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Abstract

The availability of sequence specificities for a substantial fraction of yeast’s transcription factors and comparative genomic
algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites
genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast,
focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of
TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a
wider range in TATA promoters than in TATA-less promoters. In contrast, a group of 6 ‘proximal promoter motifs’ (GAT1/
GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong
preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-
initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in
TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with
different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and
nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be
operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match
between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement
between transcription factor binding site density and nucleosome depletion suggests a direct and general competition
between transcription factors and nucleosomes for binding to promoters.
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Introduction

Large-scale ChIP-chip and protein-microarray experiments,

e.g. [1–3], have made it possible to identify the sequence

specificities of a large number of transcription factors (TFs) in

the yeast Saccharomyces cerevisiae. The sequence specificities of TFs

are generally represented as position specific weight matrices

(WMs) and using these WMs in combination with sophisticated

comparative genomic algorithms for transcription factor binding

site (TFBS) prediction, it is now possible to obtain fairly

comprehensive annotations of the TFBSs occurring across yeast

promoters [4,5]. Having such comprehensive TFBS annotations

available across promoters genome-wide in turn allows for a

rigorous and quantitative study of the ‘grammar’ of this

transcriptional regulatory code. Several previous studies have

looked at the distributions of the number of binding sites per TF

and per intergenic region, co-occurrence of TFBSs for different

transcription factors, and similar statistics, e.g. [6–9].

Using data from several high-throughput methods, comprehen-

sive annotations of transcription start sites (TSSs) in yeast have also

become available recently [10–13], and this allows us to study the

precise positioning of TFBSs relative to TSSs. In a preliminary

study [8], we showed that different TFs show very distinct

positional preferences relative to TSS. Here we extend this work

by comprehensively studying the positioning of TFBSs relative to

TSS across all yeast promoters, and identify novel classes of non-

TATA promoters which are characterized by the occurrence of

alternative proximal promoter motifs.

TATA sites, also called TATA boxes, which are recognized by

TATA-binding protein in mammals and by SPT15 in Saccharomyces

cerevisiae, are well-known core promoter elements which are known

to have very specific positional preferences relative to TSS. In

particular, in mammalian promoters the distribution of TATA

sites is sharply peaked at about 23{28 base pairs upstream of TSS

[14]. Interestingly, in yeast the distribution of TATA sites peaks

much further upstream, i.e. at about 80 base pairs upstream of

TSS, and is generally broader [15]. Several lines of recent

evidence strongly suggest that, in yeast, the pre-initiation complex

(PIC) is recruited further upstream than in mammals, and then

‘scans’ downstream from its place of initial recruitment, until it

encounters a initiator site where it then initiates transcription

[16,17]. Although standard textbook descriptions of core promoter
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architecture often imply that a TATA site is a characteristic

feature occurring in promoters in general, recent transcriptome

analyses have shown that, both in yeast [15] and in mammals [14],

only one sixth to one fifth of all promoters contain a TATA site.

Here we show that, besides the TATA motif, there are 6
additional ‘proximal promoter motifs’ (PPMs) whose binding sites

preferentially occur close to the TSS. By comprehensively

comparing the architecture of TATA-containing and TATA-less

promoters we show that for most motifs, TFBSs are positioned

further upstream and vary over a wider range in TATA promoters

than in TATA-less promoters. In contrast, proximal promoter

motifs occur preferentially in TATA-less promoters, and their

preference for binding proximal to TSS is largely restricted to

TATA-less promoters. By studying the sequence preference of the

yeast initiator motif we show that all PPMs exhibit sequence

similarity to the initiator motif. Moreover, by constructing profiles

of the affinity to the initiator motif of sequences upstream of the

TSS, we present evidence suggesting that the PIC is initially

recruited at the location where TATA is found in TATA

promoters, and at the location where other PPMs are found in

TATA-less promoters. We show that TATA-less promoters can be

classified according to the PPM that they contain, and show that

different classes of promoters show different patterns of TFBS

positioning and nucleosome coverage. Moreover, we demonstrate

that there is a close match between regions of highest predicted

TFBS density, and nucleosome free regions, suggesting a general

competition between nucleosomes and TFs for binding DNA.

Results

TFBS distributions relative to TSS identify seven proximal
promoter motifs

As we have described previously [5,8,18], we used comprehen-

sive ChIP-chip data in combination with known regulatory sites

from the literature and motif finding algorithms, to curate a set of

79 high confidence positional weight matrices representing yeast

TFs. As also described previously [19], we have developed

sophisticated Bayesian probabilistic algorithms that, given a set

of WMs and multiple alignments of intergenic sequences as input,

predict TFBSs using explicit models of the evolution of TFBSs,

neutrally evolving background sequences, and sequences that are

under purifying selection for other reasons. Using these algorithms

on multiple alignments of intergenic regions of Saccharomyces

cerevisiae and the 4 other sensu stricto Saccharomyces species that have

been sequenced, we predicted TFBSs for the 79 WMs across all

yeast intergenic regions.

Finally, using experimentally determined TSSs [10–12] we then

determined, for each TF, the distribution of its binding sites

relative to TSS. As shown in Fig. 1A, when summing sites for all

TFs, there is a strong peak in TFBS density a little over a 100 base

pairs upstream of TSS, which decays quickly in the first 100 base

pairs up- and down-stream of the peak, and shows a more slowly

decaying tail further upstream of TSS.

Interestingly, Fig. 1B shows that individual TFs show highly

distinct positional profiles with respect to TSS. To investigate this

further, we determined for each TF the position at which its

binding site density is highest. As shown in Fig. 1C, there is a

group of 11 motifs that are neatly separated off from the rest,

having a most preferred position between 65 and 85 base pairs

upstream of TSS. Manual inspection shows that these motifs fall

into 7 families (Fig. 1D): The well-known TATA motif bound by

SPT15, the family of GATA-motifs consisting of GAT1, GLN3,

and DAL80, which all bind to a motif containing GATA at its

core, the forkhead motif recognized by FKH1 and FKH2, two

motifs recognized by PBF1 and PBF2 (previously known as the

PAC motif [3,20]), and the motifs for ROX1, RPN4, and NDT80.

