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Abstract

Background: Preterm birth is a leading cause of perinatal mortality, yet the evolutionary history of this obstetrical syndrome
is largely unknown in nonhuman primate species.

Methodology/Principal Findings: We examined the length of gestation during pregnancies that occurred in a captive
chimpanzee colony by inspecting veterinary and behavioral records spanning a total of thirty years. Upon examination of
these records we were able to confidently estimate gestation length for 93 of the 97 (96%) pregnancies recorded at the
colony. In total, 78 singleton gestations resulted in live birth, and from these pregnancies we estimated the mean gestation
length of normal chimpanzee pregnancies to be 228 days, a finding consistent with other published reports. We also
calculated that the range of gestation in normal chimpanzee pregnancies is approximately forty days. Of the remaining
fifteen pregnancies, only one of the offspring survived, suggesting viability for chimpanzees requires a gestation of
approximately 200 days. These fifteen pregnancies constitute spontaneous abortions and preterm deliveries, for which the
upper gestational age limit was defined as 2 SD from the mean length of gestation (208 days).

Conclusions/Significance: The present study documents that preterm birth occurred within our study population of captive
chimpanzees. As in humans, pregnancy loss is not uncommon in chimpanzees, In addition, our findings indicate that both
humans and chimpanzees show a similar range of normal variation in gestation length, suggesting this was the case at the
time of their last common ancestor (LCA). Nevertheless, our data suggest that whereas chimpanzees’ normal gestation
length is ,20–30 days after reaching viability, humans’ normal gestation length is approximately 50 days beyond the
estimated date of viability without medical intervention. Future research using a comparative evolutionary framework
should help to clarify the extent to which mechanisms at work in normal and preterm parturition are shared in these
species.
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Introduction

Sporadic pregnancy loss in humans is a common event.

Approximately 70% of human conceptions fail to achieve viability.

Between 22 and 50% are lost before the first missed menstrual

period [1,2], and maternal stress among other causes can play a

role in pregnancy loss [3]. In pregnancies that are clinically

recognized before 20 weeks of gestation from the last menstrual

period, loss occurs in approximately 15% [4]. The causes include

genetic abnormalities, hormonal/metabolic disorders, uterine

anatomical abnormalities, infectious causes, environmental factors,

thrombophilia, autoimmune disorders, and others which remain

unexplained [5]. Spontaneous human preterm birth remains an

enigma and the major unsolved problem in modern obstetrics and

perinatal medicine [6]. The preterm parturition syndrome in

which human labor and delivery are premature (i.e. between

20 to 37 weeks of gestation) affects one of every eight human

pregnancies in the United States at an annual cost of $26 billion

per year [7,8,9,10]. Prematurity remains the leading cause of

perinatal [11] and infant [12] morbidity and mortality. In humans,

the preterm parturition syndrome is caused by multiple patholog-

ical processes, which can lead to the activation of the common

pathway. Examples of these pathological processes include among

others: infection, uterine hemorrhage, uterine overdistention,
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cervical disease, abnormal allograft reaction, and endocrine

disorders [13]. Despite strong efforts in perinatal research, the

incidence of preterm birth continues to rise [14]. That preterm

birth is so prevalent in human populations raises the question

whether, in certain environments, an evolutionary advantage

could possibly be gained by delivering a fetus prematurely. The

maternal adaptation of preterm birth could be of evolutionary

advantage in the face of poor intrauterine and environmental

conditions to limit the energetic cost of the pregnancy [15]. In

order to assess this concept it is necessary to take a comparative

evolutionary approach by examining the rate of pregnancy loss in

nonhuman primates and other mammals.

