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Abstract

Background: A major area of effort in current genomics is to distinguish mutations that are functionally neutral from those
that contribute to disease. Single Nucleotide Polymorphisms (SNPs) are amino acid substitutions that currently account for
approximately half of the known gene lesions responsible for human inherited diseases. As a result, the prediction of non-
synonymous SNPs (nsSNPs) that affect protein functions and relate to disease is an important task.

Principal Findings: In this study, we performed a comprehensive analysis of deleterious SNPs at both functional and
structural level in the respective genes associated with red blood cell metabolism disorders using bioinformatics tools. We
analyzed the variants in Glucose-6-phosphate dehydrogenase (G6PD) and isoforms of Pyruvate Kinase (PKLR & PKM2) genes
responsible for major red blood cell disorders. Deleterious nsSNPs were categorized based on empirical rule and support
vector machine based methods to predict the impact on protein functions. Furthermore, we modeled mutant proteins and
compared them with the native protein for evaluation of protein structure stability.

Significance: We argue here that bioinformatics tools can play an important role in addressing the complexity of the
underlying genetic basis of Red Blood Cell disorders. Based on our investigation, we report here the potential candidate
SNPs, for future studies in human Red Blood Cell disorders. Current study also demonstrates the presence of other
deleterious mutations and also endorses with in vivo experimental studies. Our approach will present the application of
computational tools in understanding functional variation from the perspective of structure, expression, evolution and
phenotype.
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Introduction

With rapid advances in high-throughput genotyping and next

generation sequencing technologies, a vast amount of genetic

variation has been discovered and deposited in databases, with

much more still to come [1]. One of the major challenges in the

analysis of human genetic variation is to distinguish functional from

non-functional variants. The simplest form of genetic variation is

the substitution of a single nucleotide coined as ‘‘Single Nucleotide

Polymorphism’’ (SNPs). SNPs occur at a frequency of approxi-

mately to every 100 to 300 base pairs throughout the genome [2].

SNPs that alter the encoded amino acids and might be subjected to

natural selection are called non-synonymous SNPs (nsSNPs) and on

the other hand, synonymous SNPs do not alter encoded amino acids

and are not subjected to natural selection [3]. There is a need to

effectively and efficiently identify functionally important nsSNPs

which may be deleterious or disease causing and to identify their

molecular effects. The prediction of phenotype of nsSNPs by

computational analysis may provide a good way to explore the

function of nsSNPs and its relationship with susceptibility to disease.

For this purpose, a number of bioinformatics tools, based on recent

findings from evolutionary biology (amino acid sequence), protein

structure research and computational biology may provide useful

information in assessing the functional importance of SNPs [4–14].

Currently, most molecular studies are focusing on SNPs located in

coding and regulatory regions, yet many of these studies have been

unable to detect significant associations between SNPs and disease

susceptibility. To develop a coherent approach for prioritizing SNP

selection for genotyping in molecular studies, we applied an

evolutionary perspective to SNP screening. Our hypothesis was

that, amino acids conserved across species are more likely to be

functionally significant. Therefore, SNPs that change these amino

acids might be more likely to be associated with disease susceptibility

[15]. It is becoming clear that application of the molecular

evolutionary approach may be a powerful tool for prioritizing

SNPs to be genotyped in future molecular epidemiological studies

[16–18]. Therefore, our analysis will provide useful information in

selecting SNPs that are likely to have potential functional impact

and ultimately contribute to an individual’s disease susceptibility.
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In recent years, there has been considerable interest in the

analysis of Glucose-6-phosphate dehydrogenase (G6PD) and

Pyruvate Kinase (PK) genes for understanding the genetics of

Red Blood Cell (RBC) disorders [19–21]. Effect of kinetic

parameters on over all cellular functions of G6PD and PK genes

due to change in single nucleotide polymorphism related to human

RBC metabolism disorders have already been done [22], [23].

Deficiency in G6PD and PK genes represents one of the most

genetically heterogeneous disorders which lead to chronic anemia

with variable severity. G6PD deficiency is a sex-linked trait with the

gene located on the X-chromosome (band Xq28) about one

million base pairs from the telomere end and spans 18 kb. It

consists of 13 exons and encodes a mature protein of 530 amino

acids [24]. PK deficiency is an erythrocyte enzymopathy involving

the Embden-Meyerhof pathway of anaerobic glycolysis. PK exists

as four isoenzymes namely M1, M2, L and R [25]. PK (L/R) is

located on gene locus 1q21 composed of 2 exons spanning 9.5 kb

[26] mainly found in liver, normoblasts, reticulocytes, and

erythrocytes. PK (M1/M2) is located on gene locus 15q22

composed of 12 exons spanning 32 kb [27] mainly found in

striated muscle, brain, fetus, leukocytes, platelets, lungs, spleen,

kidneys, adipose tissue etc. In vivo and in vitro studies on the

function of nsSNPs have found that genetic mutations in G6PD

and PK genes are responsible for RBC metabolism disorders [28–

38]. Validating the known phenotype information gives us a

chance to inspect the prediction accuracy. This provides a great

opportunity to validate these bioinformatics tools by correlating

predicted SNP functional scores to findings from case-control

studies [39], [40].