In the following we will call these Proximal Promoter Motifs

(PPMs). We will refer to the GAT1/GLN3/DAL80 motif as the

GATA motif, to the FKH1/FKH2 motif as the FKH motif, and to

the PBF1/PBF2 motif as the PBF motif. For the families

containing multiple motifs we will restrict our analysis from now

on to the motif with the highest number of predicted binding sites

genome-wide.

Besides showing the positional distribution of the 7 PPMs,

Fig. 1D also shows a suggested alignment of the corresponding

motifs which we determined by hand. Although the motifs are all

different, some clear similarities between the PPMs can also be

observed. For example, the cores of the GATA and TATA motifs

differ by only 1 letter, and the PBF motif differs in only 1 letter

from the GATA motif, i.e. GATGAG and GATAAG. The FKH

and ROX1 motifs share a common AACAA core, and the

CACAA motif of NDT80 differs in only 1 letter from this core. In

general, all motifs contain runs of purines interspersed by either a

single thymine or a single cytosine. We will see below that the

PPMs share these features with the initiator motif found at TSSs.

To investigate whether the positional preferences that we

observe could simply be a result of the sequence composition of

promoters relative to TSS we performed binding site predictions

on a set of randomized alignments. These randomized alignments

are constructed by permuting the original alignment columns in

such a way as to conserve the di-nucleotide frequencies as a

function of position relative to TSS, the exact gap patterns, and

the cross-species conservation patterns of the original alignments

(see Methods). For example, Fig. S1 shows that the GC-content

relative to TSS of the randomized promoters closely matches that

of the original alignments. We observe that, across all motifs, the

number of predicted binding sites on the randomized alignments is

much less than on the true promoters (Fig. S2). This strongly

suggests that only a small fraction of our predicted binding sites

result from spurious matches to local sequence composition. In

addition, we determined the most preferred positions of binding

sites on the randomized alignments for each motif and observed

that the preferred positions of the PPMs change dramatically,

showing that the preferred positions of the PPMs on the true

alignments are not a function of local sequence composition (Fig.

S3). Finally, as shown in Fig. S4, on the randomized alignments

the PPMs show little evidence of preferred positioning relative to

TSS at all. Together these results show conclusively that the

occurrence of a set of PPMs, and the positional preferences of

motifs in general, cannot be explained in terms of di-nucleotide

frequencies across promoters.

Architecture of TATA and TATA-less promoters
As we mentioned in the introduction, only between one sixth

and one fifth of all yeast promoters contain a TATA site. Given

this, we wondered whether the other PPMs may play a role in

TATA-less promoters, and whether the TFBS architecture, in

general, may differ between TATA and TATA-less promoters. A

previous study [15] used a combination of experimental data and

computational analysis to determine all TATA promoters in yeast

and we used this to evaluate TFBS distributions, separately in

TATA and TATA-less promoters. Figure 2 shows that TFBSs

occur in general closer to TSS in TATA-less promoters, and that

there is a much longer tail of TFBSs occurring further upstream in

TATA promoters.

Comparisons of the expression profiles of TATA-containing

and TATA-less promoters have indicated that TATA-less

promoters are enriched for house-keeping genes that are expressed

Proximal Promoter Motifs in Yeast
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in a fairly constitutive manner, whereas TATA-containing

promoters show more variability in expression, and are often

induced in response to various stresses [15,21]. This ‘inducible’

feature of TATA-containing promoters has been associated with

characteristics of their nucleosome occupancy [22,23], which in

general shows more nucleosome coverage immediately upstream

of TSS. In parallel to the study of the positioning of TFBSs in

different promoters we thus also decided to study nucleosome

coverage patterns across different sets of promoters. We produced

nucleosome occupancy profiles for each promoter, using data from

[24], and Fig. 2 shows the average nucleosome coverage in TATA

and TATA-less promoters (see Methods). Our results confirm that

TATA promoters have more nucleosome coverage on average.

Moreover, the nucleosome coverage closely mirrors the TFBS

distributions in that the region of minimal nucleosome coverage is

shifted further upstream in TATA promoters, and there is a much

longer tail upstream, in contrast to TATA-less promoters where

the ‘nucleosome free region’ (NFR) has a more clearly defined

position nearer to the TSS.

We next investigated the distribution of TFBSs for individual

TFs in TATA and TATA-less promoters. Consistent with the

pattern shown in Fig. 2, for the large majority of TFs we find that

the binding sites are positioned further upstream in TATA

promoters than in TATA-less promoters. The top two panels of

Fig. 3 show two examples of the typical behavior exhibited by most

TFs, i.e. the positional distribution of binding sites for PDR1/3

and CBF1 are shifted upstream by a few tens of base pairs in

TATA promoters relative to TATA-less promoters.

The bottom two panels of Fig. 3 show examples of the most

extreme behavior that we observe. For the TF GCN4 there is

essentially no change in the positional distribution of binding sites,

whereas for MCM1 the distribution is shifted almost 100 base

pairs upstream in TATA promoters.