In the present study we sought to examine the length of

gestation in one of humankind’s closest relatives, the chimpanzee

(Pan troglodytes). Molecular phylogenetic analyses indicate that

humans and chimpanzees are sister taxa to the exclusion of gorillas

and the more distantly related orangutans [16,17], and analysis of

the chimpanzee genome indicates that the two species are

genetically similar, sharing 98.7% sequence identity [18]. Despite

these similarities, there are clear differences between human and

chimpanzee pregnancies. The mean length of gestation in

common chimpanzees has been reported as 227 days compared

to 280 in humans [19,20]. This 53-day difference in gestation

length is somewhat misleading. Human gestation length is

commonly measured from the first day of the last menses, about

two weeks before conception. In contrast, chimpanzee gestations

are measured from the last day of maximal sex skin tumescence

during a cycle in which copulation was observed, which correlates

roughly to the point at which ovulation occurs in the chimpanzee

menstrual cycle (Fig. 1). Therefore, the actual difference in

gestation length between human and common chimpanzees is less

than 40 days [21]. Furthermore, natural selection during human

evolution has resulted in anatomical changes including the

expansion of the cranium associated with encephalization and

the remodeling of the pelvis during the emergence of bipedalism

that may have affected parturition [22,23]. These anatomical

changes that resulted in a relatively larger fetal head and smaller

birth canal may have necessitated adjustments underlying the

labor and birth process (i.e. parturition has a longer duration in

humans than in chimpanzees). Indeed, the duration of parturition

in humans is, on average, longer than the 80-minute duration that

has previously been observed in chimpanzees [20]. The genetic

similarities shared between humans and chimpanzees contrasted

with their gross anatomical and reproductive differences make

chimpanzees an attractive comparative taxon for examining the

evolution of human pregnancy and parturition.

In the present study we took advantage of historical records of

chimpanzee gestation length in pregnancies that occurred at the

Primate Foundation of Arizona. Cumulatively, we were able to

study monthly menstrual cycle charts from chimpanzees housed at

this facility over a period of 30 years. The historical records allow

us to 1) confirm previous reports regarding the length of normal

gestations in chimpanzees; 2) identify the pregnancies that failed

due to spontaneous abortion; and 3) reveal whether preterm

delivery actually occurs in this species. These observations

represent the first systematic investigation of preterm delivery in

chimpanzees.

Materials and Methods

Ethics Statement
The data collection for this study consisted entirely of a review

of existing longitudinal records at the Primate Foundation of

Arizona (PFA). There was no animal contact.

The Primate Foundation of Arizona is a private, non-profit,

biomedical research facility accredited by the Association for

Assessment and Accreditation of Laboratory Animal Care

International. The data collection protocol was reviewed and

approved by the PFA Institutional Animal Care and Use

Committee (permit # 52107) and adhered to the legal

requirements of the United States Department of Agriculture.

Observation of Chimpanzees
Chimpanzees housed at the PFA were observed daily over a

period of thirty years. Daily notations of sex skin swelling were

recorded on cycle charts [24] for each individual female (Fig. 2).

Menstruation, all observed copulations and delivery dates were

noted on cycle charts.

Determination of length of gestation
Conception in chimpanzee pregnancies was estimated as the

date of maximal sexual skin tumescence during an ovarian cycle in

which copulation was observed (n = 88). If no copulation was

observed (n = 5), conception was estimated by counting backwards

from delivery until the cycle of appropriate length (i.e. the closest

cycle to 227 days).

Statistical and demographic analyses
Cycle charts from all female chimpanzees of breeding age

(n = 67) housed at PFA between the periods of 1969 and 2007

were examined. Each chart was examined to determine whether a

pregnancy was observed, and the dates of conception and delivery

were tabulated for each pregnancy. Data were excluded from

analyses if the individual was shipped away from or to the PFA

while pregnant and if chemical abortion was induced. In a few

cases, chimpanzees became pregnant at the PFA, but were moved

to New York and were subsequently housed at the Laboratory for

Experimental Medicine and Surgery in Primates (LEMSIP) during

their pregnancy. Similarly, three pregnancies began at LEMSIP,

but the births occurred at the PFA. The pregnancies that occurred

at LEMSIP, either wholly or in part, were excluded from statistical

analyses, as were an additional nine pregnancies from which

gestation length was not clearly estimated in the cycle chart

records. When possible, relevant clinical data was consulted to

examine the etiology of pregnancy failure. All included pregnan-

cies were calculated a gestation length, and maternal age at time of

pregnancy was also noted. Gestations were divided post hoc into

two categories: 1) spontaneous abortion and preterm parturition

(,208 days) and 2) normal gestation (208$249 days). Fig. 1

compares reproductive parameters in humans and chimpanzees.

Summary and descriptive statistics were calculated for all included

chimpanzee pregnancies. A modified Shapiro-Wilk’s W test [25]

was used to test whether the distribution of gestation lengths was

normal.