Over the past few years, quite a lot of studies have attempted to

identify deleterious nsSNPs within protein-coding sequences,

based on sequence information and structural attributes. These

methods predict deleterious nsSNPs based on physicochemical

properties [41], protein structure [42]–[44], and cross species

conservation [18], [42], [43]. The structure of a protein can

change in various ways due to the biochemical differences of the

amino acid variant (acidic, basic, or hydrophobic), and by the

location of the variant in the protein sequence (by affecting tertiary

or quaternary structure or the active site where substrate binds). In

this light, we employed two diverse approaches in computational

analysis of deleterious nsSNPs namely Empirical rule based

method and Support Vector Method (SVM). These approaches

use alternative classification methods to decide which of the

nsSNPs may have deleterious or neutral phenotypes. Empirical

rule based method determines parameters manually based on the

knowledge of an expert. It is based on the description of SNP in

terms of a set of attributes, positional residue variation in sequence

alignments, and 3D (three dimensional) structure of the protein

and also based on knowledge of the functional site of the proteins.

Whereas in SVM approaches, a set of trained data and trained

attributes are required to forecast precisely the effects of amino

acid substitutions on various protein properties such as protein

stability, protein secondary structures, solvent accessibility of

residues, residue-residue interactions and protein 3D structures

[45]. Hence, we proposed a combinatorial approach using the

Empirical rule based and SVM based method to increase the

performance of the prediction programs. Knowledge of the 3D

structure of a gene product is of major assistance in understanding

the function within the cell and its role in causing disease. Proteins

with mutations do not always have 3D structures that are analyzed

and deposited in Protein data bank (PDB). Therefore, it is

necessary to construct 3D models by locating the mutation in 3D

structures. This is a simple way of detecting what kind of adverse

effects that a mutation can have on a protein. To identify and

characterize deleterious mutations in this study, (i) we first

surveyed previous publications which genotyped SNPs in case-

control studies of G6PD and PK deficiency [28–38], (ii) analysis of

the deleterious nsSNPs was done using Sorting intolerant from

tolerant (SIFT) [5], Polymorphism Phenotyping version 1 (Poly-

Phen) [14], Protein analysis through evolutionary relationship

(PANTHER) [7] and I-Mutant 2.0 [46], (iii) the functional SNPs

in the untranslated region were analyzed using UTRScan [47] and

Functional Analysis and Selection Tool for Single Nucleotide

Polymorphism (FASTSNP) [12] (iv) based on SIFT, PolyPhen,

PANTHER and I- Mutant 2.0 scores, we identified the possible

mutation, proposed a model structure for the mutant proteins and

compared this with the native protein in the 3D modeled structure

of the G6PD and PK gene (v) evaluation of modeled structure based

on Root mean square deviation (RMSD) and total energy value

(vi) identification of stabilizing residues (SRs) in the native and

mutant proteins by SRide [48]. Our results, from this study suggest

that multiple computational tools should be used when trying to

identify deleterious mutations in humans. The goal of the analysis

is to predict a deleterious nsSNPs in which there is no availability

of 3D structure which are likely to affect the structure or function

of the gene and thus to identify which of these SNPs may have

possible a role in RBC disorders.

Results

Selection of SNPs for analysis
We have selected SNPs from non-synonymous coding region

(nsSNPs), coding synonymous region (sSNPs), UTR (59 and 39)

and intronic region SNPs for our analysis. Out of 539 SNPs,

coding region contains 37 (6.9%) non-synonymous SNPs (nsSNPs)

and 31 (5.8%) coding synonymous SNPs. Non-coding region

contains 414 SNPs (76%) in intronic region and 57 SNPs (10.5%)

in mRNA UTR region. It can be seen from the above results that

vast majority of SNPs occur in the intronic region. The coding

non-synonymous regions and SNPs in regulatory regions were

selected for our investigation. The functional impact of nsSNPs

can be assessed by evaluating the importance of the amino acids

they affect.

Analysis of deleterious nsSNPs using SIFT
SIFT predicts whether an amino acid substitution affects the

protein function based on sequence homology and the physical

properties of amino acid. Protein sequence with mutational

position and amino acid residue variants were submitted as input

in SIFT server and the results are outlined in Table S1. A total of

46% nsSNPs were predicted as intolerant by SIFT score of 0.00,

24% of the variants had score ranging from 0.01–0.05 and 30% of

the variants exhibited score ranging from 0.06–0.10 respectively.

Thus 70% of nsSNPs were predicted to be intolerant, that could

bring about changes in protein function. A lower score 0.00–0.05

indicates that the nsSNPs is more damaging to protein function.

Such scores enable the quantitative comparison and ranking of

SNPs in the order of their biological significance, and are useful for

researchers to decide which SNPs of a gene they should first look

at.

Analysis of deleterious nsSNPs using PolyPhen
All protein sequences submitted to SIFT were also submitted to

PolyPhen. Unlike SIFT, it does not solely depend on sequence

homology alone to make SNP functional predictions as its

modeling of the amino acid substitutions is also based on structural

information. The PolyPhen output comprises a score that ranges

from 0 to a positive number, with zero indicating a neutral effect of

Amino Acid Substitutions in RBC Disorders
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amino acid substitutions on protein function. Conversely, a large

positive number indicates that the substitution is detrimental to

protein function. According to PolyPhen score, 33% of the nsSNPs

were found to be ‘‘Possibly damaging’’ to protein structure and

function; 12% of the nsSNPs exhibited PolyPhen scores of 1.99–

1.50 indicating that the variants were ‘‘Possibly damaging’’ to

protein function and the remaining 55% were characterized as

benign (Table S1). Such scoring is once again useful as ranking of

SNPs according to their significance can be carried out to enable

quantitative assessment of the severity of the effect on protein

function.