For each TF we also investigated nucleosome coverage in the

subset of promoters that contain a binding site for the TF, again

separately for TATA and TATA-less promoters. To this end we

averaged nucleosome coverage patterns over all promoters,

weighting each promoter with the probability that at least 1
binding site for the TF in question occurs in the promoter (see

Methods). Strikingly, we find that, in general, the nucleosome

coverage follows precisely the TFBS positioning (Fig. 3). That is,

the region of lowest nucleosome coverage generally occurs

Figure 1. Distribution of predicted TFBSs relative to TSS and proximal promoter motifs. The horizontal axes in panels A, B, and D show
the location relative to TSS, where upstream positions are denoted by negative numbers. A: The vertical axis shows the total number of sites as a
function of position summed over all 79 WMs and all promoter regions, with the solid line showing a smoothed version of the raw distribution (dots).
B: TFBS distributions for several example TFs. The vertical axis shows smoothed frequency of site occurrence as a function of position for the TFs
SPT15 (TATA binding protein), GAT1, SUM1, MCM1, CBF1, and REB1. C: Cumulative distribution of the position of highest TFBS density. Each dot
corresponds to one motif. Only the 69 motifs with a sufficient number of predicted TFBSs were used, see Methods. D: TFBS distributions relative to
TSS for the proximal promoter motifs ROX1 (gray), FKH1 (dark blue), SPT15 (red), GAT1 (green), PBF1/2 (pink), RPN4 (light blue), and NDT80 (black).
The inset shows a suggested alignment of the corresponding motifs.
doi:10.1371/journal.pone.0024279.g001

Proximal Promoter Motifs in Yeast
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precisely in the region where the density of TFBSs for the

corresponding factor is highest. In particular, the amount of the

upstream shift in TATA-containing promoters of the TFBS

profiles for the 4 different TFs shown in Fig. 3 is matched closely

by the amount by which the region of lowest nucleosome coverage

shifts upstream for the subsets of promoters containing binding

sites for the corresponding TF. The close match between the

nucleosome-free region and TFBS positioning is further supported

by Fig. S5, which shows the distribution of TFBSs in subsets of

promoters that have their region of lowest nucleosome coverage at

different positions relative to TSS.

Proximal promoter motifs show preferential positioning
and binding in TATA-less promoters

The results so far have shown that there is a clear difference in

the promoter architecture of TATA-containing and TATA-less

promoters. In particular, TFBSs are positioned further upstream

in TATA promoters, and the region of lowest nucleosome

coverage closely matches the region of highest TFBS occurrence.

To investigate the potential role of the PPMs in TATA-containing

and TATA-less promoters we measured their binding site

positioning in both classes of promoters.

Figure 2. Positional distribution of TFBSs and nucleosomes in
TATA and TATA-less promoters. The top two lines show the positional
distributions of TFBSs summed over all 79 motifs in TATA (red) and TATA-less
promoters (green). The inset shows the total number of TFBSs in TATA and
TATA-less promoters. The bottom two curves show the average nucleosome
coverage (see Methods) in TATA (red) and TATA-less promoters (green).
doi:10.1371/journal.pone.0024279.g002

Figure 3. Positional distributions of TFBSs for individual TFs (upper curves) and average nucleosome occupancy profiles (lower
curves) for promoters containing at least one TFBS for the corresponding TF, separately for TATA promoters (red) and TATA-less
promoters (green). The 4 panels show results for the TFs PDR1/3 (top left), CBF1 (top right), GCN4 (bottom left), and MCM1 (bottom right). In each
panel, the position relative to TSS is indicated along the horizontal axis and the density of TFBSs (positive values) and nucleosome coverage (negative
values) are shown along the vertical axis. The insets show the total number of predicted TFBSs in TATA and TATA-less promoters for the
corresponding TF.
doi:10.1371/journal.pone.0024279.g003
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We first determined binding site positioning for the TATA motif

itself in TATA-containing and TATA-less promoters. Figure 4

confirms that SPT15 shows clearest positioning in TATA-

containing promoters. Interestingly, in TATA-less promoters a

weaker peak in TATA site density is observed further upstream of

TSS. Manual inspection has shown that these putative TATA sites

occur at the 39 ends of upstream neighboring genes and overlap

TATATA motifs which match so called ‘efficiency elements’ that

have been shown to play an important role in polyadenylation in

yeast [25–27]. It is thus possible that these are false positive

predictions resulting from the similarity between TATA sites and

polyadenylation efficiency elements. On the other hand, one might

speculate that, if the TATA and efficiency element motifs are so

similar, SPT15 might in fact bind to these efficiency elements

under certain conditions. Indeed recent Chip-chip data [28]

confirms that SPT15 binds at the 39 ends of genes, although this

observation has been interpreted to result from circularization of

the DNA [29,30], and the data appear to indicate that the

positions of the observed SPT15 binding do not precisely match

the location of efficiency elements, i.e. the data suggest strongest

SPT15 binding immediately downstream of the 39 end, whereas

the polyadenylation motifs occur immediately upstream of the 39

end.

We next considered TFBS positioning of the other PPMs.

Strikingly, in contrast to other TFs (Fig. 3), the PPMs (with the

exception of NDT80) do not show an upstream shift in TATA

promoters. Instead, their preferred positioning proximal to the

TSS is largely restricted to TATA-less promoters, whereas in

TATA promoters there is a much less defined positioning of these

PPM sites. The only exception to this trend is ROX1, which shows

clearer positioning in TATA promoters. These results strongly

suggest that these PPMs play a specific role in TATA-less

promoters. Nucleosome occupancy profiles confirm this picture.

We classified promoters according to the position of the region

with minimal nucleosome occupancy, and calculated TFBSs

positional distributions for the PPMs, separately in each of these

promoter classes. We find that, with the exception of SPT15, all

PPMs have the highest density of TFBSs in the class of promoters

that has the region of minimal nucleosome coverage close to the

TSS (Fig. S6), which tend to be TATA-less promoters.

As a further support of the preference of PPMs for TATA-less

promoters we also investigated directly to what extent the PPMs

avoid TATA-containing promoters. For each of the PPMs other

than SPT15, and for each TSS, we assigned the PPM to the TSS

when a binding site with posterior probability of at least 0:5
occurred near the preferred TFBS position, i.e. within +40 base

Figure 4. Positional distributions of TFBSs and nucleosome occupancy profiles for proximal promoter motifs in both TATA (red)
and TATA-less (green) promoters. Each panel corresponds to one of the proximal promoter motifs. In each panel, the position relative to TSS is
indicated along the horizontal axis and the density of TFBSs (positive values) and nucleosome coverage (negative values) are shown along the vertical
axis. The insets show the total number of predicted TFBSs in TATA and TATA-less promoters for the corresponding motif.
doi:10.1371/journal.pone.0024279.g004
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pairs of the position with highest TFBS density for that PPM.