Results

Pregnancies at a captive colony of chimpanzees
This study includes data from 93 pregnancies at the Primate

Foundation of Arizona between 1969 and 1999. Thirty-five

females were pregnant at least once at the PFA. The earliest

recorded pregnancy occurred in 1969–1970, and the last

pregnancy occurred in 1999. In this latter case the pregnancy

was terminated by chemical abortion due to an NIH moratorium

on breeding chimpanzees for research purposes [26]. Two other

pregnancies were terminated by chemical abortion for the same

reason, and these pregnancies were not included in statistical

analyses. In all cases, the pregnancies were terminated very early
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in gestation as soon as pregnancy was detected by the presence of

chorionic gonadatropin in urine. The date of the last chimpanzee

birth at the PFA was on 11/14/1997. This chimpanzee is now

housed in a colony in Bastrop, TX USA.

Gestation Length at PFA
The estimated length of gestation in non-excluded pregnancies

at PFA ranged from 39 to 249 days. When only live births from

singleton pregnancies (n = 78) were included, the mean gestation

Figure 1. Comparison of gestation in humans (A) and chimpanzees (B). A typical 40 week human gestation is measured as beginning (week
0) at the onset of the last menstrual period (LMP) while gestation in chimpanzees is measured as beginning at roughly the time of ovulation (week 0).
Graphs A and B show a typical ovulatory cycle, with typical patterns of serum luteinizing hormone (LH) concentrations (red lines) in human [68] and
chimpanzee [69] as well as chimpanzee swelling size score (blue line) [69]. Tables (A human; B chimpanzee) compare gestational parameters and
different categories of pregnancy complications related to gestational length. VPTB: very preterm birth; MPTB: moderately preterm birth; LPTB: late
preterm birth [70].
doi:10.1371/journal.pone.0024509.g001

Figure 2. Idealized chimpanzee cycle chart. The shown partial chart spans the dates from May 01 (5/1) to June 08 (6/8) and indicates a month in
which a conception occurred. The Y-axis indicates degree of swelling on a scale from 0–4, in which 0 = no swelling, and 4 = maximum swelling.
Conventionally, a diagonal line is drawn each day from the point of observation. If swelling was observed, a horizontal line is drawn on that day
reflecting the amount of observed swelling. Diagonal lines are drawn on each day in order to indicate a measurement was made. Shown is an
example in which the anogenital swelling phase begins on day two in the month of May, reaches maximal height on day 5, stays maximal until day
20, and is no longer swollen on day 25. Days in which copulations occurred are depicted by the first initial of the male consort, in this example = S.
Ovulation occurs at some point during the maximally swollen phase, and if the chimpanzee becomes pregnant, the conception is estimated to have
occurred on the last day of maximal swelling (as indicated by asterisk = * on 5/20).
doi:10.1371/journal.pone.0024509.g002
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length for pregnancies was estimated to be 228 days (S.D. = 9.9

days). For five of the singleton pregnancies, no copulation was

observed, making determination of conception difficult. When

these pregnancies were excluded, the mean gestation length

remained 228 days. The frequency of singleton pregnancies that

resulted in live birth is shown in Fig. 3. The data shown in Fig. 3

are consistent with the normal distribution (Shapiro-Wilk

Normality Test; p = 0.78); A Pearson’s Correlation Test found

no significant relationship between maternal age during pregnancy

and gestation length (n = 71; p = 0.43), although maternal age for

all mothers was not recorded.

Perinatal death in preterm pregnancies
Two chimpanzees housed at PFA were unable to carry infants

to term and had recurrent pregnancy losses. In one case, a female

had three pregnancies in which pregnancy loss was estimated to

have occurred at 119, 160, and 164 days, respectively. Another

female also had three pregnancies resulting in pregnancy loss with

gestations estimated to last 92, 191, and 192 days, and the latter

two pregnancies were recorded as resulting in stillbirths. This

animal underwent a tubal ligation after it became apparent she

could not carry pregnancies to term. One chimpanzee had a

pregnancy that lasted only an estimated 39 days. Veterinary

records estimate the age of the fetus as between 25 and 60 days.

This female never became pregnant again. Of the eight other

female chimpanzees that had pregnancies resulting in estimated

abortions and/or preterm delivery, all had at least one successful

pregnancy.