Identification of functional nsSNPs using I-Mutant 2.0
The protein stability change due to single point mutation was

predicted using support vector machine-based tool I-Mutant 2.0.

All the nsSNPs submitted to SIFT and PolyPhen were also

submitted as input to the I-Mutant 2.0. According to I-Mutant 2.0,

more negative the free energy value (DDG value); less stable the

given point mutation is likely to be. Out of 37 variants, 4 variants

(L323P, I48T, V68M and Q310P) which showed DDG value of

22.07, 22.05,23.32 and 22.20 respectively, were considered to

be least stable and deleterious. The other 11 variants R285H,

R459P, R463H, D350H, D181V, D113N, Q11H, N126D,

S437V, G200C and R339P showed DDG value between 21.00

to 22.00 and the remaining 15 variants showed DDG value less

than 0.00 (Table S1).

Prediction of deleterious nsSNPs using PANTHER
All the nsSNPs with maximum significant score using SIFT,

PolyPhen and I-Mutant 2.0 were further analyzed using PANTHER

for validating its impact on protein function upon single point

mutation. PANTHER is able to classify proteins by function, thus

adding another layer of complexity to refine SNP prediction. This

tool is able to generate a variety of outputs, the most useful being the

probability that a particular variant is deleterious. Out of 37 nsSNPs

taken for our analysis, 8 nsSNPs with subPSEC score less than -5

were designated as highly deleterious, out of which the amino acid

substitution position at A44G, R163C and Q310P showed a good

correlation with SIFT, PolyPhen and I-Mutant 2.0 scores respec-

tively. Hence the following SNPs with ID rs78478128, rs74315362

and rs11558370 having subPSEC scores 25.29666, 28.05846 and

27.51475, were selected for further modeling analysis. The

remaining 18 variants having subPSEC score less than -3 were

found to be deleterious and eleven nsSNPS with subPSEC score

greater than -3 were predicted to be intolerant using PANTHER

(Table S1). The nsSNPs which were predicted to be deleterious in

causing an effect in the structure and function of the protein by

SIFT, PolyPhen, I-Mutant 2.0 and PANTHER correlated well

experimental studies as shown in Table S1 [28]–[38].

Combination of the Prediction Programs for deleterious
nsSNPs

Prediction of deleterious nsSNPs can be made more accurate by

combining different computational methods [12], [47]. Thus, we

combined Empirical and SVM based prediction programs, and

found that this could significantly increase prediction performance

in deleterious nsSNPs analysis. We used the SIFT, PolyPhen, I-

Mutant 2.0 and PANTHER programs to predict the influence of

nsSNPs on protein function and structure. Figure 1 shows the

distribution of predicted scores of SIFT, PolyPhen, I-Mutant 2.0

and PANTHER. Since a lower SIFT or PANTHER or I-Mutant

2.0 score indicate that the nsSNP of interest would be more

deleterious, whereas a higher PolyPhen score indicate that the

nsSNPs of interest would be more deleterious. Out of 37 nsSNPs,

26 nsSNPs were predicted to be deleterious by SIFT, PolyPhen

predicted 16 nsSNPs as damaging, 26 nsSNPs as deleterious by

PANTHER and 30 nsSNPs as less stable by I-Mutant 2.0. Out of

all predictions, 70%, 43%, 70%, and 80% were specific to SIFT,

PolyPhen, PANTHER and the I-Mutant 2.0, respectively, and 9

nsSNPs (24%) were predicted to be functionally significant by all

four methods. We found that I Mutant 2.0 was able to predict

80% deleterious nsSNPs, slightly higher than SIFT (70%) and

PANTHER (70%). However, PolyPhen predicted only 43% of

deleterious nsSNPs which uses a normalized cross-species

conservation score and combines this with a variety of protein

structural features when available. Most of these differences are

likely the result of each method requiring a sufficient number and

diversity of aligned sequences in order to make a prediction, each

method using a different set of sequences and alignments. We have

shown that our data suggests that individual tools correlate

modestly with observed results, and that combining information

from a variety of tools may significantly increase the predictive

power for determining the functional impact of a given nsSNP.

Characterization of functional regulatory elements in 59

and 39 untranslated region by UTRscan
In this method, the effect of UTRs on phenotypic variation has

been elucidated with the help of patterns of functional sequences

deposited in the UTRSite and UTRdb. In this method, the

integration of genomic data with UTRdb transforms it into an

efficient annotation technique as well as a powerful retrieval

resource for the UTR subsets. The UTRscan server however did

provide some useful indicators with respect to the functional effects

of 39 and 59 UTR SNPs of G6PD and PK genes. All the 57 UTR

SNPs (39 and 59) were analyzed using UTRscan. After comparing

the functional elements for each UTR SNPs, we found 11 SNPs in

the 39 UTR and 12 SNPs in 59 UTR have different functional

pattern(s) for each sequence, and were predicted to have functional

significance. Totally, 23 SNPs in both 39 and 59 regions were

found to be functionally significant as shown in Table S2. Among

these SNPs, 9 of them were related to the functional pattern

change of Internal Ribosome Entry Site (IRES) [49], 10 of them

Figure 1. Distribution of predicted nsSNPs in Glucose-6-
phosphate dehydrogenase and Pyruvate kinase genes. Bar
diagram displays the percentage (%) of deleterious and benign nsSNPS
by SIFT, PolyPhen, I-Mutant-2.0 and PANTHER. Blue rectangle bar
indicates percentage of nsSNPs found to be deleterious by SIFT and
PANTHER, damaging (Possibly/Probably) by PolyPhen, and decrease
stability by I-Mutant-2.0. Red rectangle indicates percentage of nsSNPs
tolerated by SIFT and PANTHER, benign by PolyPhen, and increase
stability by I-Mutant-2.0.
doi:10.1371/journal.pone.0024607.g001
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were related to the functional pattern change of Musashi binding

[50], [51], 4 of them related to functional pattern change of K-

Box, 3 of them related to functional pattern change of Terminal

oligopyramidine track [52] and one of them were related to

functional pattern change of SXL (Sex-lethal) binding site [53],

Selenocysteine insertion sequence type 1 [SECIS] [54], UNR

binding site [55], Polyadenylation signal respectively.