Using a standard hyper-geometric test, we then evaluated whether

PPMs are assigned less frequently to TATA promoters than to

TATA-less promoters. We find that the FKH, GATA, PBF, and

NDT80 PPMs are clearly under-represented in TATA promoters

(table 1). For RPN4 and ROX1 we find no significant difference

between TATA and TATA-less promoters.

Affinity to the initiator motif in TATA and TATA-less
promoters

As mentioned in the introduction, in yeast TATA sites are

located significantly further upstream of TSS than in mammalian

promoters, and there are various lines of experimental evidence

suggesting that the pre-initiation complex (PIC) is initially

recruited a substantial distance upstream of TSS, after which it

‘scans’ downstream toward the TSS and initiates transcription at

this site, e.g. [16,17,31].

Besides the TATA motif, another core promoter motif that has

attracted considerable attention is the initiator motif, see e.g.

[32,33], which characterizes the sequence patterns at the initiation

site. We first checked whether there are any systematic differences

between the initiator motif in TATA and TATA-less promoters by

constructing initiator motifs separately from TSSs in TATA and

TATA-less promoters (see Methods) and found that there is no

clear difference between the initiator in TATA-containing and

TATA-less promoters. To construct an overall initiator motif for

all promoters we proceeded as follows. Using the TSS datasets of

[10,11], we extracted small sequence regions around TSSs that

occur in both datasets and which are the unique TSS for their

respective promoters. We then build a position-specific weight

matrix from these sequences as an initial ‘seed’ for the initiator

motif. Next we scored all TSS sequences for this ‘seed’ WM and

constructed an updated initiator motif from the 10% of TSSs with

highest score for the seed WM (shown in the inset of Fig. 5). As

known from the literature [10], the first base in the transcript

(which we denote by zero) is occupied by an A nucleotide,

preceded by a C or T. Positions {3 to {9 show a clear

preference for purines.

The fact that there is no difference between the initiator in

TATA-containing and TATA-less promoters suggests that there is

no systematic difference in the mechanism of initiation site

selection in TATA and TATA-less promoters. Furthermore, we

reasoned that just as TF motifs represent the binding specificities

of TFs, so the initiator motif may represent the binding specificity

of the PIC. Therefore, by systematically comparing the matches to

the initiator motif of the sequences upstream of TSS, both in

TATA and TATA-less promoters, we may identify which

locations upstream of TSS have higher and lower affinity for the

PIC, and maybe gain insight into where the PIC is initially

recruited.

For every known TSS, from both data sets, we extracted the

DNA sequence from 160 bp upstream to 20 bp downstream

(whenever the intergenic region was long enough) and recorded

the WM score to the initiator motif at each position. We show the

average of several thousand profiles obtained this way in Fig. 5,

separately for TATA and TATA-less genes. We imagine that the

profiles in Fig. 5 indicate the average sequence affinities (or

binding energies) of the PIC to the sequences at different positions,

so that the PIC will spend more time in areas where the affinity is

high, and scans (or diffuses) more quickly through areas where the

affinity is low. As expected, we find a strong peak in the PIC

affinity at the TSS in both promoter classes. Interestingly, both

promoter classes then show a minimum in PIC affinity in the

region immediately upstream of the TSS, and a second maximum

in PIC affinity further upstream.

Importantly, the locations of these second maxima clearly

distinguish TATA-containing promoters from TATA-less promot-

ers, with the maximum occurring significantly further upstream in

TATA promoters. The affinity profiles are suggestive of a process

in which the PIC is initially recruited at the upstream peak, after

which it would quickly scan through the low affinity region, to

finally ‘lock in’ at the strong initiator motif at the TSS. Most

importantly, however, from the point of view of PPM analysis, is

the fact that the location of the upstream peak in PIC affinity in

the TATA promoters corresponds to the position where the

highest density of TATA sites is found (see Fig. S7), and the

location of the upstream peak in PIC affinity in TATA-less

promoters corresponds to the location where the highest density of

the other PPMs is found. This result suggests that these other

PPMs may interact directly with the PIC in TATA-less promoters.

Finally, we note that, although not very specific, there is a clear

similarity between the initiator motif and the PPMs: all of these

motifs contain runs of purines interrupted by a pyrimidine (see

Table 1. Under-representation of proximal promoter motif
occurrence in TATA promoters.

Motif p-value

FKH 6:4|10{9

RPN4 0:16

PBF1/2 3:1|10{8

ROX1 0:22

GATA 1:2|10{3

NDT80 7:7|10{5

For all PPMS motifs except RPN4 and ROX1, the motifs are statistically
significantly more likely to occur in TATA-less than TATA promoters.
doi:10.1371/journal.pone.0024279.t001

Figure 5. Estimated average affinity profiles for the initiator
motif. The horizontal axis shows position relative to TSS and the
vertical axis shows the average WM score at the corresponding position,
averaged over all TATA (red) and TATA-less (green) promoters. The inset
shows the initiator motif. The upstream maximum in TATA promoters
corresponds to the preferred position of the TATA motif, and the
upstream maximum in the TATA-less promoters corresponds to the
preferred position of alternative PPMs in TATA-less promoters.
doi:10.1371/journal.pone.0024279.g005

Proximal Promoter Motifs in Yeast
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Fig. 1D). This is consistent with the hypothesis that the PIC is

initially recruited to the area where PPMs are found in both

TATA and TATA-less promoters.