Outcomes of offspring delivered preterm
All but one chimpanzee with an estimated gestation length#208

days was aborted, stillborn, or died within a few days of birth. Of

these seventeen offspring, only three were recorded as live births.

A female chimpanzee gave birth to twins after an estimated

gestation of 164 days (23 weeks, 4 days) and both twins died within

four hours of delivery. Only one chimpanzee (born on 5/22/1979)

with an estimated gestation length ,208 days lived to adulthood,

and this chimpanzee remained housed at the PFA. This

chimpanzee is blind because she did not develop pupils. However,

the veterinary records and cycle charts indicate two estimated

dates of conception (9/27/1978 and 11/02/1978) for this

individual, thus ambiguity regarding gestation length exists for

this pregnancy. If the latter date is used, this pregnancy is

estimated to have been 201 days long, while the latter estimate

would have resulted in a gestation of 238 days.

Perinatal death in term pregnancies
In addition to premature fetal loss, eight additional cases of

perinatal death occurred after term pregnancies. In some cases,

the cause of death was not determined. In other cases the etiology

was infectious and septicemia and viral pneumonia were recorded

as causes of death. A chimpanzee gave birth to an infant after an

estimated gestation of 210 days, and this infant died of meningitis

four days after birth. Additionally, one infant died due to

meconium aspiration.

Discussion

It is well appreciated that human and chimpanzee pregnancies

are similar, and it is also known that the reproductive tracts and

placentas of the two species share similarities with one another

[27]. Despite the resemblances, humans and chimpanzees have

some notable differences in reproduction. For example, unlike

humans, chimpanzee ovarian cycles are accompanied by marked

tumescence and swelling of the anogenital region [19]. Moreover,

human parturition is characterized by a lengthy and protracted

labor process relative to that of chimpanzees. Despite these

differences there is no a priori reason to assume that the incidence

of pregnancy loss is different in humans vs. chimpanzees. In the

current study we found that in general, chimpanzee pregnancies

last approximately 228 days, but that there is normal variation of

approximately 620 days surrounding this average length of

gestation. In addition to normal pregnancies, there is evidence for

embryonic and fetal loss in approximately 16% of the clinically

recognized pregnancies that occurred at the PFA. One difficulty in

estimating rates of pregnancy loss is that we were unable to detect

Figure 3. Normal variation in chimpanzee gestation. Histogram indicates the number of pregnancies per length of gestation. The frequency of
singleton pregnancies that resulted in live birth is shown. These data are consistent with a normal distribution.
doi:10.1371/journal.pone.0024509.g003
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early (i.e. preimplantation) pregnancy loss. Early pregnancy loss

does not present with any clinical symptoms; instead, it appears

similar to a normal menstrual cycle. It is estimated that in humans

a high proportion of early pregnancy loss (,50%) occurs in this

pre-clinical period.

Implications of Pregnancy Loss in Chimpanzees
Taken at face value, pregnancy loss is apparently detrimental to

the reproductive success of a given population or species.

However, natural selection does not favor maximal reproductive

output because of the high fitness cost to the parents [28,29].

Preterm delivery can be due to many causes including genetic

abnormalities, hormonal/metabolic disorders, uterine anatomical

abnormalities, environmental factors, thrombophilia, infectious

causes, and autoimmune disorders [13]; however, intrauterine

infection is the pathological process for which the most robust

causal pathway has been established [30,31,32]. Intrauterine

infection or systemic administration of microbial products to

pregnant animals often results in preterm delivery [33,34,35,36],

although negative results have also been reported [37] In the

context of intrauterine infection the onset of labor can be

considered a host defense mechanism against infection. The latter

process enables the mother to eliminate the infected tissue and

allow the fetus to exit a hostile environment [38,39].

The current study suggests that mechanisms for inducing

premature labor predate the divergence of humans and chimpan-

zees. The concept of ancient origins of premature birth is further

supported by experimental evidence from mice and other

mammals in which inflammation and/or bacteria induce preterm

delivery [33,34,35,36]. Moreover, premature birth in equine,

bovine and ovine species is also associated with infection

[40,41,42,43]. Taken together, these findings suggest that

underlying mechanisms for infection induced preterm delivery

have relatively ancient roots, and that searches for the molecular

underpinnings of these mechanisms should not be limited to

recently occurring events in human evolution. Deciphering the

evolutionary tradeoffs made for idiopathic and other causes of

preterm birth will likely prove to be a greater challenge.

