive

staining obtained with anti-GD2 mAb; 2, representative negative

staining obtained with the mouse IgG3 mAb negative control (AbD

Serotec); 3 to 10, representative diversity patterns from neuroblas-

toma samples. Antibody 8B6 showed moderate to strong positive

staining with all neuroblastomas. The percentage of tumor cells that

were positive was 100% and staining was both membranous and

cytoplasmic. When the corresponding normal cell types were

present in the same cancer samples, they were negative. All samples

were also positively stained with mAb 14G2a and negative with

irrelevant control mAb (data not shown). Scale bar = 100 mm.

(TIF)

Figure S4 While Table 2 summarize the expression of
OAcGD2 on human tumor, in Fig. S4 representative
example of expression of mAb 8B6 epitope in melanoma
cells (A) and small cell lung carcinoma cells (C) are
shown. Skin (B) and lung (D) samples from control patients

without cancer showed negative staining in the precursor cell type.

The samples were stained with mAb 8B6 using an immunoper-

oxydase assay performed as described in the ‘‘Material and

Methods’’ section. The mouse IgG3 mAb negative control from

AbD serotec (Oxford, UK) was used as a negative control (data not

shown). Photos are reproduced with the permission of Lifespan

Biosciences. Magnification 4006.

(TIF)

Figure S5 While Fig. 4 shows that mAb 8B6 ADCC
activity against mouse EL4 target cells was poorly
effective with mouse effector cells, an efficient killer
activity of human NK cells with mAb 8B6 is depicted in
Fig. S5. ADCC assays were performed at the E/T ratio 50 to 1

using mAb 8B6 (10 mg/ml, black column). Antibody 8B6 specific

antibody-dependent lysis occurred in a dose-dependent fashion.

Specificity was demonstrated by comparing the ADCC results of

mAb 8B6 with non-specific controls using anti-GD3 mAb (10 mg/

ml, empty column), which did not show any significant activity,

n = 3.

(TIF)

Figure S6 While Fig. 5 shows the anti-tumor efficacy of
mAb 8B6 against EL4 lymphoma cells in C57BL/6 mice,
the anti-neuroblastoma activity of mAb 8B6 against
established experimental liver metastasis are depicted
in Fig. S5. Mice (n = 9) were inoculated with 0.256106 NXS2

cells by i.v. injection and then treated 3 days latter with 5 daily i.v.
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injections of either 100 mg mAb 8B6, 14G2a and irrelevant

antibody. Mice were sacrificed 28 days after tumor cell

inoculation. (A) The liver weight was determined on fresh

specimen. The y-axis starts at 0.8 g corresponding to the average

normal liver weight. The differences in average liver weights

between experimental groups treated with mAb 8B6 and mAb

14G2a and all control groups (PBS, control antibody) was

statistically significant (* p,0.001). (B) Representative liver

specimen of each experimental group (n = 9) are shown. 1, PBS;

2, control IgG3, 3, mAb 8B6; 4, mAb 14G2a. Arrows indicate the

location of macroscopic liver metastases.

(TIF)
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