Classifying promoters by PPM
As a final comparison of the PPMs we classified promoters

according to the PPMs that they contain. For each TSS we

calculated a score for each PPM based on the quality and the

position of sites for that PPM (see Methods). We then assigned

each TSS to the PPM with the highest score. Note that a TSS can

remain without an assigned PPM if no PPM motif occurs in an

appropriate position upstream of the TSS. To test the robustness

of our results to changes in TFBS prediction methodology, we

obtained results both using a ‘lenient’ setting of parameters that

maximizes sensitivity and a ‘strict’ parameter setting that

maximizes specificity (see Methods). As shown in table 2, whereas

the number of promoters that are not assigned to any PPM

depends strongly on whether sensitive or specific TFBS predictions

are used, the relative fractions of TSSs assigned to different PPMs

vary much less. In particular, about 30% of TSSs that have an

assigned PPM are assigned to the TATA motif, and the TSSs are

relatively evenly divided among the other PPMs.

We then determined the overall frequency, positional distribu-

tion of TFBSs, and nucleosome coverage, for each set of TSSs

assigned to one of the PPMs, and for the set of TSSs that are not

assigned to any of the PPMs. Strikingly, the profiles that we obtain

clearly identify three classes of promoters (Fig. 6). Promoters

assigned to PBF or RPN4 show the narrowest distribution of

TFBSs and these promoters also show by far the strongest

nucleosome free region. Promoters assigned to GATA, FKH,

ROX1, and NDT80 form the second class with peaks in TFBS

density that are less steep, and nucleosome free regions that are

correspondingly less deep than those for PBF and RPN4

promoters. Finally, promoters assigned to TATA and those

having no PPM assigned show the weakest positioning of TFBSs

and show by far most nucleosome coverage. It is also interesting to

note that, among all classes of promoters, TATA promoters have

the highest overall frequency of TFBSs, whereas promoters

without any PPM assigned have the lowest overall frequency of

TFBSs. In summary, by classifying promoters according to the

PPM they contain, we find that different classes of promoters show

clearly distinct TFBS positioning and corresponding nucleosome

coverage profiles.

Discussion

Starting from a genome-wide annotation of TFBSs for 79 yeast

regulatory motifs, we comprehensively studied TFBS positioning

and nucleosome coverage profiles across Saccharomyces cerevisiae

promoters. We uncovered that TATA-box containing and TATA-

less promoters have significantly different architectures. Compared

to TATA-less promoters TATA promoters show an overall lower

number of TFBSs per promoter, these TFBSs occur further

upstream of TSS on average, and show a wider distribution of

distances with respect to TSS. We find that the TFBS profiles

closely mirror nucleosome coverage profiles, i.e. TATA promoters

have higher nucleosome coverage, the region of lowest nucleo-

some coverage occurs further upstream, and the region of lowest

nucleosome coverage is more sharply defined in TATA-less

promoters.

There recently has been a large amount of investigation into the

mechanisms that determine nucleosome positioning, and the

extent to which nucleosome positioning is determined by intrinsic

sequence preferences of the nucleosomes is currently actively

disputed, see [34–38]. Since nucleosome positioning is not the

main topic of this work, we do not wish to enter into this debate

here. However, we do note that the remarkably close and

consistent match that we observed between TFBS density profiles

and nucleosome coverage profiles across different subsets of

promoters, strongly suggests that competition between TFs and

nucleosomes for binding to DNA likely plays an substantial role in

shaping nucleosome occupancy profiles in yeast promoters.

Whereas the position of overall highest TFBS density occurs

more than 100 bps upstream of TSS, the TATA motif itself has

highest density more proximal to TSS, i.e. at approximately

80 bps upstream of the TSS. This is still considerably further

upstream than the location of the TATA-box in mammals,

where it occurs about 25 bp upstream of TSS, and there is

considerable evidence [16,17] that, in yeast, the PIC is recruited

significantly upstream of TSS and then ‘scans’ down the

upstream sequence until it encounters the site where it initiates

transcription. To investigate this scanning process we construct-

ed an initiator motif, i.e. representing the sequences at the

initiation site, and established that it is essentially identical in

TATA and TATA-less promoters. Moreover, in TATA

promoters the initiator motif has a maximum both at the TSS

and at the position of highest density of TATA sites, suggesting

that the PIC may initially be recruited to the position of the

TATA sites, and start its scanning from this position. We also

saw that in TATA-less promoters this peak in affinity of the

initiator motif occurs closer to the TSS.

A key result of this study is that, besides the TATA motif, there

are an additional 6 regulatory motifs that also preferentially occur

proximal to TSS, i.e. between 65 and 85 bps upstream of TSS.

These alternative proximal promoter motifs occur preferentially in

TATA-less promoters and their positioning proximal to TSS is

observed predominantly in TATA-less promoters. Moreover, the

position of highest density of alternative PPMs in TATA-less

promoters corresponds to the position at which the second

maximum in initiator affinity occurs, suggesting that, just as the

PIC is initially recruited to the TATA site in TATA promoters, in

TATA-less promoters the PIC may be initially recruited to

alternative PPMs. In addition, we showed that TATA-less

promoters can be classified based on the PPM they contain, and

that different classes of TATA-less promoters show distinct TFBS

and nucleosome coverage distributions. Figure 7 provides a

diagrammatic summary of the differences in architecture of

TATA and TATA-less promoters identified in this study.

Table 2. Classification of TSS.

Motif specific sensitive

no PPM 67% 8%

TATA 31% 26%

FKH1 13% 8%

RPN4 12% 6%

PBF1/2 12% 6%

ROX1 13% 12%

GAT1 9% 13%

NDT80 10% 29%

Total non-TATA 69% 74%

Fractions of all TSSs assigned to different proximal promoter motifs using
parameters that produce either specific or sensitive predictions. The percentage
of ‘no PPM’ in the first row is with respect to the set of all TSS. All other
percentages are with respect to the subset of TSSs that have a PPM assigned.
doi:10.1371/journal.pone.0024279.t002
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Our results establish that many of the TATA-less promoters are

characterized by the occurrence of alternative PPMs, and suggest

that these play a crucial role in regulating transcription at these

TATA-less promoters. The main question that now arises is what

the precise functional role of these alternative PPMs is, and how

their function relates to that of the TATA-box. With respect to the

latter, although only about 20% of promoters contain a TATA-

box, the TATA binding protein SPT15 is recruited to all

promoters, and is generally required for transcription [39,40].