Did a chimpanzee born preterm survive to adulthood?
As mentioned above, all of the offspring born with an estimated

gestation length of ,208 days were born dead or died shortly after

birth with one exception – a female chimpanzee with an estimated

gestation of 201 days. This birth occurred more than two standard

deviations (S.D. = 9.8 days) away from the mean gestation length

among PFA chimpanzees. As previously noted, this chimpanzee

was born without pupils and is therefore blind (Fig. 4). The cause

of this blindness is unknown; however, medical records indicate

that the mother was given a de-worming medication, at

approximately 12 weeks of gestation, and it is possible that this

medication played a role in the eye pathology because that is the

time when pupils would have developed. However, there was

another estimate of conception date made for this pregnancy, one

that would have occurred approximately one month earlier. If this

second conception date was indeed accurate, then the chimpanzee

depicted in Fig. 4 would not have been born premature. In this

case, all offspring born ,208 days of gestation died shortly after

birth or were stillborn. Regardless, this case points to some of the

difficulties encountered when estimating gestation length in non-

human primates. We also note that this chimpanzee had two

successful term pregnancies of her own (est. 239 and 243 days of

gestation) as well as a spontaneous abortion (est. 62 days of

gestation).

Limitations in Estimating Gestation Length in
Chimpanzees

Coding cycle charts and estimating chimpanzee gestation length

is an imprecise and somewhat subjective procedure. There are

many reasons why an estimate may be inaccurate. First, the

estimate of sexual skin swelling is qualitative not quantitative so

estimating the last day of maximal skin swelling can be inaccurate

and subject to inter-observer variation. Second, not all copulations

that occurred were observed; therefore, the last cycle in which

copulation was observed may not be the time when the

chimpanzee became impregnated. Chimpanzees are known to

occasionally have sex skin swellings after they become pregnant,

and they do copulate during these pseudo cycles. It is difficult to

observe chimpanzee menstrual blood because they fastidiously

keep themselves clean. Thus, it is not practical to use the

observation of menstrual blood as definitive evidence of the

non-pregnant state. Because of these factors estimates of dates of

conception can be off by one or more cycles. Further,

modifications in housing conditions at the PFA over 30 years

were not analyzed in the present study. The chimpanzees in this

study were all exposed to what could be considered an artificial

environment, and while some of the effects of this environment

would serve to reduce the stresses associated with pregnancy (e.g.

reduced metabolic stress via food provisioning, medical checkups),

other factors may have increased stress (e.g. forced confinement).

Despite these concerns, we feel confident that the estimates are

mostly sound because we obtained a mean gestation length of 228

days, a date that is consistent with previous estimates [44].

Furthermore, the imprecision in estimations of chimpanzee

conception date is biased toward reducing the number of observed

preterm deliveries, and yet we were still able to confidently identify

nine cases. Moreover, normal human pregnancy varies in length

from 37–42 weeks. Many human conceptions are estimated based

on the mother’s recollection of the date of the beginning of the last

menstrual cycle and this recollection is also subject to error.

Ultrasound is the best means to estimate gestation length.

Currently, moratoria on breeding of captive research chimpanzees

at most facilities makes difficult the use of this method (or any

other) of estimating gestation in humankind’s closest relatives.

Finally, we note that there are no estimates of the preterm delivery

rate in wild chimpanzees.

Figure 4. A candidate survivor of preterm delivery in
chimpanzees. This photograph shows a chimpanzee that was born
blind and potentially premature.
doi:10.1371/journal.pone.0024509.g004
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Evolutionary implications of this study
Animals have developed different strategies to balance repro-