Prediction of functional nsSNPs by FASTSNP
FASTSNP tool help in classifying and prioritizing phenotypic

risks and deleterious effects of SNPs based up on their influence

over determining protein structure, pre-mRNA\splicing, deviation

in transcriptional levels of the sequence, alterations in the

premature translation termination, deviations in the sites at

promoter region for transcription factor binding, etc. However,

FASTSNP could not predict the functional importance of the

SNPs in the 59 and 39 regions. 25 nsSNPs were found to be

functionally significant in coding region. Out of which 10 SNPs

were predicted to affect the splicing site with a risk ranking of 3–4,

14 SNPs were predicted to affect splicing regulation with a risk

ranking of 2–3 and 1 coding nonsense SNP (rs11558352) was

detected with a very high (5–5) level of risk, as it can truncate and

even inactivate the PKM2 protein, causing diseases (Table S3).

Modeling of deleterious nsSNPs
Single amino acid mutations can significantly change the

stability of a protein structure. So, the knowledge of a protein’s

3D structure is essential for a full understanding of its functionality.

Mapping the deleterious nsSNPs into protein structure informa-

tion was obtained from dbSNP and SAAPdb [56]. Mutation

analysis was performed based on the results obtained from highest

SIFT, PolyPhen, I-Mutant 2.0 and PANTHER scores. The

mutations at their corresponding positions were performed by

SWISS-PDB viewer independently to achieve modeled structures.

Then, energy minimizations were performed by NOMAD-Ref

server for the native type protein and mutant type structures.

Glucose 6 Phosphate Dehydrogenase (G6PD)
In G6PD gene, mutation occurred for native protein in ‘A’ chain

of PDB ID [2BHL] at position A44G with SNP ID rs78478128

and at R459P with SNP ID rs72554665. It can be seen that the

total energy value of native type (225480.939 Kcal/mol) and

mutant modeled structure A44G and R459P were found to be

225299.660 Kcal/mol and 225296.779 Kcal/mol respectively.

The RMSD value between the native and the mutant A44G,

R459P were 1.88 Å and 1.74 Å. The superimposed structures of

the native protein 2BHL (chain A) with the mutant type proteins

A44G of G6PD gene is shown in (Figure 2A).

Pyruvate Kinase isoforms (PKLR & PKM2)
In PKLR gene, mutation occurred for native protein in ‘A’ chain

of PDB ID [2VGB] at position R163C with SNP ID rs118204083,

R486W with SNP ID rs116100695 and T384M with SNP ID

rs74315362. It can be seen that the total energy value of native

type and mutant modeled structure R163C, R486W and T384M

were found to be 224360.674 Kcal/mol and 224081.020 Kcal/

mol, 224090.248 Kcal/mol, 224084.902 Kcal/mol respectively.

The RMSD values between the native and the mutant type

R163C, R486W and T384M were found to be 2.82 Å, 2.74 Å and

2.52 Å. Similarly in PKM2 gene, mutation occurred at ‘A’ chain of

PDB ID [1T5A] at positions C31F with ID rs11558375, G200C

with ID rs11558354 and Q310P with ID rs11558370. The total

energy value were found to be 224868.992 Kcal/mol for native

protein and 224623.072 Kcal/mol, 224654.807 Kcal/mol,

224608.215 Kcal/mol for mutant type C31F, G200C and

Q310P respectively Their respective RMSD value were found to

be 2.45 Å, 2.4 Å, 2.8 Å. Higher the RMSD value more will be the

deviation between native and mutant type structures and which in

turn changes their functional activity. The superimposed struc-

tures of the native protein 2VGB with the mutant type protein

R163C, of PKLR gene is shown in (Figure 2B) and the

superimposed structure of native protein 1T5A and mutant type

model Q310P of PKM2 gene is shown in (Figure 2C). These figures

were drawn using PyMOL54 release 0.99 [57]. Green color

cartoon model by PyMOL54 release 0.99 represents the native

structure while blue color cartoon model represents mutant

modeled structure respectively.

Computation of stabilizing residues in native and mutant
modeled structures of G6PD and PK genes

We used the SRide server for identifying the SRs in native type

structure and mutant modeled proteins in G6PD, PKLR, and

PKM2 genes (Table 1). From this analysis four SRs were found to

be common in both native structure (2BHL) and mutant model

R459P of G6PD gene. In mutant model R459P, three stabilizing

residues were found namely Ala338, Gln372, and Gln308, which

revealed that these stabilizing residues could be the major factor in

destabilizing the 2BHL structure. In PKLR gene all the four SRs,

Ile90, Cys401, Ala495, Ile553 respectively were identical in native

protein (2VGB) and mutant models R163C, R486W and T384M.