Although the precise mechanism of function of the TATA site

remains elusive, it is clear that at TATA promoters the TATA site

is required for proper transcription [15], and one could imagine

that the TATA site is requirement for recruitment of the PIC.

The simplest hypothesis for the functioning of the alternative

PPMs, which is consistent with all our results, is to assume that

they ‘replace’ the TATA site in TATA-less promoters, i.e. that

these PPM sites are directly involved in recruiting the PIC.

However, a review of the literature on the PPM motifs is at odds

with this simple interpretation.

First, GATA sites are generally found upstream of genes that are

subject to nitrogen catabolite repression [41]. Very roughly, in

nitrogen-rich media these sites are bound by the repressors DAL80/

GZF3 while in nitrogen-poor media the sites are bound by GAT1

and GLN3, activating their target genes. Moreover, the signaling of

nitrogen availability is mediated by the TOR1 complex [42] with

both GLN3 and GZF3 interacting directly with Tor1p [43,44]. In

addition, there is a significant amount of cross-regulation between the

GATA factors themselves, including binding to each other’s

promoters [44]. Thus, activator and repressor GATA TFs compete

for binding to the GATA sites, and depending on nitrogen availability

this competition will favor either the activating or repressing factors.

Thus, although there is a reported case in the literature of a GATA

site being recognized by TATA binding protein [45], the main

function of the motif appears to be in mediating either repression of

activation of genes in response to nitrogen levels.

The NDT80 motif is another example of a motif where a

repressor and an activator TF compete for binding to target sites.

NDT80 is a meiosis-specific TF that is required for exit from

pachytene and that activates middle sporulation genes. During

mitosis and in the vegetative state the same binding sites, which are

also called middle sporulation elements (MSEs), are bound by the

repressor SUM1, i.e. SUM1 acts as a brake on meiosis [46,47].

Figure 6. Positional distribution of TFBSs and nucleosomes in promoters assigned to different proximal promoter motifs. Left panel:
Overall positional distributions of TFBSs (summed over all 79 motifs) relative to TSS in the sets of promoters assigned to different PPMs. The inset
shows the average number of TFBSs per promoter for each of the PPMs. Right panel: Average nucleosome coverage profiles for the sets of promoters
assigned to different PPMs.
doi:10.1371/journal.pone.0024279.g006

Figure 7. Diagrammatic summary of the architecture of TATA (left panel) and TATA-less (right panel) promoters. Indicated are the
maximum and inter-quartile range of the distributions of all TFBSs and the TFBSs for individual PPM motifs. Also shown are the affinity profiles with
respect to TSS of the initiator motif, and the distribution of the position of the translation start codon.
doi:10.1371/journal.pone.0024279.g007
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Thus, as for the GATA motif, in nutrient-rich conditions the target

sites are bound by a repressor, whereas under starvation, when the

cells go into sporulation, the repressor is replaced by an activating

TF.

A similar function applies to the third proximal promoter motif,

ROX1. ROX1 is a heme-dependent repressor of hypoxic genes,

i.e. under aerobic conditions ROX1 binds to its target sites while

under anaerobic conditions its targets are derepressed [48].

However, the fact that ROX1 is associated mostly with TATA

promoters makes it a somewhat special case.

Fourth, the forkhead transcription factors FKH1 and FKH2 are

key regulators of the cell-cycle in yeast, targeting the CLB2 cluster

of genes which includes the downstream TFs SWI5 and ACE2

[49]. The two forkhead factors often compete for binding to the

same promoters [50] and interact with different chromatin

remodeling complexes to repress target genes during the G2/M

and G1 phases of the cell cycle [51]. Thus, like in the previous

examples, the forkhead TFs can act as repressors on their targets,

effectively implementing a check-point that is released when they

are displaced from their target sites.

Fifth, the PAC (Polymerase A and C) motif is found in the

promoters of ribosome biogenesis and rRNA genes and it has

recently been shown to be bound by the TFs PBF1 and PBF2

[3,20]. It has become clear that both PBF1 and PBF2 act as

repressors on their targets genes and are activated upon stresses

such as heat shock or nutrient signals, with the two TFs being

responsive to different stress signals [52]. It is as of yet not clear

whether any other (activating) TF may bind to PAC sites under

nutrient-rich conditions. The PBF motif thus seems to implement

a similar check-point on nutrient availability, releasing its target

ribosome biogenesis genes from repression when sufficient

nutrients are available.

Finally, RPN4 is an activator of 26S proteasome genes which is

itself rapidly degraded by the proteasome, generating a negative

feed-back loop that controls proteasome homeostasis [53]. RPN4

expression is controlled by stress responses and the feed-back loop

between RPN4 expression and the proteasome is important for

cell viability under various stresses [54]. Thus in contrast to all

other examples which involved binding by either repressors or

competition between repressing and activating TFs for binding to

the PPM, the RPN4 sites seem to be mainly targeted by the

activator RPN4. However, RPN4 clearly plays a role in response

to various stresses.

In summary, it appears that all PPMs are involved in

responding to environmental stresses, often involving nutrient

availability, either releasing (GATA, NDT80, ROX1) their target

genes in response to the stress or (PBF, FKH) repressing their

targets when stresses are present. Another feature shared by the

PPMs is that, through competition of both activating and

repressing TFs binding to the site, the PPM sites are essentially

always bound. These features are consistent with their preferred

targeting of TATA-less promoters.