ductive output and fitness costs. In the primate family Hominidae

[45,46], in which humans and chimpanzees are members, this

balance has focused on a strategy in which few infants are born

and in which post-natal parental investment is great [47]. Indeed,

the pattern of increased parental investment in offspring is a

characteristic feature of all anthropoid primates – the group of

primates that is made up of apes (including humans) and both Old

and New World monkeys [46]. That anthropoids are character-

ized by relatively long gestations [48] suggests that they possess

evolutionarily derived similarities in their underlying reproductive

biology. The average inter-birth interval in wild chimpanzees is

approximately five years [49] and it has been shown that humans

with high parity rates are subject to reduced fitness [28]. The rate

of preterm birth in wild chimpanzees is unknown. In some

chimpanzee facilities, infants were often removed from their

mothers who would then stop lactating, resume ovarian cycles,

and be available for breeding in a timely fashion. However, this

practice never occurred at PFA. Therefore, this aspect of the life

histories of PFA chimpanzees is likely to be similar to behavior

among wild born chimpanzees. It is notable that, in the one case of

twins at the PFA, these twins were born prematurely and died

shortly after birth. In the wild, chimpanzee twins are rare, and are

known to do poorly because it is very difficult for the mother to

carry and feed both infants adequately. In the best-documented

case, the twins struggled, and one of the infants died of pneumonia

[50]. Taken together, these observations suggest a commonality in

reproductive selective pressures faced by humans, chimpanzees,

and possibly other anthropoids.

The present study raises questions about the evolution of

parturition in primates and other mammals. Many have

considered that there must be a ‘‘trigger’’ that initiates parturition

in mammals. Moreover, the fetus or placenta may initiate

parturition at the point sufficient fetal developmental maturity

necessary for survival has been reached. Searches for the ‘‘trigger’’

for parturition have been successful in mammal species such as

sheep, in which it has been shown that progesterone stops being

produced just before the onset of labor [51]. It is unclear what the

causes the initiation of labor in humans and other catarrhine

primates because circulating levels of progesterone do not decrease

before the onset of labor. Several mechanisms have been proposed

including the functional withdrawal of progesterone [52,53], the

increase of surfactant production [54], and the increase in levels of

corticotropin releasing hormone [23]. However, further work is

required to confirm the causal role of these proposed mechanisms.

Ellison [55] has proposed that the metaphor of a trigger for

parturition may be inappropriate in the case of human parturition.

Instead, he has developed what is called the crossover hypothesis.

In this hypothesis it is suggested that parturition is a result of fetal

growth outpacing the ability of the mother to provide sufficient

resources to the developing fetus. The precise timing of the

crossover of maternal supply and fetal demand results in an

average gestation of 280 days in humans and 228 days in

chimpanzees. Ellison further argues that crossover does not result

in immediate parturition. Instead, the fetus begins to starve, and

this fetal metabolic stress results in increased cortisol production.

Eventually, Ellison has suggested fetal metabolic stress initiates

increased arachidonic acid production in the placenta, which

eventually results in increased prostaglandin production. At this

tipping point uterine contractions occur and ultimately a baby is

born.

There are several lines of evidence that make Ellison’s crossover

hypothesis attractive. First, the cervix requires several weeks to

soften, ripen and dilate [56], suggesting that the preparation for

labor is mediated during an ongoing process rather than by a

discrete event. Moreover, there is evidence that human gestation

length can be affected by metabolic demands placed on mothers.

For example, during the Nazi occupation of the Netherlands

birthweights decreased in association with the reduction of calories

available to Dutch mothers [57]. Conversely, classic studies

conducted in the Gambia showed that caloric supplement

treatments given to pregnant women who normally experienced

nutritional stress resulted in a reduced number of births of low

birthweight infants [58].

If the crossover hypothesis is a reasonable way to understand the

process of parturition in humans, it is necessary to ask when during

the evolutionary past this emerged. Ellison argues that the

crossover hypothesis can be explained by the massive encephaliza-

tion seen in the human lineage after diverging from the

chimpanzee lineage. This encephalization requires the mother to

provide a relatively large supply of glucose to the developing fetal

brain, delivered via the placenta during gestation and via milk

during infancy and early childhood. Moreover, humans, chim-

panzees, and other anthropoids all possess invasive, hemochorial

placentas, and Ellison suggests that transport of glucose is

facilitated by the intimate contact between fetal and maternal

circulations in species with hemochorial placentation. The

maximum amount of placenta glucose transport is ten times

greater in humans vs. sheep, a species with a less invasive

epitheliochorial placenta. Recent phylogenetic studies have

conclusively demonstrated that the hemochorial form of placen-

tation was present at the time of the last common ancestor of

primates, and this placental type was also likely present at the time

of the last common ancestor of placental mammals [59,60].