Four SRs (Gly122, Cys358, Ala452 and Ile510) were identified to

be identical in native type protein (IT5A) and mutant model

G200C and Q310P of PKM2 gene. In mutated model (C31F), one

additional residue Cys49 was found which may play key factor in

destabilizing the structure.

Discussion

For reliable information about the protein, a sequence variation is

essential to gain insights into disease genotype–phenotype correla-

tions. How is it possible to discriminate between amino acid

substitution that are deleterious for the stability or for the function of

the protein, leading to a disorder, and neutral variations that do not

modify the phenotype? An increasing number of computational

approaches to in silico analysis of substitutions available on the

World Wide Web have been proposed to answer this question [4]–

[14]. Over the past five years, computational approaches to in silico

analysis of amino acid substitutions have improved considerably. In

this aspect, we have brought in silico model with two diverse

approaches (Empirical and SVM) in forefront to experimental

biologists as an alternative method in determining the functional

SNPs in RBC disorders. Both these diverse methods use sequence

information, structural information or both. Sequence (SIFT,

PANTHER) and structure based methods (PolyPhen, I-Mutant

2.0) are the most common approaches used in SNP prediction tools.

Sequence-based prediction methods have more advantage over the

structure-based ones, as they include all types of effect at the protein

level, and can be applied to any human protein with known

relatives. However, sequence-based predictions (based on homology

and evolutionary conservation) are unable to reveal the underlying

mechanisms of how SNPs result in changed protein phenotypes. On

the other hand, structure-based approach is not feasible to

implement for the proteins with unknown 3D structures. Thus,

structure based approach has limited applicability. Tools that

integrate both sequence and structure information have the added

advantage of being able to assess the reliability of the generated

prediction results by cross-referencing the results from both

Amino Acid Substitutions in RBC Disorders
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approaches. Tools that combine these approaches (PolyPhen and I-

Mutant 2.0) use different algorithms and methodologies for

prediction, thereby having a wider cover-age of the different aspects

of SNP analysis. Both the methods have disadvantages and

advantages in predictng the effects of SNPs on protein stability.

The user must decide which tool is most suited to the specific

objectives of their analysis to gain the optimum knowledge.

Although the predictive power of protein structural information

Figure 2. Superimposition of native and mutant modeled structures (cartoon shape) of G6PD, PKLR and PKM2 genes. (A).
Superimposed structure of native amino acid Alanine in sphere shape (red color) with mutant amino acid Glycine (blue color) at position 44 in PDB ID
2BHL of G6PD gene with RMSD 1.88 Å. (B). Superimposed structure of native amino acid Argenine in sphere shape (red color) with mutant amino acid
Cysteine (blue color) at position 163 in PDB ID 2VGB of PKLR gene with RMSD 2.82 Å. (C). Superimposed structure of native amino acid Glutamine
sphere shape (red color) with mutant amino acid Proline (blue color) at position 310 in PDB ID 1T5A of PKM2 gene with RMSD 2.8 Å.
doi:10.1371/journal.pone.0024607.g002

Table 1. Computing stabilizing residues (SRs) in native and mutant proteins of G6PD, PKLR, and PKM2 genes using SRide.

Gene
Stabilizing residues in native
protein Stabilizing residues in mutant proteins

G6PD (2BHL) Ala141,Gly306, Gln307, Tyr308 2BHL (A44G) 2BHL (R459P)

Ala141, Gly306, Gln307, Tyr308 Gly306, Tyr308, Ala338, Gln372, Gln308

PKLR (2VGB) Ile90, Cys401, Ala495, Ile553 2VGB (R163C) 2VGB (R486W) 2VGB (T384M)

Ile90, Cys401, Ala495, Ile553 Ile90, Cys401, Ala495, Ile553 Ile90, Cys401, Ala495, Ile553

PKM2 (IT5A) Gly122, Cys358, Ala452, Ile510 IT5A (C31F) IT5A (G200C) IT5A (Q310P)

Cys49, Gly122, Cys358, Ala452,
Ile510

Gly122, Cys358, Ala452, Ile510 Gly122, Cys358, Ala452, Ile510

Residues marked in bold were found to be common in both native and mutant type structures.
doi:10.1371/journal.pone.0024607.t001

Amino Acid Substitutions in RBC Disorders
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has been established, a comparison between structure-based and

sequence based methods is still needed.

Taking into this account, we focused our attention by

comparing the prediction functionality of curated amino acid

substitutions in G6PD, PKLR and PKM2 associated with RBC

disorder genes using existing computational methods SIFT,

PolyPhen, I-Mutant-2.0 and PANTHER. In addition, we used

FASTSNP and UTRscan for each gene to evaluate role of SNPs in

regulatory regions. From the results obtained, SIFT predicted

70% of nsSNPs to be deleterious and PolyPhen predicted 43% of

nsSNPs to be damaging. A combination of SIFT and PolyPhen

tools were able to predict only 40% of deleterious nsSNPs in G6PD

and PK genes. Karchin et al. [9] argued that when the outputs

from the algorithms SIFT and PolyPhen differ, it is more likely due

to using different protein sequence alignments compared to the

differences in scores used to classify the variants. Several groups

have tried to evaluate the ability of SIFT to distinguish between

neutral and deleterious substitutions [42,43,61]. The performance

of SIFT was also analyzed in healthy individuals by Cargill et al.