Previous studies have shown that TATA promoters in yeast are

characterized by closed chromatin, regulation through chromatin,

and that many of the associated genes are upregulated upon

various stresses. In contrast, ‘house-keeping’ genes tend to have

TATA-less promoters [15]. Simplifying one might say that, under

nutrient-rich conditions, TATA promoters are ‘off’ by default and

the TATA boxes are occluded by nucleosomes. In contrast, many

of the TATA-less promoters are expressed and have a distinct

nucleosome free region proximal to the TSS [23]. Upon the

appearance of various stresses many of the TATA promoters are

induced whereas many of the TATA-less promoters are repressed.

The alternative PPMs identified in this study appear to generally

be involved in this switching in response to nutrient availability

and other stresses. Our results suggest that, whereas TATA

promoters may respond to a large diversity of stresses, the

alternative PPMs may be involved with responding to specific

stresses such as cell-cycle check points (FKH), nitrogen and carbon

levels (GATA, NDT80, PBF), oxygen levels (ROX1), and heat

shock (PBF). Whereas TATA sites may be occluded by

nucleosomes in nutrient-rich conditions, most of the PPM sites

switch between accommodating repressing and activating TFs,

and are thus generally associated with regions depleted of

nucleosomes.

Materials and Methods

Binding site annotation
The binding site annotations were performed as described

previously [8]. Briefly, for each intergenic region in Saccharomyces

cerevisiae orthologous intergenic regions from four other sensu stricto

Saccharomyces species were obtained using the ORF annotations of

[55,56]. We used T-Coffee [57] to multiply align the intergenic

regions. We obtained the set of weight matrices used in this study

by running PhyloGibbs on intergenic alignments of regions bound

by a common transcription factor using ChIP-chip binding data

[2] as described in [18]. For constructing the PAC motif [58]

bound by PBF1 and PBF2, PhyloGibbs was run on ribosomal

genes. Finally, additional WMs were obtained by curating the

SCPD collection of experimentally determined binding sites [59]

using the PROCSE algorithm [60]. We then annotated binding

sites for all WMs by running the MotEvo algorithm [19] on the

multiple alignments of all intergenic regions.

The randomized alignments were constructed as follows. Since

we want to maintain the exact conservation patterns of the original

alignments we first checked which subset of species have orthologs

for each of the alignments and find that for 96% of our regions, 4
or all 5 of the species were present (2158 intergenic regions in all).

The other 4% of alignments were discarded. We went through all

alignment columns of all original alignments and divided them

according to the subset of species present in the alignment, the gap

pattern of the alignment column, the position relative to TSS of

the column, and the nucleotide that occurs immediately upstream.

We then went through the original alignments again and replaced

each alignment column with a randomly sampled column from the

same position relative to TSS, having the same subset of species,

the same gap pattern, and the same neighboring nucleotide as the

original column. In this way randomized alignments were created

with the same position-dependent nucleotide frequencies, the same

species present, the exact same gap patterns, and the exact same

conservation statistics.

Occupancy profiles
We used a combination of the TSS annotations from [10–12] to

build distance distributions of TFBSs and nucleosome occupancy

relative to TSS. To avoid ambiguity, we used only those intergenic

regions that are upstream of a single gene to construct the

positional distributions of TFBS and nucleosomes, i.e. divergently

transcribed intergenic regions were discarded. Usually multiple

TSSs were given per region, in which case we assigned a

probability to each TSS according to its abundance, separately

normalizing the TSSs of different data sets. For the TFBS

distributions, we determined the distance x from the center of each

TFBS to the TSS and added the product of the posterior

probability of the TFBS and the probability of the TSS to the total

number of sites n(x). For nucleosome occupancy profiles, we used

4 bp resolution tiling-array data from [24]. Nucleosome occupan-
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cy profiles for individual motifs were determined by multiplying

the nucleosome occupancy at a given position relative to TSS not

only by the probability of the TSS but also by the probability that

the region contains a site for the motif. All distributions were

smoothed using a double-exponential kernel of width 20 bp and

normalized over a range from {1000 bp to z500 bp relative to

TSS. The values for nucleosome occupancy shown in the figures

are log ratios of tiling-array hybridizations per considered

promoter smoothed with the kernel function.

To determine the most preferred position of a motif in a way

that is robust to the noise in the positional profiles we proceeded as

follows: We first determined the position p with global highest

density and then found the positions pl and pr to the left and right

of p where the TFBS density had fallen to 75% of the maximum

value. The interval from pl to pr roughly corresponds to the center

of the ‘peak’ in TFBS density and we chose the middle of this

region, i.e. p�~(plzpr)=2 as the most preferred position for the

motif. For motifs with too few annotated TFBSs the positional

profiles are too noisy to reliably determine a preferred position.

Therefore, we discarded motifs for which the total number of

annotated TFBSs, which is given by the sum of the posterior

probability of all sites, was less than 40. After this filtering 69 of 79
motifs remained. For the test with randomized columns the same

69 motifs were used (independent of the number of predicted sites

for these motifs).

Initiator affinity
To start constructing initiator motifs we wanted to initially focus

on genes that have the same unique TSS in all data-sets used

[10,11]. However, there are only 42 such unique consistent TSSs,

illustrating that TSS usage is typically varied. Moreover, 36 of the

42 unique consistent TSSs occur in TATA-less promoters (Figure

S8) which leaves too few TSSs in TATA promoters to construct

even an initial initiator motif for TATA promoters. For TATA

promoters we thus relaxed the conditions to obtain more

sequences: The TSS had to be unique for the gene in one data

set and contain more than 50% of the probability in the other set.

This way the TATA set yielded 20 sequences (Fig. S8). We

iteratively updated the TATA and TATA-less initiator motifs by

collecting all TSSs of the combined data sets (separately for TATA

and TATA-less genes) for which the initiator WM scored better

than background. Sites for the final initiator motifs were found for

47% of TATA TSS and 48% of TATA-less TSSs (Fig. S8).

Finally, after we determined that there were no systematic

differences between the initiator motifs in TATA and TATA-less

promoters (relative entropies between the two WMs are around

0:4 bits, which is less than 10% of their average information

content), we also constructed a single overall initiator motif by

starting from the 42 initial consistent TSSs, and collecting the 10%
of TSSs genome-wide that had highest WM score for this motif.