However, even though the anthropoid primates all possess

hemochorial placentas it is only the African ape clade (gorillas,

chimpanzees, and humans) in which the trophoblast invades all

the way into the inner myometrium [61]. This deep invasion has

been argued to be responsible for advanced fetal brain

development and lack of invasion has been associated with

preeclampsia, an obstetrical syndrome also seen only in the

African apes [61]. Thus, ape specific invasion of the trophoblast

into the myometrium renders it anatomically plausible that the

crossover hypothesis may apply to chimpanzees and gorillas, as

well as to humans.

The crossover view of parturition further implies a range of

variation in gestation length in association with the metabolic

demands placed on the mother as well as the metabolic demands

placed on the fetus. The present study demonstrates that the mean

gestation length of chimpanzee pregnancy is 228 days, but our

data also demonstrate a 40-day normal range of variation in

chimpanzee gestations. This normal range highlights the ability of

individual chimpanzees to adjust to the metabolic conditions faced

during their pregnancy instead of strict adherence to a strict

developmental program. Despite this apparent flexibility in the

length of gestation, we found that there were limits to viability, and

those chimpanzees born before 200 days were never viable.

Advances in obstetrics, perinatology, and neonatology have

enabled humans born as early as 22 weeks into gestation to survive

and live productive lives [62]. However, these advances are recent,

and human infants born preterm (i.e. ,37 weeks) in the recent and

distant past usually died. The current study suggests that

chimpanzee viability without obstetric intervention is approxi-

mately 200–208 days. Advances in medicine have made viability

of human preterm infants a possibility as early as 22 weeks, but this

would not have been the case during most of our evolution.

Remembering the discrepancies between the two species in terms
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of calculating conception date, it is possible to infer that the 200-

day threshold for viability in chimpanzees reported in the current

work is roughly equivalent to 31 weeks of human gestation. If this

was the threshold of viability for infants at the time of the last

common ancestor of humans and chimpanzees we can infer that

chimpanzees normal gestation length is 20 days after reaching

viability, but humans is approximately 50 days beyond. Thus,

humans require more time than chimpanzees in the womb before

they are able to pass Ellison’s tipping point according to the

crossover hypothesis.

This lengthening of human gestation is ironic given the

anatomical constraints placed on human parturition due to the

pelvic and neuroanatomical adaptations that humans have

evolved. Humans have the longest gestation amongst hominids

[63], therefore it is parsimonious to assume that human gestation

length has increased since we last shared a common ancestor with

chimpanzees. This increase can partly be explained by the

increase in body size, human females weigh on average 12

kilograms more than chimpanzee females [63]. However,

mountain gorilla females are larger than human females by 10–

40 kilograms [63] yet their gorilla gestations are on average 26

days shorter than their human counterparts [64]. Therefore, there

must have been a selective advantage that outweighed the cost of

difficult parturition in the human species. Humans require a

longer gestation despite the fact that they are born at a generally

more altricial stage of development than chimpanzees [22]. The

likely solution to this apparent evolutionary paradox is that

prolonged intrauterine brain development provides an advantage

that outweighs the cost of prolonged labor. Indeed, late-preterm

human infants have increased relative risk for developmental delay

[65], intellectual disability [66], and psychological disorders [67].

Taken together, these findings suggest that the increase in

gestation length in humans may have facilitated the evolution of

higher cognitive abilities. This implies that humans must cross a

gestational threshold time longer than the inferred mean gestation

length of the last common ancestor of humans and chimpanzees in

order to reduce the risk of cognitive deficits. These insights are

only possible with the current data on the mean and range of

chimpanzee gestation length.

Conclusions
This study documents pregnancy loss and normal gestation

in captive chimpanzees. We documented spontaneous abortions,

preterm delivery, and perinatal death in captive chimpanzees. We

can conclude that the vast majority of pregnancies studied were

normal, term pregnancies that resulted in healthy offspring. As in

humans, pregnancy loss is not uncommon in chimpanzees,

although we were not able to document pre-clinical pregnancy

loss. Further work needs to be done in measuring the length of

gestation and other relevant parameters in non-human primates in

order to understand the evolutionary origins and consequences of

preterm parturition in mammals.
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