[58]. In another set of studies, Palmer et al. tried to validate the

SIFT in MSHR gene, and found that predicted tolerated

substitutions L60V and R163Q by SIFT were in concordance

with the experimental results [59]. To date, data on the validity of

these algorithms has come from benchmarking studies based on

the analysis of ‘‘known’’ deleterious substitutions annotated in

databases, such as SwissProt, [40,43,60,61]. Experimental studies

of individual proteins have also confirmed the accuracy of SIFT

[62–64]. Our group also tried to evaluate the accuracy of SIFT

and PolyPhen based predictions on CFTR, PAH, HBB, TP53,

HNPCC genes [65–69]. We observed good concordance between

SIFT and PolyPhen methods. In this analysis, we tried to evaluate

the Hidden Markov Model (HMM) based PANTHER and SVM

based I-Mutant 2.0 as additional tools in identifying deleterious

substitutions. We used PANTHER that uses scoring matrices

which were similar to the SIFT approach. The primary mission of

the PANTHER database is to organize genes into families and

subfamilies and to classify them according to inferred function.

Much of the organization achieved by this database relies on

making protein multiple sequence alignments (PMSAs) across a

large number of gene subfamilies and families. The proportion of

deleterious nsSNPs predicted by PANTHER (70%) was similar to

SIFT (70%) in G6PD and PK genes. When we analyzed the

deleterious nsSNPs predicted by the combination of SIFT vs

PolyPhen, SIFT vs PANTHER and PolyPhen vs PANTHER

combination, the prediction of SIFT vs PANTHER was highest

among all (40%, 60% and 30%). To improve the strength of our

analysis, we lastly compared I-Mutant to SIFT, PolyPhen and

PANTHER. I-Mutant is a machine learning-based method that

takes as input, protein sequence, protein structure, and protein

function information. I-Mutant 2.0 predicted 80% of nsSNPs to be

deleterious. The proportion of deleterious nsSNPs predicted by I-

Mutant vs PANTHER (60%) was higher than the combinations of

SIFT vs I-Mutant and PolyPhen vs I-Mutant respectively (60%

and 30%). Significant concordance was observed between the

functional consequences of nsSNPs predicted by various combi-

nations of the tools. The prediction accuracy of deleterious nsSNPs

by I-Mutant 2.0 is much higher than other three tools used in our

analysis. Recent analysis by capriotti and Atman [70] also stated

that the prediction accuracy of SVM based method I-Mutant 2.0

was higher with respect to SIFT and PolyPhen. By comparing the

scores of all the four methods used in this analysis, 9 nsSNPs (24%)

with IDs rs17853396, rs2959910, rs11558354, rs11558370,

rs11558375, rs118204083, rs117089358, rs72554665 and

rs78478128 were predicted to be functionally significant.

The 59 and 39 untranslated regions of eukaryotic mRNAs

(UTRs) play crucial roles in the post-transcriptional regulation of

gene expression [47]. The functional prediction of SNPs in

untranslated region for the G6PD, PKLR, and PKM2 genes have

not been estimated computationally until now, although they have

been the focus for experimental researchers. Therefore in this

work, we used FASTSNP and UTRscan for this analysis. By

FASTSNP 25 nsSNPs were found to be functionally significant in

the coding region. Further, we extended our analysis by

comparing FASTSNP with SIFT, PolyPhen, I-Mutant 2.0 and

PANTHER. Out of 25 nsSNPs predicted by FASTSNP, 20

nsSNPs were found to be deleterious by SIFT/PolyPhen/

PANTHER/I-Mutant 2.0 highlighted as bold in Table S3. The

FASTSNP server could not predict the functional impact of SNPs

in the 59 and 39 region. After comparing the functional elements

for each SNPs in the untranslated regions using UTRscan, we

found 11 SNPs in the 39 and 12 SNPs in 59 untranslated region

were predicted to have functional significance due to the presence

of different functional pattern(s) for each sequence. The functional

pattern change includes IRES, Musashi binding, SXL binding site,

SECIS, UNR binding site, Polyadenylation signal respectively.

IRES are bound by internal mRNA ribosome. The IRES is

believed to be involved in internal mRNA ribosome binding,

which allows for translation to occur during periods of the cell

cycle when the conventional mechanism of translation is

ineffective. It is an alternative mechanism of translation initiation

compared to the conventional 59-cap dependent ribosome

scanning mechanism [49]. Musashi binding protein plays an

important role in regulating the expression of target mRNAs at the

translation level. It may also play a role in the proliferation and

maintenance of stem cells in the central nervous system [50], [51].

SXL binding site plays an important role in regulating splicing of

specific target genes by directly interacting with their pre-mRNAs

and also for better understanding of translation repression [53].

The SECIS element is a specific 60 bp stem-loop structure located

in 39UTRs of mRNAs, and required for decoding UGA

selenocysteine instead of termination of translation [54]. Terminal

oligopyramidine tract encode for ribosomal proteins and elonga-

tion factors 1alpha and 2, and are candidates for growth-

dependent translational control [52]. The SNPs with IDs

rs5030868, rs1050828 and rs1050829 predicted by UTRscan

were well supported by experimentally methods [71], [72].

Protein structural analysis were carried out based on the

screened results obtained from SIFT, PolyPhen, I-Mutant-2.0 and

PANTHER. Protein 3D structural information is an important

feature for predicting the effects of deleterious nsSNPs. Analysis of

the protein structure provides information about the environment

of the mutation. Proteins with mutations do not always have 3D

structures that are analyzed and deposited in PDB. Therefore, it is

necessary to construct 3D models using molecular modeling

protocols. This is a simple way of detecting what kind of adverse

effects that a mutation can have on a protein. Single amino acid

substitution were examined using Swiss-PDB viewer with RMSD

value computed from mutant and native structure used in

predicting the deviation. Computing the energy gives the

information about the protein structure stability. We compared

RMSD value and Total energy values (Kcal/mol) of Native

structure and mutated modeled structure for the three genes.