The roughly 1500 resulting sequences were used to obtain the final

initiator WM (inset in Fig. 5).

To obtain the affinity profiles, for each TSS separately and in all

regions, the sequence from 2160 bp to +20 bp relative to the TSS

were extracted (if the intergenic region was long enough). This

gave 8111 sequences for TATA-less promoters and 3412 for

TATA promoters. Then, at each position relative to TSS, we

averaged the WM score (i.e. the log-probability of the sequence

given the WM) over all sequences.

TSS assignments
For the assignment of PPMs to TSSs we consider only TFBSs,

for each PPM, that occur near the preferred position for the PPM.

For each PPM, we considered TFBSs within a range of +40 bps

from the most preferred position for the PPM. In addition, for

each PPM we determined a positional profile over this 80 bp

range, i.e. the relative probabilities of TFBS occurrence for the

PPM within this 80 bp range. For each TSS we calculated a score

for each PPM by summing over all TFBSs for the PPM, the

product of the posterior probability of the site and the positional

probability of the site. The TSS was then assigned to the PPM

with the highest score. TSSs that remain without an assigned PPM

are thus those for which no site for any of the PPMs occurs in the

80 bp ranges of each PPM.

In addition to the standard MotEvo settings which yielded the

‘specific set’ of TFBS predictions, we also produced a set of more

‘sensitive’ TFBS predictions. In making its predictions, MotEvo

considers that each region within the multiple alignment can either

contain a binding site for one of the WMs (which has been under

selection in one or more of the species), neutrally evolving

background DNA, or a regulatory element of unknown function,

i.e. a TFBS for a TF for which we currently have no WM [19].

This avoids that MotEvo makes false positive predictions on

regions that show only weak similarity to the WM but that are very

well conserved. In the sensitive setting the prior probability

assigned to such ‘unknown motifs’ is reduced while the prior

probabilities for the PPMs are increased.

Supporting Information

Figure S1 Average GC-content of the true (red) and
randomized (green) promoter sequences as a function of
position relative to TSS. The figure shows that, in line with the

way the randomized promoters were constructed (see Methods),

the GC-content of the randomized promoters closely tracks that of

the original promoters.

(TIFF)

Figure S2 Reverse-cumulative distribution of the num-
ber of predicted binding sites across motifs for predic-
tions on the original alignments (red symbols) and on
the randomized alignments (green symbols). The ‘num-

ber’ of predicted binding sites is defined as the sum of the posterior

probabilities of all binding sites that lie within the ({400,z100)
region relative to TSS on the 2158 alignments that were used for

creating the randomized set. We observe much smaller numbers of

binding sites on the randomized promoters, e.g. only about 10% of

the motifs on the randomized alignments have more predicted

sites than the motif with the least predicted sites on the true

alignments.

(TIFF)

Figure S3 Cumulative distribution of the position of
highest TFBS density across motifs for binding site
predictions done on the true (red) and randomized
(green) alignments. Each symbol corresponds to one motif.

The blue symbols indicate the PPMs on the randomized

alignments. As the figure shows, on the randomized alignments

the positions of highest TFBS density for the PPMs vary greatly

indicating that their preference for proximal locations in the true

alignments is not a consequence of di-nucleotide composition of

the promoters.

(TIFF)

Figure S4 Positional distributions of TFBSs for the
proximal promoter motifs on the true (red lines) and
randomized (green lines) alignments. Each panel corre-

sponds to one of the proximal promoter motifs. In each panel, the

position relative to TSS is indicated along the horizontal axis and

the density of TFBSs is shown along the vertical axis. The figures
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show that PPMs show little evidence of preferred positioning on

the randomized alignments.

(TIFF)

Figure S5 Positional distributions of all TFBSs for
promoters with the region of minimal nucleosome
coverage (MNO) up to 100 base pairs upstream of TSS
(red), between 100 and 200 base pairs upstream (green),
between 200 and 300 base pairs upstream (blue), and
more than 300 base pairs upstream (purple). The inset

shows the total number of binding sites in each of the promoter

classes. The results demonstrate the locations of highest TFBS

density match the locations of the region of minimal nucleosome

occupancy.

(TIFF)

Figure S6 Positional distributions of the TFBSs for each
proximal promoter motif, separately in promoters with
the region of minimal nucleosome occupancy (MNO) up
to 100 base pairs upstream of TSS (red), between 100
and 200 base pairs upstream (green), between 200 and
300 base pairs upstream (blue), and more than 300 base
pairs upstream (purple). Each panel corresponds to one

proximal promoter motif (first row: TATA, ROX1. Second row:

FKH, GATA. Third row: PBF, RPN4. Last row: NDT80). In each

panel the horizontal axis shows position relative to TSS and the

vertical axis shows TFBS density. The insets show the total

numbers of predicted TFBSs in each promoter class for the

corresponding motif. With the exception of the TATA motif,

which shows highest density of TFBSs in promoters with MNOs

more than 200 base pairs upstream, all other PPMs show highest

densities of TFBSs in promoters with MNOs more proximal to

TSS.

(TIFF)

Figure S7 Affinity profiles for the initiator WM exclu-
sively for TATA promoters. To construct the red profile, the

TSS was taken as reference point in each promoter, whereas for

the green profile the TATA box was taken as a reference point. To

align the green and red profiles, we set the TATA-box reference

point at the position where the highest density of TATA sites is

observed ({77 bp relative to TSS). The results demonstrate that

the second maximum of the red profile, at around 70 bps

upstream of TSS, corresponds to the affinity of the initiator motif

for a region around that TATA-box.

(TIFF)

Figure S8 Upper panels: Seed WMs for initiator motifs
in TATA and non-TATA promoters. Lower panels: Iterated

WMs obtained from 10% of the TSS sequences scoring best using

the WMs in the upper panels.

(TIFF)
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