Mutant structures of G6PD with PDB ID 2BHL at position A44G,

mutant structures of PKLR with PDB ID 2VGB at position R163C

and mutant structures of PKM2 with PDB ID 1T5A at position

Q310P showed an increases in total energy level (less favorable

change) and increase in RMSD value deviation in comparison

with native structure. Divergence in mutant structure with native
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structure is due to mutation, deletions, and insertions [73] and the

deviation between the two structures is evaluated by their RMSD

values which could affect stability and functional activity [74].

These results were in very well concordance with SIFT, PolyPhen,

I-Mutant-2.0 and PANHTER scores. Computational analysis of

stabilizing residues which plays an important role in stabilization

of protein was carried out using SRide tool. Interestingly our

approach identified three SRs, Alanine at position 338 and

Glutamine at position 372 and 308 plays an important role in

destabilizing the mutant structure (PDB ID 2BHL) of G6PD gene.

Similarly amino acid Cysteine plays an important role destabiliz-

ing the mutant structure (PDB ID IT5A) of PKM2 gene. The

overall approach of our study was to prioritize the functional

nsSNPs, map as many structural mutations as possible, find

general patterns to analyze 3D mutations with regard to protein

function and evaluate regulatory variants using as many bioinfor-

matics analysis methods as possible. Based on these analyses, we

attempt to establish the relationship between the disease-related

mutations and structural properties of proteins. The result from

this work suggests that combination of SVM based I-Mutant 2.0

increases the accuracy of the prediction of deleterious nsSNPs.

The methods which are adopted in this study uses web-based

interface that are easy to use for the beginner. The inputs are

standard sequence formats or ID numbers as well as the SNP

information. The computational approach proposed in this study

is based on integrating relevant biomedical information sources to

provide a systematic analysis of functional and deleterious nsSNPs

associated with RBC disorders. Various computational tools used

in this analysis determine the functional effects of SNPs only with

respect to a single biological function. Therefore, much time and

effort is required from researchers to identify the appropriate tools

and interpret the predictions. As there is a vast number of SNPs, it

might not be feasible for researchers to carry out wet laboratory

experiments on every SNP to determine their biological

significance. These methods will benefit researchers to prioritize

amino acid substitutions as it would be time consuming, difficult,

and expensive to experimentally characterize the impact of each

nsSNPs on protein function.

Analysis

Data mining
The data on human G6PD, PKLR and PKM2 genes were

collected from Online Mendelian Inheritance in Man (OMIM)

[75] and Entrez Gene on National Center for Biological

Information (NCBI) Web site. The SNPs information (Protein

accession number (NP), mRNA accession number (NM) and SNP

ID) of G6PD, PKLR and PKM2 genes were retrieved from the

NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp/), and SWISS-

Prot databases (http://expasy.org/) [76] for our computational

analysis. The information on the effect of the nsSNP variants and

the correlation between the nsSNP and disease was compiled from

in vivo and in vitro experiments according to PubMed (www.ncbi.

nlm.nih.gov/PubMed/), OMIM (www.ncbi.nlm.nih.gov/omim/),

and UniProtKB/Swiss-Prot databases (ca.expasy.org/sprot/).

Sequence homology based method
SIFT uses sequence homology to predict whether an amino acid

substitution will affect the protein function [5]. SIFT (http://sift.

jcvi.org/www/SIFT_dbSNP.html) is a multistep process which

starts with selection of sequences that are similar to query protein

sequence, make an alignment of these sequences and calculating

scores based on amino acids appearing at each position in the

alignment. Several versions of this program have been described

and differ in the protocol used to select homologous sequences.

The most recent version SIFT BLink Beta was utilized in this

study. We performed SIFT by submitting query in the form of

gene identification number obtained from NCBI. SIFT score

provides the tolerance index of a particular amino acid

substitution to protein function. The underlying principle of this

program is that it generates alignments with a large number of

homologous sequences and assigns scores to each residue, ranging

from zero to one. SIFT score #0.05 indicates the amino acid

substitution is intolerant or deleterious, where as score $ 0.05 is

predicted to be tolerant. The alignment built by SIFT contains

homologous sequences with a medium conservation measure of

3.0 where conservation is represented by information content [77]

to minimize false positive and false negative error. SIFT also warns

that median sequence information above 3.25 represents sequenc-

es that are very similar and may lead to false results. We used the

default median sequence conservation in the range of 3.0.

Structural Homology based method
PolyPhen is a software tool which predicts possible impact of

amino acid substitutions on the structure and function of human

proteins using straight forward physical and evolutionary com-

parative considerations [14]. The input to PolyPhen is an amino

acid sequence or corresponding ID, the position of the amino acid

varied, and the amino acid variants. The prediction is based on

straightforward empirical rules that are applied to the sequence,

phylogenetic and structural information characterizing the substi-

tution. Input for the PolyPhen server (http://genetics.bwh.

harvard.edu/pph/) is either a protein sequence or a SWALL

database ID or accession number together with sequence position

with two amino acid variants. We submitted the query in the form

of amino acid sequence in FASTA sequence with mutational

positions each with two amino acids variants. PolyPhen searches

for 3-D protein structures, multiple alignments of homologous

sequences and amino acid contact information in several protein

structure databases. Then, it calculates PSIC scores for each of two

variants, and computes the difference of the PSIC scores of the two

variants. The higher a PSIC score difference, the higher is the

functional impact a particular amino acid substitution is likely to

have. A PSIC score difference of 1.5 and above is considered to be

damaging. The PolyPhen scores can de classified as probably

damaging ($2.00), possibly damaging (1.50–1.99), potentially

damaging (1.25–1.49), or benign (0.00–0.99).

I-Mutant 2.0
We used I-Mutant 2.0 available at www.gpcr.biocomp.unibo.it/

cgi/predictors/I-Mutant 2.0.cgi to calculate the stability of

mutated proteins. I-Mutant 2.0 is a SVM-based method for the

automatic prediction of protein stability changes upon single point

mutations. I-Mutant 2.0 can be used as a unique and valuable

helper for protein designing, even when the protein structure is not

yet known with atomic resolution. There are two alternatives

available for the input data in I-Mutant 2.0, predicting the protein

stability change upon single point mutation using protein structure

or protein sequences [46]. This program was trained and tested on

a dataset derived from ProTherm [78], which is the most

comprehensive available database of thermodynamic experimen-

tal data of free energy changes of protein stability upon mutation

under different conditions. The output file shows the predicted free

energy change (DDG) which is calculated from the unfolding

Gibbs free energy change of the mutated protein minus the

unfolding free energy value of the native protein (Kcal/mol). We

performed the analysis using protein sequence data available from
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dbSNP data base. DDG .0 means that the mutated protein has

high stability and vice versa.

PANTHER
PANTHER is a database which contains a collection of protein

families and subfamilies that predicts how often does a given

amino acid occurs at a given position in a family of evolutionary

related protein across different species [7]. It uses HMM-based

statistical modeling methods and multiple sequence alignments to

perform evolutionary analysis of coding nsSNPs. By calculating the

substitution position-specific evolutionary conservation score

(subPSEC) based on an alignment of evolutionarily related

proteins, PANTHER estimates the likelihood of a particular

nsSNP causing a functional impact on the protein PANTHER

subPSEC scores vary from 0 (neutral) to about 210 (most likely to

be deleterious). Protein sequences having subPSEC value # 23 is

said to be deleterious.

SRide
SRide is a server for identifying the stabilizing residues (SRs) in

protein, located at http://sride.enzim.hu/. A residue is said to be

stabilizing, if it has high surrounding hydrophobicity (Hp), high

long range order (LRO), high conservation score and if it belongs

to a stabilizing center (SC) [48]. The algorithm for identifying SRs

is now generalized for all proteins of known 3D structure. The

input for SRide server is either PDB ID or by uploading the

protein structure in PDB format.

Modeling of mutant protein structures
SNP can significantly change the stability of proteins. So, for

understanding the significance of a single nucleotide change in

protein function, knowledge about 3D structure of protein is very

important. Structure analysis was performed for evaluating the

structural stability of native and mutant protein. We used the

dbSNP to identify the protein coded by G6PD (PDB ID 2BHL)

and PK genes (PDB ID 2VGB). We also confirmed the mutation

positions and the mutation residues from this server. These

mutation positions and residues were in complete agreement with

the results obtained with SIFT and PolyPhen programs. The

mutation analysis was performed using SWISSPDB viewer, and

energy minimization for three-dimensional structures was per-

formed using NOMAD-Ref server [79]. This server use Gromacs

as default force field for energy minimization based on methods of

steepest descent, conjugate gradient and L-BFGS methods [80].

We use conjugate gradient method for optimizing the 3D

structures. Computing the energy gives the information about

the protein structure stability. Deviation between the two

structures was evaluated by their RMSD values.

FASTSNP
In order to efficiently identify nsSNPs with a high possibility of

having a functional effect, FASTSNP tool was applied for the

detection of nsSNP influence on cellular and molecular biological

function e.g. transcriptional and splicing regulation. The online

tool FASTSNP [12] (http://fastsnp.ibms.sinica.edu.tw/pages/

input_CandidateGeneSearch.jsp) was used for predicting the

functional significance of the nsSNPs, 39 and 59 UTR SNPs and

also to identify the polymorphism involving intron which may lead

to defects in mRNA processing. The FASTSNP follows the

decision tree principle with external web service access to

TFSearch, which predicts whether a non-coding SNP alters the

transcription factor binding site of a gene. The score is given on

the basis of levels of risk with a ranking of 0, 1, 2, 3, 4, or 5. This

signifies the levels of no, very low, low, medium, high, and very

high effect, respectively.

UTRscan
UTRscan (http://itbtools.ba.itb.cnr.it/utrscan) was used for

characterization of SNPs in regulatory untranslated regions [47].

This tool was used to analyze the untranslated regions (59 UTR

and 39UTR) of eukaryotic mRNA which are involved in many

post transcriptional regulatory pathways that control mRNA

localization, stability and translational efficiency [69]. The internet

resource for UTR analysis are UTRdb, which contains experi-

mentally proven biological activity of functional pattern of UTR

sequence from eukaryotic mRNAs and UTRsite, which is a

collection of functional sequence patterns located in 59 or 39 UTR

sequence. Briefly, two or three sequences of each UTR SNP that

have a different nucleotide at an SNP position are analyzed by

UTRscan, which looks for UTR functional elements by searching

through user-submitted sequence data for the patterns defined in

the UTRsite and UTR databases. If different sequences for each

UTR SNP are found to have different functional patterns, this

UTR SNP is predicted to have functional significance.
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